# HG changeset patch # User Shinji KONO # Date 1558343923 -32400 # Node ID fce60b99dc55a12bb0da6e7fa52b21ada9aa2ab2 # Parent f36e40d5d2c3811b05fea4a97cb8e356452b23b3 posturate OD is isomorphic to Ordinal diff -r f36e40d5d2c3 -r fce60b99dc55 constructible-set.agda --- a/constructible-set.agda Sun May 19 18:13:42 2019 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,246 +0,0 @@ -open import Level -module constructible-set where - -open import zf - -open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) - -open import Relation.Binary.PropositionalEquality - -data OrdinalD {n : Level} : (lv : Nat) → Set n where - Φ : (lv : Nat) → OrdinalD lv - OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv - ℵ_ : (lv : Nat) → OrdinalD (Suc lv) - -record Ordinal {n : Level} : Set n where - field - lv : Nat - ord : OrdinalD {n} lv - -data _d<_ {n : Level} : {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Set n where - Φ< : {lx : Nat} → {x : OrdinalD {n} lx} → Φ lx d< OSuc lx x - s< : {lx : Nat} → {x y : OrdinalD {n} lx} → x d< y → OSuc lx x d< OSuc lx y - ℵΦ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → Φ (Suc lx) d< (ℵ lx) - ℵ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → OSuc (Suc lx) x d< (ℵ lx) - -open Ordinal - -_o<_ : {n : Level} ( x y : Ordinal ) → Set n -_o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) - -open import Data.Nat.Properties -open import Data.Empty -open import Relation.Nullary - -open import Relation.Binary -open import Relation.Binary.Core - -o∅ : {n : Level} → Ordinal {n} -o∅ = record { lv = Zero ; ord = Φ Zero } - - -≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥ -≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t - -trio<> : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ -trio<> {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = - trio<> s t - -trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ -trio<≡ refl = ≡→¬d< - -trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ -trio>≡ refl = ≡→¬d< - -triO : {n : Level} → {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) -triO {n} {lx} {ly} x y = <-cmp lx ly - -triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) -triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< -triOrdd {_} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< -triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) -triOrdd {_} {.(Suc lv)} (Φ (Suc lv)) (ℵ lv) = tri< (ℵΦ< {_} {lv} {Φ (Suc lv)} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {_} {lv} {Φ (Suc lv)} )) ) -triOrdd {_} {Suc lv} (ℵ lv) (Φ (Suc lv)) = tri> ( λ lt → trio<> lt (ℵΦ< {_} {lv} {Φ (Suc lv)} ) ) (λ ()) (ℵΦ< {_} {lv} {Φ (Suc lv)} ) -triOrdd {_} {Suc lv} (ℵ lv) (OSuc (Suc lv) y) = tri> ( λ lt → trio<> lt (ℵ< {_} {lv} {y} ) ) (λ ()) (ℵ< {_} {lv} {y} ) -triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< -triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) -triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y -triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) -triOrdd {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< -triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) - -d<→lv : {n : Level} {x y : Ordinal {n}} → ord x d< ord y → lv x ≡ lv y -d<→lv Φ< = refl -d<→lv (s< lt) = refl -d<→lv ℵΦ< = refl -d<→lv ℵ< = refl - -orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n} lx } → x d< y → y d< z → x d< z -orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y ¬a ¬b c = x - -maxα : {n : Level} → Ordinal {n} → Ordinal → Ordinal -maxα x y with <-cmp (lv x) (lv y) -maxα x y | tri< a ¬b ¬c = x -maxα x y | tri> ¬a ¬b c = y -maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } - -_o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) -a o≤ b = (a ≡ b) ∨ ( a o< b ) - -ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z -ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ ) -ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂ -... | refl = case1 x₁ -ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂) with d<→lv x₁ -... | refl = case1 x₂ -ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂ -... | refl | refl = case2 ( orddtrans x₁ x₂ ) - - -trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_ -trio< a b with <-cmp (lv a) (lv b) -trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where - lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a) - lemma1 (case1 x) = ¬c x - lemma1 (case2 x) with d<→lv x - lemma1 (case2 x) | refl = ¬b refl -trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where - lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b) - lemma1 (case1 x) = ¬a x - lemma1 (case2 x) with d<→lv x - lemma1 (case2 x) | refl = ¬b refl -trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b ) -trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where - lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b - lemma1 refl = refl - lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x) - lemma2 (case1 x) = ¬a x - lemma2 (case2 x) = trio<> x a -trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where - lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b - lemma1 refl = refl - lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b) - lemma2 (case1 x) = ¬a x - lemma2 (case2 x) = trio<> x c -trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where - lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b) - lemma1 (case1 x) = ¬a x - lemma1 (case2 x) = ≡→¬d< x - -OrdTrans : {n : Level} → Transitive {suc n} _o≤_ -OrdTrans (case1 refl) (case1 refl) = case1 refl -OrdTrans (case1 refl) (case2 lt2) = case2 lt2 -OrdTrans (case2 lt1) (case1 refl) = case2 lt1 -OrdTrans (case2 (case1 x)) (case2 (case1 y)) = case2 (case1 ( <-trans x y ) ) -OrdTrans (case2 (case1 x)) (case2 (case2 y)) with d<→lv y -OrdTrans (case2 (case1 x)) (case2 (case2 y)) | refl = case2 (case1 x ) -OrdTrans (case2 (case2 x)) (case2 (case1 y)) with d<→lv x -OrdTrans (case2 (case2 x)) (case2 (case1 y)) | refl = case2 (case1 y) -OrdTrans (case2 (case2 x)) (case2 (case2 y)) with d<→lv x | d<→lv y -OrdTrans (case2 (case2 x)) (case2 (case2 y)) | refl | refl = case2 (case2 (orddtrans x y )) - -OrdPreorder : {n : Level} → Preorder (suc n) (suc n) (suc n) -OrdPreorder {n} = record { Carrier = Ordinal - ; _≈_ = _≡_ - ; _∼_ = _o≤_ - ; isPreorder = record { - isEquivalence = record { refl = refl ; sym = sym ; trans = trans } - ; reflexive = case1 - ; trans = OrdTrans - } - } - -TransFinite : {n : Level} → ( ψ : Ordinal {n} → Set n ) - → ( ∀ (lx : Nat ) → ψ ( record { lv = Suc lx ; ord = ℵ lx } )) - → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) - → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) - → ∀ (x : Ordinal) → ψ x -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ lv } = caseΦ lv -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc lv ord₁ } = caseOSuc lv ord₁ - ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } )) -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁ - --- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' - --- Ordinal Definable Set - -record OD {n : Level} : Set (suc n) where - field - α : Ordinal {n} - def : (x : Ordinal {n} ) → x o< α → Set n - -open OD -open import Data.Unit - -postulate -- this is proved by Godel numbering of def - _c<_ : {n : Level } → (x y : OD {n} ) → Set (suc n) - ODpre : {n : Level} → IsPreorder {suc n} {suc n} {suc n} _≡_ _c<_ - --- o∋ : {n : Level} → {A : Ordinal {n}} → (OrdinalDefinable {n} A ) → (x : Ordinal {n} ) → (x o< A) → Set n --- o∋ a x x : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ +trio<> {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = + trio<> s t + +trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ +trio<≡ refl = ≡→¬d< + +trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ +trio>≡ refl = ≡→¬d< + +triO : {n : Level} → {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) +triO {n} {lx} {ly} x y = <-cmp lx ly + +triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) +triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< +triOrdd {_} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< +triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) +triOrdd {_} {.