# HG changeset patch # User Shinji KONO # Date 1558610655 -32400 # Node ID 9439ff020cbd7890d9438fd4b4bcb222437c0b58 # Parent 457e6626e0b1338cf97059a67ff9012668c7385c ... diff -r 457e6626e0b1 -r 9439ff020cbd ordinal-definable.agda --- a/ordinal-definable.agda Thu May 23 19:48:51 2019 +0900 +++ b/ordinal-definable.agda Thu May 23 20:24:15 2019 +0900 @@ -37,6 +37,9 @@ _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) +od∅ : {n : Level} → OD {n} +od∅ {n} = record { def = λ _ → Lift n ⊥ } + postulate c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y @@ -44,11 +47,7 @@ diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → ψ x c< sup-od ψ - -HOD = OD - -od∅ : {n : Level} → HOD {n} -od∅ {n} = record { def = λ _ → Lift n ⊥ } + ∅-base-def : {n : Level} → def ( ord→od (o∅ {n}) ) ≡ def (od∅ {n}) ∅1 : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅ {n} ) ∅1 {n} x (lift ()) @@ -117,9 +116,6 @@ postulate extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) --- ∅7 : {n : Level} → { x : OD {n} } → ((z : OD {n}) → ¬ ( z c< x )) → x ≡ od∅ --- ∅7 {n} {x} not = cong ( λ k → record { def = k } ) lemma2 where - ∅6 : {n : Level } ( x : Ordinal {suc n}) → o∅ o< x → ¬ x ≡ o∅ ∅6 {n} x lt eq with trio< {n} (o∅ {suc n}) x ∅6 {n} x lt refl | tri< a ¬b ¬c = ¬b refl @@ -130,47 +126,19 @@ ∅8 {n} x (case1 ()) ∅8 {n} x (case2 ()) -∅7'' : {n : Level} → o∅ {suc n} ≡ od→ord (od∅ {suc n}) -∅7'' {n} = sym ( ∅3 lemma ) where - ⊥-leq : lift {_} {n} ⊥ ≡ lift {_} {n} ⊥ - ⊥-leq = refl - lemma : {n : Level} (y : Ordinal {suc n}) → ¬ (y o< od→ord od∅) - lemma {n} y lt = {!!} - -- with ⊥-leq - -- ... | refl = ⊥-elim {!!} --- ∅1 (ord→od y) ( def-subst {suc n} {od∅} {y} {!!} {!!} {!!} ) - -∅10 : {n : Level} → (x : OD {n} ) → ¬ ( ( y : OD {n} ) → Lift (suc n) ( x ∋ y)) → x ≡ od∅ -∅10 {n} x not = cong ( λ k → record { def = k }) ( extensionality {n} ( λ y → {!!} ) ) where - ⊥-leq : lift {_} {n} ⊥ ≡ lift {_} {n} ⊥ - ⊥-leq = refl - lemma : (y : Ordinal {n} ) → def x y ≡ def od∅ y - lemma y with def x y | def od∅ y - ... | s | t = {!!} +-- ∅10 : {n : Level} → (x : OD {n} ) → ¬ ( ( y : OD {n} ) → Lift (suc n) ( x ∋ y)) → x ≡ od∅ +-- ∅10 {n} x not = ? open Ordinal +∋-subst : {n : Level} {X Y x y : OD {suc n} } → X ≡ x → Y ≡ y → X ∋ Y → x ∋ y +∋-subst refl refl x = x -∅77 : {n : Level} → (x : OD {suc n} ) → ¬ ( ord→od (o∅ {suc n}) ∋ x ) -∅77 {n} x lt with od→ord x | c<→o< {suc n} {x} {ord→od (o∅ {suc n})} lt -... | s | t = lemma0 s t where - lemma : ( ox : Ordinal {suc n} ) → ox o< o∅ {suc n} → ⊥ - lemma = ∅8 - lemma1 : { y : Ordinal {suc n} } { la lA : Nat } { oa : OrdinalD {suc n} la }{ oA : OrdinalD {suc n} lA } - → ( record {lv = la ; ord = oa } ≡ record {lv = lA ; ord = oA } ) - → (la < lv y ) ∨ ( oa d< ord y ) → (lA < lv y ) ∨ ( oA d< ord y ) - lemma1 refl x = x - lemma0 : ( ox : Ordinal {suc n} ) → ox o< od→ord (ord→od (o∅ {suc n})) → ⊥ - lemma0 = {!!} - --- lemma0 ox t = lemma ox ( lemma1 (diso {suc n} {o∅ {suc n}}) t ) ---- ... | s | t = lemma s t (diso {suc n} {o∅ {suc n}}) where --- with od→ord x | c<→o< {n} {x} {ord→od (o∅ {n})} lt --- ∅8 {n} (od→ord x) ( def-subst {n} {ord→od (od→ord x) } {{!!}} ( c<→o< lt ) {!!} {!!} ) +-- ∅77 : {n : Level} → (x : OD {suc n} ) → ¬ ( ord→od (o∅ {suc n}) ∋ x ) +-- ∅77 {n} x lt = {!!} where ∅7' : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n} -∅7' {n} = cong ( λ k → record { def = k }) ( extensionality {n} lemma ) where - lemma : ( x : Ordinal {n} ) → def (ord→od o∅) x ≡ def od∅ x - lemma x = {!!} +∅7' {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) where ∅7 : {n : Level} → ( x : OD {n} ) → od→ord x ≡ o∅ {n} → x ≡ od∅ {n} ∅7 {n} x eq = trans ( trans (sym oiso)( cong ( λ k → ord→od k ) eq ) ) ∅7' @@ -180,8 +148,8 @@ lemma : ¬ od→ord x ≡ o∅ lemma eq = not ( ∅7 x eq ) -HOD→ZF : {n : Level} → ZF {suc n} {suc n} -HOD→ZF {n} = record { +OD→ZF : {n : Level} → ZF {suc n} {suc n} +OD→ZF {n} = record { ZFSet = OD {n} ; _∋_ = λ a x → Lift (suc n) ( a ∋ x ) ; _≈_ = _≡_