changeset 1248:b1d024385208

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 15 Mar 2023 09:41:57 +0900
parents 0350fe03d73a
children c57b8068f97c
files src/generic-filter.agda
diffstat 1 files changed, 192 insertions(+), 174 deletions(-) [+]
line wrap: on
line diff
--- a/src/generic-filter.agda	Tue Mar 14 14:41:39 2023 +0900
+++ b/src/generic-filter.agda	Wed Mar 15 09:41:57 2023 +0900
@@ -61,6 +61,8 @@
        ctl<M : (x : ℕ) → odef (ctl-M) (ctl→ x)
        ctl← : (x : Ordinal )→  odef (ctl-M ) x → ℕ
        ctl-iso→ : { x : Ordinal } → (lt : odef (ctl-M) x )  → ctl→ (ctl← x lt ) ≡ x
+       TC : {x y : Ordinal} → odef ctl-M x → odef (* x) y → odef ctl-M y
+       is-model : (x : HOD) → ctl-M ∋ (x ∩ ctl-M)
        -- we have no otherway round
        -- ctl-iso← : { x : ℕ }  →  ctl← (ctl→ x ) (ctl<M x)  ≡ x
 --
@@ -72,11 +74,6 @@
 
 open CountableModel
 
-abs-minus : {p q : HOD} → (C : CountableModel) → ctl-M C ∋ (p \ q) 
-abs-minus {p} {q} C = ? where
-    p-q : {x : Ordinal } → odef (p \ q) x →  ℕ
-    p-q pqx = ctl← C _ ?
-
 ----
 --   a(n) ∈ M
 --   ∃ q ∈ L ⊆ Power P → q ∈ a(n) ∧ p(n) ⊆ q
@@ -171,9 +168,12 @@
 record GenericFilter {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where
     field
        genf : Filter {L} {P} LP
-       generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Replace (Filter.filter genf) (λ x → P \ x )) ≡ od∅ )
     rgen : HOD
     rgen = Replace (Filter.filter genf) (λ x → P \ x )
+    field
+       generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Replace (Filter.filter genf) (λ x → P \ x )) ≡ od∅ )
+       gfilter1 : {p q : HOD} → rgen ∋ p → q ⊆ p  → rgen ∋ q
+       gfilter2 : {p q : HOD} → (rgen ∋ p ) ∧ (rgen ∋ q) → rgen ∋ (p ∪ q)
 
 P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0
       → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q ))  -- L is a Boolean Algebra
@@ -183,165 +183,178 @@
 P-GenericFilter P L p0 L⊆PP Lp0 CAP UNI NEG C = record {
       genf = record { filter = Replace (PDHOD L p0 C) (λ x → P \ x)  ; f⊆L =  gf01 ; filter1 = f1 ; filter2 = f2 }
     ; generic = λ D cd → subst (λ k → ¬ (Dense.dense D ∩ k) ≡ od∅ ) (sym gf00) (fdense D cd )
+    ; gfilter1 = gfilter1
+    ; gfilter2 = gfilter2
    } where
-        GP =  Replace (PDHOD L p0 C) (λ x → P \ x)
-        f⊆PL :  PDHOD L p0 C ⊆ L
-        f⊆PL lt = x∈PP lt
-        gf01 : Replace (PDHOD L p0 C) (λ x → P \ x) ⊆ L
-        gf01 {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef L k) (sym x=ψz) ( NEG (subst (λ k → odef L k) (sym &iso) (f⊆PL az)) )
-        gf141 : {xp xq : Ordinal } → (Pp : PDN L p0 C xp) (Pq : PDN L p0 C xq) →  (* xp ∪ * xq) ⊆ P
-        gf141 Pp Pq {x} (case1 xpx) = L⊆PP (PDN.x∈PP Pp)  _ xpx
-        gf141 Pp Pq {x} (case2 xqx) = L⊆PP (PDN.x∈PP Pq)  _ xqx
-        gf121 : {p q : HOD} (gp : GP ∋ p) (gq : GP ∋ q)  →  p ∩ q  ≡ P \ * (& (* (Replaced.z gp) ∪ * (Replaced.z gq)))