(Suc lv)} (Φ (Suc lv)) (ℵ lv) = tri< (ℵΦ< {_} {lv} {Φ (Suc lv)} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {_} {lv} {Φ (Suc lv)} )) ) +triOrdd {_} {Suc lv} (ℵ lv) (Φ (Suc lv)) = tri> ( λ lt → trio<> lt (ℵΦ< {_} {lv} {Φ (Suc lv)} ) ) (λ ()) (ℵΦ< {_} {lv} {Φ (Suc lv)} ) +triOrdd {_} {Suc lv} (ℵ lv) (OSuc (Suc lv) y) = tri> ( λ lt → trio<> lt (ℵ< {_} {lv} {y} ) ) (λ ()) (ℵ< {_} {lv} {y} ) +triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< +triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) +triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y +triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) +triOrdd {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< +triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) + +d<→lv : {n : Level} {x y : Ordinal {n}} → ord x d< ord y → lv x ≡ lv y +d<→lv Φ< = refl +d<→lv (s< lt) = refl +d<→lv ℵΦ< = refl +d<→lv ℵ< = refl + +orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n} lx } → x d< y → y d< z → x d< z +orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y ¬a ¬b c = x + +maxα : {n : Level} → Ordinal {n} → Ordinal → Ordinal +maxα x y with <-cmp (lv x) (lv y) +maxα x y | tri< a ¬b ¬c = x +maxα x y | tri> ¬a ¬b c = y +maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } + +_o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) +a o≤ b = (a ≡ b) ∨ ( a o< b ) + +ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z +ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ ) +ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂ +... | refl = case1 x₁ +ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂) with d<→lv x₁ +... | refl = case1 x₂ +ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂ +... | refl | refl = case2 ( orddtrans x₁ x₂ ) + + +trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_ +trio< a b with <-cmp (lv a) (lv b) +trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where + lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a) + lemma1 (case1 x) = ¬c x + lemma1 (case2 x) with d<→lv x + lemma1 (case2 x) | refl = ¬b refl +trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where + lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b) + lemma1 (case1 x) = ¬a x + lemma1 (case2 x) with d<→lv x + lemma1 (case2 x) | refl = ¬b refl +trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b ) +trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where + lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b + lemma1 refl = refl + lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x) + lemma2 (case1 x) = ¬a x + lemma2 (case2 x) = trio<> x a +trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where + lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b + lemma1 refl = refl + lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b) + lemma2 (case1 x) = ¬a x + lemma2 (case2 x) = trio<> x c +trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where + lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b) + lemma1 (case1 x) = ¬a x + lemma1 (case2 x) = ≡→¬d< x + +OrdTrans : {n : Level} → Transitive {suc n} _o≤_ +OrdTrans (case1 refl) (case1 refl) = case1 refl +OrdTrans (case1 refl) (case2 lt2) = case2 lt2 +OrdTrans (case2 lt1) (case1 refl) = case2 lt1 +OrdTrans (case2 (case1 x)) (case2 (case1 y)) = case2 (case1 ( <-trans x y ) ) +OrdTrans (case2 (case1 x)) (case2 (case2 y)) with d<→lv y +OrdTrans (case2 (case1 x)) (case2 (case2 y)) | refl = case2 (case1 x ) +OrdTrans (case2 (case2 x)) (case2 (case1 y)) with d<→lv x +OrdTrans (case2 (case2 x)) (case2 (case1 y)) | refl = case2 (case1 y) +OrdTrans (case2 (case2 x)) (case2 (case2 y)) with d<→lv x | d<→lv y +OrdTrans (case2 (case2 x)) (case2 (case2 y)) | refl | refl = case2 (case2 (orddtrans x y )) + +OrdPreorder : {n : Level} → Preorder (suc n) (suc n) (suc n) +OrdPreorder {n} = record { Carrier = Ordinal + ; _≈_ = _≡_ + ; _∼_ = _o≤_ + ; isPreorder = record { + isEquivalence = record { refl = refl ; sym = sym ; trans = trans } + ; reflexive = case1 + ; trans = OrdTrans + } + } + +TransFinite : {n : Level} → ( ψ : Ordinal {n} → Set n ) + → ( ∀ (lx : Nat ) → ψ ( record { lv = Suc lx ; ord = ℵ lx } )) + → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) + → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) + → ∀ (x : Ordinal) → ψ x +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ lv } = caseΦ lv +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc lv ord₁ } = caseOSuc lv ord₁ + ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } )) +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁ + diff -r f36e40d5d2c3 -r fce60b99dc55 set-of-agda.agda --- a/set-of-agda.agda Sun May 19 18:13:42 2019 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,104 +0,0 @@ -module set-of-agda where - -open import Level -open import Data.Bool - --- infix 50 _∧_ - --- record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where --- constructor _×_ --- field --- proj1 : A --- proj2 : B - --- open _∧_ - --- infix 50 _∨_ - --- data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where --- case1 : A → A ∨ B --- case2 : B → A ∨ B - -data ZFSet {n : Level} : Set (suc (suc n)) where - elem : { A : Set n } ( a : A ) → ZFSet - ∅ : ZFSet {n} - pair : {A B : Set n} (a : A ) (b : B ) → ZFSet - union : (A : Set (suc n) ) → ZFSet - -- repl : ( ψ : ZFSet {n} → Set zero ) → ZFSet - infinite : ZFSet - power : (A : ZFSet {n}) → ZFSet - -infix 60 _∋_ _∈_ - -open import Relation.Binary.PropositionalEquality - -data _∈_ {n : Level} : {A : Set n} ( a : A ) ( Z : ZFSet {n} ) → Set (suc n) where - ∈-elm : {A : Set n } {a : A} → a ∈ (elem a) - ∈-pair-1 : {A : Set n } {B : Set n} {b : B} {a : A} → a ∈ (pair a b) - ∈-pair-2 : {A : Set n } {B : Set n} {b : A} {a : B} → b ∈ (pair a b) --- ∈-union : {Z : Set (suc n)} {A : Z } → {a : {!!} } → a ∈ (union Z) --- ∈-repl : {A : Set n } { B : Set n} → { ψ : B → A } → { b : B } → ψ b ∈ {!!} -- (repl {!!}) - -- ∈-infinite-1 : ∅ ∈ infinite --- ∈-infinite : {A : Set n} {a : A} → _∈_ infinite {A} a - ∈-power : {A B : Set n} {Z : ZFSet {n}} {a : A → B } → a ∈ (power Z) - --- _∈_ : {n : Level} { A : ZFSet {n} } → {B : Set n} → (a : B ) → Set n → Bool --- _∈_ {_} {A} a _ = A ∋ a - -infix 40 _⇔_ - --- _⇔_ : {n : Level} (A B : Set n) → Set n --- A ⇔ B = ( ∀ {x : A } → x ∈ B ) ∧ ( ∀ {x : B } → x ∈ A ) - --- Axiom of extentionality --- ∀ x ∀ y [ ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) ] - --- set-extentionality : {n : Level } {x y : Set n } → { z : x } → ( z ∈ x ⇔ z ∈ y ) → ∀ (w : Set (suc n)) → ( x ∈ w ⇔ y ∈ w ) --- proj1 (set-extentionality {n} {x} {y} {z} (z∈x→z∈y × z∈x←z∈y) w) {elem .x} = elem ( elem x ) --- proj2 (set-extentionality {n} {x} {y} {z} (z∈x→z∈y × z∈x←z∈y) w) {elem .y} = elem ( elem y ) - - -open import Relation.Nullary -open import Data.Empty - --- data ∅ : Set where - -infix 50 _∩_ - --- record _∩_ {n m : Level} (A : Set n) ( B : Set m) : Set (n ⊔ m) where --- field --- inL : {x : A } → x ∈ A --- inR : {x : B } → x ∈ B - --- open _∩_ - --- lemma : {n m : Level} (A : Set n) ( B : Set m) → (a : A ) → a ∈ (A ∩ B) --- lemma A B a A∩B = inL A∩B - --- Axiom of regularity --- ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) - --- set-regularity : {n : Level } → ( x : Set n) → ( ¬ ( x ⇔ ∅ ) ) → { y : x } → ( y ∩ x ⇔ ∅ ) --- set-regularity = {!!} - --- Axiom of pairing --- ∀ x ∀ y ∃ z(x ∈ z ∧ y ∈ z). - --- pair : {n m : Level} ( x : Set n ) ( y : Set m ) → Set (n ⊔ m) --- pair x y = {!!} -- ( x × y ) - --- Axiom of Union --- ∀ X ∃ A∀ t(t ∈ A ⇔ ∃ x ∈ X(t ∈ x)) - --- axiom of infinity --- ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) - --- axiom of replacement --- ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) - --- axiom of power set --- ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) ) - - - - diff -r f36e40d5d2c3 -r fce60b99dc55 zf.agda --- a/zf.agda Sun May 19 18:13:42 2019 +0900 +++ b/zf.agda Mon May 20 18:18:43 2019 +0900 @@ -55,7 +55,7 @@ (infinite : ZFSet) : Set (suc (n ⊔ m)) where field - isEquivalence : {A B : ZFSet} → IsEquivalence {n} {m} {ZFSet} _≈_ + isEquivalence : IsEquivalence {n} {m} {ZFSet} _≈_ -- ∀ x ∀ y ∃ z(x ∈ z ∧ y ∈ z) pair : ( A B : ZFSet ) → ( (A , B) ∋ A ) ∧ ( (A , B) ∋ B ) -- ∀ X ∃ A∀ t(t ∈ A ⇔ ∃ x ∈ X(t ∈ x))