changeset 1113:384ba5a3c019

fix Topology definition
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 01 Jan 2023 13:46:38 +0900
parents fc3eea0d895d
children ba3e053b85d4
files src/ODUtil.agda src/Topology.agda
diffstat 2 files changed, 88 insertions(+), 78 deletions(-) [+]
line wrap: on
line diff
--- a/src/ODUtil.agda	Sat Dec 31 22:09:31 2022 +0900
+++ b/src/ODUtil.agda	Sun Jan 01 13:46:38 2023 +0900
@@ -1,12 +1,12 @@
-{-# OPTIONS --allow-unsolved-metas #-} 
+{-# OPTIONS --allow-unsolved-metas #-}
 open import Level
 open import Ordinals
 module ODUtil {n : Level } (O : Ordinals {n} ) where
 
 open import zf
-open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ )
 open import  Relation.Binary.PropositionalEquality hiding ( [_] )
-open import Data.Nat.Properties 
+open import Data.Nat.Properties
 open import Data.Empty
 open import Relation.Nullary
 open import Relation.Binary hiding ( _⇔_ )
@@ -29,10 +29,13 @@
 open _∧_
 open _==_
 
-cseq :  HOD  →  HOD 
+_⊂_ : ( A B : HOD) → Set n
+_⊂_ A B = ( & A o< & B) ∧ ( A ⊆ B )
+
+cseq :  HOD  →  HOD
 cseq x = record { od = record { def = λ y → odef x (osuc y) } ; odmax = osuc (odmax x) ; <odmax = lemma } where
     lemma : {y : Ordinal} → def (od x) (osuc y) → y o< osuc (odmax x)
-    lemma {y} lt = ordtrans <-osuc (ordtrans (<odmax x lt) <-osuc ) 
+    lemma {y} lt = ordtrans <-osuc (ordtrans (<odmax x lt) <-osuc )
 
 
 pair-xx<xy : {x y : HOD} → & (x , x) o< osuc (& (x , y) )
@@ -43,9 +46,9 @@
 
 pair-<xy : {x y : HOD} → {n : Ordinal}  → & x o< next n →  & y o< next n  → & (x , y) o< next n
 pair-<xy {x} {y} {o} x<nn y<nn with trio< (& x) (& y) | inspect (omax (& x)) (& y)
-... | tri< a ¬b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx y<nn)) ho< 
-... | tri> ¬a ¬b c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx x<nn)) ho< 
-... | tri≈ ¬a b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (omax≡ _ _ b) (subst (λ k → osuc k o< next o) b (osuc<nx x<nn))) ho< 
+... | tri< a ¬b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx y<nn)) ho<
+... | tri> ¬a ¬b c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx x<nn)) ho<
+... | tri≈ ¬a b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (omax≡ _ _ b) (subst (λ k → osuc k o< next o) b (osuc<nx x<nn))) ho<
 
 --  another form of infinite
 -- pair-ord< :  {x : Ordinal } → Set n
@@ -57,7 +60,7 @@
        lemmab1 = ho<
 
 trans-⊆ :  { A B C : HOD} → A ⊆ B → B ⊆ C → A ⊆ C
-trans-⊆ A⊆B B⊆C ab = B⊆C (A⊆B ab) 
+trans-⊆ A⊆B B⊆C ab = B⊆C (A⊆B ab)
 
 refl-⊆ : {A : HOD} → A ⊆ A
 refl-⊆ x = x
@@ -76,21 +79,21 @@
 subset-lemma  {A} {x} = record {
       proj1 = λ lt x∋z → subst (λ k → odef A k ) &iso ( proj1 (lt (subst (λ k →  odef x k) (sym &iso) x∋z ) ))
     ; proj2 = λ x⊆A lt → ⟪ x⊆A lt , lt ⟫
-   } 
+   }
 