-        gf121 {p} {q} gp gq = begin
-               p ∩ q  ≡⟨ cong₂ (λ j k → j ∩ k ) (sym *iso) (sym *iso)  ⟩
-               (* (& p)) ∩ (* (& q))  ≡⟨ cong₂ (λ j k → ( * j ) ∩ ( * k)) (Replaced.x=ψz gp) (Replaced.x=ψz gq) ⟩
-               * (& (P \ (* xp ))) ∩ (* (& (P \ (* xq ))))  ≡⟨ cong₂ (λ j k → j ∩ k ) *iso *iso  ⟩
-               (P \ (* xp )) ∩ (P \ (* xq ))  ≡⟨ gf02 {P} {* xp} {* xq}  ⟩
-               P \ ((* xp) ∪ (* xq))  ≡⟨ cong (λ k → P \ k) (sym *iso) ⟩
-               P \ * (& (* xp ∪ * xq))  ∎ where
-                  open ≡-Reasoning
-                  xp = Replaced.z gp
-                  xq = Replaced.z gq
-        gf131 : {p q : HOD} (gp : GP ∋ p) (gq : GP ∋ q)  →  P \ (p ∩ q) ≡ * (Replaced.z gp) ∪ * (Replaced.z gq)
-        gf131 {p} {q} gp gq = trans (cong (λ k → P \ k) (gf121 gp gq))
-          (trans ( L\Lx=x (subst (λ k → k ⊆ P) (sym *iso) (gf141 (Replaced.az gp) (Replaced.az gq))) ) *iso )
+    GP =  Replace (PDHOD L p0 C) (λ x → P \ x)
+    GPR = Replace GP (_\_ P) 
+    f⊆PL :  PDHOD L p0 C ⊆ L
+    f⊆PL lt = x∈PP lt
+    gf01 : Replace (PDHOD L p0 C) (λ x → P \ x) ⊆ L
+    gf01 {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef L k) (sym x=ψz) ( NEG (subst (λ k → odef L k) (sym &iso) (f⊆PL az)) )
+    gf141 : {xp xq : Ordinal } → (Pp : PDN L p0 C xp) (Pq : PDN L p0 C xq) →  (* xp ∪ * xq) ⊆ P
+    gf141 Pp Pq {x} (case1 xpx) = L⊆PP (PDN.x∈PP Pp)  _ xpx
+    gf141 Pp Pq {x} (case2 xqx) = L⊆PP (PDN.x∈PP Pq)  _ xqx
+    gf121 : {p q : HOD} (gp : GP ∋ p) (gq : GP ∋ q)  →  p ∩ q  ≡ P \ * (& (* (Replaced.z gp) ∪ * (Replaced.z gq)))
+    gf121 {p} {q} gp gq = begin
+           p ∩ q  ≡⟨ cong₂ (λ j k → j ∩ k ) (sym *iso) (sym *iso)  ⟩
+           (* (& p)) ∩ (* (& q))  ≡⟨ cong₂ (λ j k → ( * j ) ∩ ( * k)) (Replaced.x=ψz gp) (Replaced.x=ψz gq) ⟩
+           * (& (P \ (* xp ))) ∩ (* (& (P \ (* xq ))))  ≡⟨ cong₂ (λ j k → j ∩ k ) *iso *iso  ⟩
+           (P \ (* xp )) ∩ (P \ (* xq ))  ≡⟨ gf02 {P} {* xp} {* xq}  ⟩
+           P \ ((* xp) ∪ (* xq))  ≡⟨ cong (λ k → P \ k) (sym *iso) ⟩
+           P \ * (& (* xp ∪ * xq))  ∎ where
+              open ≡-Reasoning
+              xp = Replaced.z gp
+              xq = Replaced.z gq
+    gf131 : {p q : HOD} (gp : GP ∋ p) (gq : GP ∋ q)  →  P \ (p ∩ q) ≡ * (Replaced.z gp) ∪ * (Replaced.z gq)
+    gf131 {p} {q} gp gq = trans (cong (λ k → P \ k) (gf121 gp gq))
+      (trans ( L\Lx=x (subst (λ k → k ⊆ P) (sym *iso) (gf141 (Replaced.az gp) (Replaced.az gq))) ) *iso )
 
-        f1 : {p q : HOD} → L ∋ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ p → p ⊆ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ q
-        f1 {p} {q} L∋q record { z = z ; az = az ; x=ψz = x=ψz } p⊆q = record { z = _ 
-           ; az = record { gr = gr az ;  pn<gr = f04 ; x∈PP = NEG L∋q } ; x=ψz = f05 } where
-           open ≡-Reasoning
