# HG changeset patch # User Shinji KONO # Date 1567648686 -32400 # Node ID 8b85949bde00dfb7e6643ceda0fb518fd1bb65c8 # Parent f714fe999102242d15c9ae2c4ddebdb0506ee781 sup with limit give up diff -r f714fe999102 -r 8b85949bde00 OD.agda --- a/OD.agda Thu Sep 05 01:28:52 2019 +0900 +++ b/OD.agda Thu Sep 05 10:58:06 2019 +0900 @@ -75,8 +75,8 @@ -- o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x -- ord→od x ≡ Ord x results the same -- supermum as Replacement Axiom - sup-o : Ordinal → ( Ordinal → Ordinal ) → Ordinal - sup-o< : {X : Ordinal} → { ψ : Ordinal → Ordinal } → ∀ {x : Ordinal } → x o< X → ψ x o< sup-o X ψ + sup-o : ( Ordinal → Ordinal ) → Ordinal + sup-o< : { ψ : Ordinal → Ordinal } → ∀ {x : Ordinal } → ψ x o< sup-o ψ -- contra-position of mimimulity of supermum required in Power Set Axiom -- sup-x : {n : Level } → ( Ordinal → Ordinal ) → Ordinal -- sup-lb : {n : Level } → { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) @@ -106,14 +106,14 @@ def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df -sup-od : OD → ( OD → OD ) → OD -sup-od X ψ = Ord ( sup-o (od→ord X) ( λ x → od→ord (ψ (ord→od x ))) ) +sup-od : ( OD → OD ) → OD +sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) -sup-c< : {X : OD } ( ψ : OD → OD ) → ∀ {x : OD } → X ∋ x → def ( sup-od X ψ ) (od→ord ( ψ x )) -sup-c< {X} ψ {x} lt = def-subst {_} {_} {Ord ( sup-o (od→ord X) ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} +sup-c< : ( ψ : OD → OD ) → ∀ {x : OD } → def ( sup-od ψ ) (od→ord ( ψ x )) +sup-c< ψ {x} = def-subst {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where - lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (od→ord X) (λ x → od→ord (ψ (ord→od x))) - lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst (sup-o< (c<→o< lt) ) refl (sym diso) ) + lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) + lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst (sup-o< ) refl (sym diso) ) otrans : {n : Level} {a x y : Ordinal } → def (Ord a) x → def (Ord x) y → def (Ord a) y otrans x