 ω<next-o∅ : {y : Ordinal} → infinite-d y → y o< next o∅
 ω<next-o∅ {y} lt = <odmax infinite lt
 
 nat→ω : Nat → HOD
 nat→ω Zero = od∅
-nat→ω (Suc y) = Union (nat→ω y , (nat→ω y , nat→ω y)) 
+nat→ω (Suc y) = Union (nat→ω y , (nat→ω y , nat→ω y))
 
 ω→nato : {y : Ordinal} → infinite-d y → Nat
 ω→nato iφ = Zero
 ω→nato (isuc lt) = Suc (ω→nato lt)
 
 ω→nat : (n : HOD) → infinite ∋ n → Nat
-ω→nat n = ω→nato 
+ω→nat n = ω→nato
 
 ω∋nat→ω : {n : Nat} → def (od infinite) (& (nat→ω n))
 ω∋nat→ω {Zero} = subst (λ k → def (od infinite) k) (sym ord-od∅) iφ
@@ -109,10 +112,10 @@
 single (case2 eq) = ==→o≡ ( ord→== (sym eq) )
 
 single& : {x y : Ordinal } → odef (* x , * x ) y → x ≡ y
-single& (case1 eq) = sym (trans eq &iso) 
+single& (case1 eq) = sym (trans eq &iso)
 single& (case2 eq) = sym (trans eq &iso)
 
-open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 
+open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
 -- postulate f-extensionality : { n m : Level}  → HE.Extensionality n m
 
 pair=∨ : {a b c : Ordinal  } → odef (* a , * b) c → (  a ≡ c ) ∨  (  b ≡ c )
@@ -120,20 +123,20 @@
 pair=∨ {a} {b} {c} (case2 c=b) = case2 ( sym (trans c=b &iso))
 
 ω-prev-eq1 : {x y : Ordinal} →  & (Union (* y , (* y , * y))) ≡ & (Union (* x , (* x , * x))) → ¬ (x o< y)
-ω-prev-eq1 {x} {y} eq x<y with  eq→ (ord→== eq) record { owner = & (* y , * y) ; ao = case2 refl  
+ω-prev-eq1 {x} {y} eq x<y with  eq→ (ord→== eq) record { owner = & (* y , * y) ; ao = case2 refl
         ; ox = subst (λ k → odef k (& (* y))) (sym *iso) (case1 refl) }   --  (* x , (* x , * x)) ∋ * y
 ... | record { owner = u ; ao = xxx∋u ; ox = uy } with xxx∋u
 ... | case1 u=x = ⊥-elim ( o<> x<y (osucprev (begin
-       osuc y ≡⟨ sym (cong osuc  &iso) ⟩ 
+       osuc y ≡⟨ sym (cong osuc  &iso) ⟩
        osuc (& (* y)) ≤⟨ osucc (c<→o< {* y} {* u} uy) ⟩ -- * x ≡ * u ∋ * y
-       & (* u) ≡⟨ &iso ⟩ 
-       u ≡⟨ u=x ⟩ 
-       & (* x) ≡⟨ &iso ⟩ 
-       x ∎ ))) where open o≤-Reasoning O 
+       & (* u) ≡⟨ &iso ⟩
+       u ≡⟨ u=x ⟩
+       & (* x) ≡⟨ &iso ⟩
+       x ∎ ))) where open o≤-Reasoning O
 ... | case2 u=xx = ⊥-elim (o<¬≡ ( begin
         x ≡⟨ single& (subst₂ (λ j k → odef j k ) (begin
-          * u ≡⟨ cong (*) u=xx ⟩ 
-          * (& (* x , * x)) ≡⟨ *iso  ⟩ 
+          * u ≡⟨ cong (*) u=xx ⟩
+          * (& (* x , * x)) ≡⟨ *iso  ⟩
           (* x , * x ) ∎ ) &iso uy ) ⟩  -- (* x , * x ) ∋ * y
         y ∎ ) x<y)  where open ≡-Reasoning
 