-           f04 : (y : Ordinal) → odef (* (& (P \ q))) y → odef (* (find-p L C (gr az ) (& p0))) y
-           f04 y qy = PDN.pn<gr az  _ (subst (λ k → odef k y ) f06 (f03 qy ))  where
-              f06 : * (& (P \ p)) ≡ * z
-              f06 = begin
-                * (& (P \ p)) ≡⟨ *iso ⟩
-                P \ p ≡⟨ cong (λ k → P \ k) (sym *iso)  ⟩
-                P \ (* (& p)) ≡⟨ cong (λ k → P \ k) (cong (*) x=ψz) ⟩
-                P \ (* (& (P \ * z))) ≡⟨ cong ( λ k → P  \ k) *iso ⟩
-                P \ (P \ * z) ≡⟨ L\Lx=x  (λ {x} lt → L⊆PP (x∈PP az) _ lt ) ⟩
-                * z ∎ 
-              f03 :  odef (* (& (P \ q))) y →  odef (* (& (P \ p))) y
-              f03 pqy with subst (λ k → odef k y ) *iso pqy
-              ... | ⟪ Py , nqy ⟫ = subst (λ k → odef k y ) (sym *iso) ⟪ Py , (λ py → nqy (p⊆q py) ) ⟫
-           f05 : & q ≡ & (P \ * (& (P \ q)))
-           f05 = cong (&) ( begin
-              q ≡⟨ sym (L\Lx=x (λ {x} lt → L⊆PP L∋q _ (subst (λ k → odef k x) (sym *iso) lt) )) ⟩ 
-              P \ (P \ q )  ≡⟨  cong ( λ k → P  \ k) (sym *iso) ⟩ 
-              P \ * (& (P \ q)) ∎ )
-        f2 : {p q : HOD} → GP ∋ p → GP ∋ q → L ∋ (p ∩ q) → GP ∋ (p ∩ q)
-        f2 {p} {q} record { z = xp ; az = Pp ; x=ψz = peq }
-                   record { z = xq ; az = Pq ; x=ψz = qeq } L∋pq with <-cmp (gr Pp) (gr Pq)
-        ... | tri< a ¬b ¬c = record { z = & ( (* xp) ∪ (* xq) ) ; az = gf10  ; x=ψz = cong (&) (gf121 gp gq) } where
-              gp = record { z = xp ; az = Pp ; x=ψz = peq }
-              gq = record { z = xq ; az = Pq ; x=ψz = qeq }
-              gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq))
-              gf10 = record { gr = PDN.gr Pq ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ( NEG L∋pq ) } where
-                 gf16 : gr Pp ≤ gr Pq
-                 gf16 = <to≤ a
-                 gf15 :  (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pq) (& p0))) y
-                 gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
-                 ... | case1 xpy = p-monotonic L p0 C gf16 (PDN.pn<gr Pp y xpy )
-                 ... | case2 xqy = PDN.pn<gr Pq _ xqy
-        ... | tri≈ ¬a eq ¬c = record { z = & (* xp ∪ * xq) ; az = record { gr = gr Pp ; pn<gr = gf21 ; x∈PP = gf22 } ; x=ψz = gf23 } where
-              gp = record { z = xp ; az = Pp ; x=ψz = peq }
-              gq = record { z = xq ; az = Pq ; x=ψz = qeq }
-              gf22 : odef L (& (* xp ∪ * xq))
-              gf22 = UNI (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pp)) (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pq))
-              gf21 : (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y
-              gf21 y xpqy with subst (λ k → odef k y) *iso xpqy
-              ... | case1 xpy = PDN.pn<gr Pp _ xpy
-              ... | case2 xqy = subst (λ k → odef (* (find-p L C k (& p0))) y ) (sym eq) ( PDN.pn<gr Pq _ xqy )