@@ -144,7 +147,7 @@
 ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = ⊥-elim (ω-prev-eq1 (sym eq) c)
 
 ω-∈s : (x : HOD) →  Union ( x , (x , x)) ∋ x
-ω-∈s x = record { owner = & ( x , x ) ; ao = case2 refl  ; ox = subst₂ (λ j k → odef j k ) (sym *iso) refl (case2 refl) }  
+ω-∈s x = record { owner = & ( x , x ) ; ao = case2 refl  ; ox = subst₂ (λ j k → odef j k ) (sym *iso) refl (case2 refl) }
 
 ωs≠0 : (x : HOD) →  ¬ ( Union ( x , (x , x)) ≡ od∅ )
 ωs≠0 y eq =  ⊥-elim ( ¬x<0 (subst (λ k → & y  o< k ) ord-od∅ (c<→o< (subst (λ k → odef k (& y )) eq (ω-∈s y) ))) )
@@ -157,17 +160,17 @@
          ind1 : {ox : Ordinal } → (ltd : infinite-d ox ) → * ox ≡ x → nat→ω (ω→nato ltd) ≡ x
          ind1 {o∅} iφ refl = sym o∅≡od∅
          ind1 (isuc {x₁} ltd) ox=x = begin
-              nat→ω (ω→nato (isuc ltd) )         
+              nat→ω (ω→nato (isuc ltd) )
            ≡⟨⟩
               Union (nat→ω (ω→nato ltd) , (nat→ω (ω→nato ltd) , nat→ω (ω→nato ltd)))
            ≡⟨ cong (λ k → Union (k , (k , k ))) lemma  ⟩
               Union (* x₁ , (* x₁ , * x₁))
            ≡⟨ trans ( sym *iso) ox=x ⟩
-              x 
+              x
            ∎ where
-               open ≡-Reasoning 
+               open ≡-Reasoning
                lemma0 :  x ∋ * x₁
-               lemma0 = subst (λ k → odef k (& (* x₁))) (trans (sym *iso) ox=x) 
+               lemma0 = subst (λ k → odef k (& (* x₁))) (trans (sym *iso) ox=x)
                    record { owner = & ( * x₁ , * x₁ ) ; ao = case2 refl ; ox = subst (λ k → odef k (& (* x₁))) (sym *iso) (case1 refl)  }
                lemma1 : infinite ∋ * x₁
                lemma1 = subst (λ k → odef infinite k) (sym &iso) ltd
@@ -176,7 +179,7 @@
                lemma3 iφ (isuc {y} ltd1) eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso eq (c<→o< (ω-∈s (* y)) )))
                lemma3 (isuc {y} ltd)  iφ eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso (sym eq) (c<→o< (ω-∈s (* y)) )))
                lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (ω-prev-eq (sym eq))
-               ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅  (ω-prev-eq eq)) t  
+               ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅  (ω-prev-eq eq)) t
                lemma2 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ω→nato ltd ≡ ω→nato ltd1
                lemma2 {x} {y} ltd ltd1 eq = lemma6 eq (lemma3 {x} {y} ltd ltd1 eq)  where
                    lemma6 : {x y : Ordinal} → {ltd : infinite-d x } {ltd1 : infinite-d y } → y ≡ x → ltd ≅ ltd1 → ω→nato ltd ≡ ω→nato ltd1
@@ -184,10 +187,10 @@
                lemma :  nat→ω (ω→nato ltd) ≡ * x₁
                lemma = trans  (cong (λ k →  nat→ω  k) (lemma2 {x₁} {_} ltd (subst (λ k → infinite-d k ) (sym &iso) ltd)  &iso ) ) ( prev {* x₁} lemma0 lemma1 )
 
-                                                   
-ω→nat-iso0 : (x : Nat) → {ox : Ordinal } → (ltd : infinite-d ox) → * ox ≡ nat→ω x → ω→nato ltd ≡ x                                  
-ω→nat-iso0 Zero iφ eq = refl                                                                                                     
-ω→nat-iso0 (Suc x) iφ eq = ⊥-elim ( ωs≠0 _ (trans (sym eq) o∅≡od∅ )) 
+
+ω→nat-iso0 : (x : Nat) → {ox : Ordinal } → (ltd : infinite-d ox) → * ox ≡ nat→ω x → ω→nato ltd ≡ x
+ω→nat-iso0 Zero iφ eq = refl
+ω→nat-iso0 (Suc x) iφ eq = ⊥-elim ( ωs≠0 _ (trans (sym eq) o∅≡od∅ ))
 ω→nat-iso0 Zero (isuc ltd) eq = ⊥-elim ( ωs≠0 _ (subst (λ k → k ≡ od∅  ) *iso eq ))
 ω→nat-iso0 (Suc i) (isuc {x} ltd) eq = cong Suc ( ω→nat-iso0 i ltd (lemma1 eq) ) where
        lemma1 :  * (& (Union (* x , (* x , * x)))) ≡ Union (nat→ω i , (nat→ω i , nat→ω i)) → * x ≡ nat→ω i
@@ -196,13 +199,23 @@
                 (subst (λ k → _ ≡ Union ( k , ( k , k ))) (sym *iso ) eq ))))))
 
 ω→nat-iso : {i : Nat} → ω→nat ( nat→ω i ) (ω∋nat→ω {i}) ≡ i
-ω→nat-iso {i} = ω→nat-iso0 i (ω∋nat→ω {i}) *iso  
+ω→nat-iso {i} = ω→nat-iso0 i (ω∋nat→ω {i}) *iso
 
-Repl⊆ : {A B : HOD} (A⊆B : A ⊆ B) → { ψa : ( x : HOD) → A ∋ x → HOD } { ψb : ( x : HOD) → B ∋ x → HOD } 
+Repl⊆ : {A B : HOD} (A⊆B : A ⊆ B) → { ψa : ( x : HOD) → A ∋ x → HOD } { ψb : ( x : HOD) → B ∋ x → HOD }
    → ( {z : Ordinal  } → (az : odef A z ) →  (ψa (* z) (subst (odef A) (sym &iso) az) ≡ ψb (* z) (subst (odef B) (sym &iso) (A⊆B az))))
-   → Replace' A ψa ⊆ Replace' B ψb 
-Repl⊆ {A} {B} A⊆B {ψa} {ψb} eq  record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = A⊆B az  
+   → Replace' A ψa ⊆ Replace' B ψb
+Repl⊆ {A} {B} A⊆B {ψa} {ψb} eq  record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = A⊆B az
          ; x=ψz = trans  x=ψz (cong (&) (eq az) ) }
 
+PPP : {P : HOD} → Power P ∋ P
+PPP {P} z pz = subst (λ k → odef k z ) *iso pz
 
+UPower⊆Q : {P Q : HOD} → P ⊆ Q → Union (Power P) ⊆ Q
+UPower⊆Q {P} {Q} P⊆Q {z} record { owner = y ; ao = ppy ; ox = yz } = P⊆Q (ppy _ yz)
 
+UPower∩ : {P  : HOD} → ({ p q : HOD } → P ∋ p →  P ∋ q  → P ∋ (p ∩ q))
+    → { p q : HOD } → Union (Power P) ∋ p →  Union (Power P) ∋ q  → Union (Power P) ∋ (p ∩ q)
+UPower∩ {P} each {p} {q} record { owner = x ; ao = ppx ; ox = xz } record { owner = y ; ao = ppy ; ox = yz }
+   =  record { owner = & P ; ao = PPP ; ox = lem03 }  where
+    lem03 :   odef (* (& P)) (& (p ∩ q))
+    lem03 = subst (λ k → odef k (& (p ∩ q))) (sym *iso) ( each (ppx _ xz) (ppy _ yz) )
--- a/src/Topology.agda	Sat Dec 31 22:09:31 2022 +0900
+++ b/src/Topology.agda	Sun Jan 01 13:46:38 2023 +0900
@@ -8,12 +8,12 @@
 open _∨_
 open Bool
 
-import OD 
-open import Relation.Nullary 
-open import Data.Empty 
+import OD
+open import Relation.Nullary
+open import Data.Empty
 open import Relation.Binary.Core
 open import Relation.Binary.PropositionalEquality
-import BAlgbra 
+import BAlgbra
 open BAlgbra O
 open inOrdinal O
 open OD O
@@ -33,34 +33,33 @@
 open import filter O
 open import OPair O
 
-
 record Topology  ( L : HOD ) : Set (suc n) where
    field
        OS    : HOD
-       OS⊆PL :  OS ⊆ Power L 
-       o∪ : { P : HOD }  →  P  ⊆ OS           → OS ∋ Union P
-       o∩ : { p q : HOD } → OS ∋ p →  OS ∋ q  → OS ∋ (p ∩ q)
+       OS⊆PL :  OS ⊆ Power L
+       o∩ : { p q : HOD } → OS ∋ p →  OS ∋ q      → OS ∋ (p ∩ q)
+       o∪ : { P : HOD }  →  P ⊂ OS                → OS ∋ Union P
 -- closed Set
    CS : HOD
    CS = record { od = record { def = λ x → odef OS (& ( L \ (* x ))) } ; odmax = & L ; <odmax = tp02 } where
        tp02 : {y : Ordinal } → odef OS (& (L \ * y)) → y o< & L
        tp02 {y} nop = ?
-   os⊆L :  {x : HOD} → OS ∋ x → x ⊆ L 
+   os⊆L :  {x : HOD} → OS ∋ x → x ⊆ L
    os⊆L {x} Ox {y} xy = ( OS⊆PL Ox ) _ (subst (λ k → odef k y) (sym *iso) xy  )
        -- ∈∅< ( proj1 nop )
 
 open Topology
 
 -- Base
--- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that 
+-- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that
 -- W ⊆ U ∩ V and x ∈ W .
 
 data Subbase (P : HOD) : Ordinal → Set n where
    gi : {x : Ordinal } → odef P x → Subbase P x
    g∩ : {x y : Ordinal } → Subbase P x → Subbase P y → Subbase P (& (* x ∩ * y))
 
-Subbases : (P : HOD) → HOD
-Subbases P = record { od = record { def = λ x → Subbase P x } ; odmax = ? ; <odmax = ? }
+SI : (P : HOD) → HOD
+SI P = record { od = record { def = λ x → Subbase P x } ; odmax = ? ; <odmax = ? }
 
 sbp :  (P : HOD) {x : Ordinal } → Subbase P x → Ordinal
 sbp P {x} (gi {y} px) = x
@@ -68,28 +67,26 @@
 
 is-sbp :  (P : HOD) {x y : Ordinal } → (px : Subbase P x) → odef (* x) y  → odef P (sbp P px ) ∧ odef (* (sbp P px)) y
 is-sbp P {x} (gi px) xy = ⟪ px , xy ⟫
-is-sbp P {.(& (* _ ∩ * _))} (g∩ {x} {y} px px₁) xy = is-sbp P px (proj1 (subst (λ k → odef k _ ) *iso  xy)) 
+is-sbp P {.(& (* _ ∩ * _))} (g∩ {x} {y} px px₁) xy = is-sbp P px (proj1 (subst (λ k → odef k _ ) *iso  xy))
 
 record IsSubBase (L P : HOD) : Set (suc n) where
    field
-       P⊆PL  : P ⊆ Power L  
+       P⊆PL  : P ⊆ Power L
        p    : {x : HOD} → L ∋ x → HOD
-       in-P : {x : HOD} → {lx : L ∋ x } → P ∋ p lx
+       Pp : {x : HOD} → {lx : L ∋ x } → P ∋ p lx
        px   : {x : HOD} → {lx : L ∋ x } → p lx ∋ x
 
 GeneratedTopogy : (L P : HOD) → IsSubBase L P  → Topology L
-GeneratedTopogy L P isb = record { OS = Subbases P ; OS⊆PL = OS⊆PL0 ; o∪ = tp01 ; o∩ = ? } where
-       OS⊆PL0 :  Subbases P ⊆ Power L
+GeneratedTopogy L P isb = record { OS = Union (Power (SI P)) ; OS⊆PL = UPower⊆Q {SI P} {Power L} OS⊆PL0
+         ; o∪ = tp01 ; o∩ = UPower∩ tp04 } where
+       OS⊆PL0 :  SI P ⊆ Power L
        OS⊆PL0 (gi px) z xz = IsSubBase.P⊆PL isb px _ xz
-       OS⊆PL0 (g∩ {x} {y} px py) z xz = IsSubBase.P⊆PL isb (proj1 (is-sbp P px (proj1 (subst (λ k → odef k z) *iso xz )) )) _ 
+       OS⊆PL0 (g∩ {x} {y} px py) z xz = IsSubBase.P⊆PL isb (proj1 (is-sbp P px (proj1 (subst (λ k → odef k z) *iso xz )) )) _
             (proj2 (is-sbp P px (proj1 (subst (λ k → odef k z) *iso xz )) ))
-       tp01 : {Q : HOD} → Q ⊆ Subbases P → Subbases P ∋ Union Q
-       tp01 {q} qp = ε-induction0 { λ x → x ⊆ Subbases P → Subbases P ∋ Union x } tp02 q qp where
-           tp02 : {x : HOD} → ({y : HOD} → x ∋ y → y ⊆ Subbases P → Subbases P ∋ Union y) → x ⊆ Subbases P → Subbases P ∋ Union x
-           tp02 {x} prev xp = gi ?
-       tp04 : {p q : HOD} → Subbases P ∋ p → Subbases P ∋ q → Subbases P ∋ (p ∩ q)
-       tp04 {p} {q} pp pq = subst (λ k → odef (Subbases P) k ) (cong₂ (λ j k → & ( j  ∩ k )) *iso *iso )  ( g∩ pp pq ) 
-
+       tp04 : {p q : HOD} → SI P ∋ p → SI P ∋ q → SI P ∋ (p ∩ q)
+       tp04 {p} {q} pp pq = subst (λ k → odef (SI P) k ) (cong₂ (λ j k → & ( j  ∩ k )) *iso *iso )  ( g∩ pp pq )
+       tp01 : {q : HOD} → q ⊂ Union (Power (SI P)) → Union (Power (SI P)) ∋ Union q
+       tp01 {q} ⟪ q<ups , qp ⟫ = record { owner = ? ; ao = ? ; ox = ? }
 
 -- covers
 
@@ -124,15 +121,15 @@
 
 -- FIP is Compact
 
-FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top  → Compact top 
+FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top  → Compact top
 FIP→Compact {L} TL fip = record { finCover = ? ; isCover = ? ; isFinite = ? }
 
-Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top  → FIP top 
+Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top  → FIP top
 Compact→FIP = {!!}
 
 -- Product Topology
 
-open ZFProduct 
+open ZFProduct
 
 record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where
    field
@@ -147,7 +144,7 @@
        prod : x ≡ & (ZFP P (* q ))
 
 -- box : HOD
--- box = ZFP (OS TP) (OS TQ) 
+-- box = ZFP (OS TP) (OS TQ)
 
 base : {P Q : HOD} → Topology P → Topology Q → HOD
 base {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? }
@@ -155,9 +152,9 @@
 _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q)
 _Top⊗_ {P} {Q} TP TQ =  GeneratedTopogy (ZFP P Q) (base TP TQ) ?
 
--- existence of Ultra Filter 
+-- existence of Ultra Filter
 
-open Filter 
+open Filter
 
 -- Ultra Filter has limit point
 
@@ -169,12 +166,12 @@
 
 -- FIP is UFL
 
-FIP→UFLP : {P : HOD} (TP : Topology P) →  FIP TP 
-   →  {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP )  (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf 
+FIP→UFLP : {P : HOD} (TP : Topology P) →  FIP TP
+   →  {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP )  (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf
 FIP→UFLP {P} TP fip {L} LP F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? }
 
-UFLP→FIP : {P : HOD} (TP : Topology P) → 
-   ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP )  (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf ) → FIP TP 
+UFLP→FIP : {P : HOD} (TP : Topology P) →
+   ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP )  (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf ) → FIP TP
 UFLP→FIP {P} TP uflp = record { fipS⊆PL = ? ; fip≠φ = ? }
 
 -- Product of UFL has limit point (Tychonoff)
@@ -184,25 +181,25 @@
     uflp : {L : HOD} (LPQ : L ⊆ Power (ZFP P Q)) (F : Filter LPQ)
             (uf : ultra-filter {L} {_} {LPQ} F) → UFLP (TP Top⊗ TQ) LPQ F uf
     uflp {L} LPQ F uf = record { limit = & < * ( UFLP.limit uflpp) , ? >  ; P∋limit = ? ; is-limit = ? } where
-         LP : (L : HOD ) (LPQ : L ⊆ Power (ZFP P Q)) → HOD  
+         LP : (L : HOD ) (LPQ : L ⊆ Power (ZFP P Q)) → HOD
          LP L LPQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) )
          LPP : (L : HOD) (LPQ : L ⊆ Power (ZFP P Q)) → LP L LPQ ⊆ Power P
-         LPP L LPQ record { z = z ; az = az ; x=ψz = x=ψz } w xw = tp02 (subst (λ k → odef k w) 
+         LPP L LPQ record { z = z ; az = az ; x=ψz = x=ψz } w xw = tp02 (subst (λ k → odef k w)
            (subst₂ (λ j k → j ≡ k) refl *iso (cong (*) x=ψz) )  xw) where
              tp02 : Replace' (* z) (λ z₁ xz → * (zπ1 (LPQ (subst (odef L) (sym &iso) az) (& z₁) (subst (λ k → odef k (& z₁)) (sym *iso) xz)))) ⊆ P
-             tp02 record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k ) (trans (sym &iso) (sym x=ψz1)  ) 
+             tp02 record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k ) (trans (sym &iso) (sym x=ψz1)  )
                   (zp1 (LPQ (subst (λ k → odef L k) (sym &iso) az) _ (tp03 az1 ))) where
-                    tp03 : odef (* z) z1 →  odef (* (& (* z))) (& (* z1)) 
+                    tp03 : odef (* z) z1 →  odef (* (& (* z))) (& (* z1))
                     tp03 lt = subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) lt)
          FP : Filter (LPP L LPQ)
          FP = record { filter = LP (filter F) (λ x → LPQ (f⊆L F x )) ; f⊆L = tp04 ; filter1 = ? ; filter2 = ? } where
              tp04 : LP (filter F) (λ x → LPQ (f⊆L F x )) ⊆ LP L LPQ
-             tp04 record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = f⊆L F az ; x=ψz = ? } 
+             tp04 record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = f⊆L F az ; x=ψz = ? }
          uFP : ultra-filter FP
          uFP = record { proper = ? ; ultra = ? }
          uflpp : UFLP {P} TP {LP L LPQ} (LPP L LPQ) FP uFP
-         uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP uFP 
-         LQ : HOD  
+         uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP uFP
+         LQ : HOD
          LQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ2 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) )
          LQQ : LQ ⊆ Power Q
          LQQ = ?