-              gf25 : odef L (& p)
-              gf25 = subst (λ k → odef L k ) (sym peq) ( NEG (subst (λ k → odef L k) (sym &iso) (PDN.x∈PP Pp) ))
-              gf27 : {x : Ordinal} → odef p x → odef (P \ * xp) x
-              gf27 {x} px = subst (λ k → odef k x) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) peq)) px
-              -- gf02 : {P a b : HOD } → (P \ a) ∩ (P \ b) ≡ ( P \ (a ∪ b) )
-              gf23 : & (p ∩ q) ≡ & (P \ * (& (* xp ∪ * xq)))
-              gf23 = cong (&) (gf121 gp gq )
-        ... | tri> ¬a ¬b c = record { z = & ( (* xp) ∪ (* xq) ) ; az = gf10  ; x=ψz = cong (&) (gf121 gp gq ) } where
-              gp = record { z = xp ; az = Pp ; x=ψz = peq }
-              gq = record { z = xq ; az = Pq ; x=ψz = qeq }
-              gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq))
-              gf10 = record { gr = PDN.gr Pp ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ( NEG L∋pq ) } where
-                 gf16 : gr Pq ≤ gr Pp
-                 gf16 = <to≤ c
-                 gf15 :  (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y
-                 gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
-                 ... | case1 xpy = PDN.pn<gr Pp _ xpy
-                 ... | case2 xqy = p-monotonic L p0 C gf16 (PDN.pn<gr Pq y xqy )
-        gf00 : Replace (Replace (PDHOD L p0 C) (λ x → P \ x)) (_\_ P) ≡ PDHOD L p0 C
-        gf00 = ==→o≡ record { eq→ = gf20 ; eq← = gf22 } where
-             gf20 : {x : Ordinal} → odef (Replace (Replace (PDHOD L p0 C) (λ x₁ → P \ x₁)) (_\_ P)) x → PDN L p0 C x
-             gf20 {x} record { z = z₁ ; az = record { z = z ; az = az ; x=ψz = x=ψz₁ } ; x=ψz = x=ψz } =
-                subst (λ k → PDN L p0 C k ) (begin
-                  z ≡⟨ sym &iso ⟩
-                  & (* z) ≡⟨ cong (&) (sym (L\Lx=x gf21 ))  ⟩
-                  & (P \ ( P \ (* z) )) ≡⟨ cong (λ k →  & ( P \ k)) (sym *iso)   ⟩
-                  & (P \ (* ( & (P \ (* z )))))  ≡⟨ cong (λ k → & (P \ (* k))) (sym x=ψz₁)  ⟩
-                  & (P \ (* z₁))  ≡⟨  sym x=ψz  ⟩
-                  x ∎ ) az where
-                  open ≡-Reasoning
-                  gf21 : {x : Ordinal } → odef (* z) x → odef P x
-                  gf21 {x} lt = L⊆PP ( PDN.x∈PP az) _ lt
-             gf22 : {x : Ordinal} → PDN L p0 C x → odef (Replace (Replace (PDHOD L p0 C) (λ x₁ → P \ x₁)) (_\_ P)) x
-             gf22 {x} pdx = record { z = _ ; az = record { z = _ ; az = pdx ; x=ψz = refl } ; x=ψz = ( begin
-               x ≡⟨ sym &iso ⟩
-               & (* x)  ≡⟨ cong (&) (sym (L\Lx=x gf21 ))  ⟩
-               & (P \ (P \ * x))  ≡⟨ cong (λ k →  & ( P \ k)) (sym *iso)   ⟩
-               & (P \ * (& (P \ * x)))  ∎ ) } where
-                  open ≡-Reasoning
-                  gf21 : {z : Ordinal } → odef (* x) z → odef P z
-                  gf21 {z} lt = L⊆PP ( PDN.x∈PP pdx ) z lt
-        fdense : (D : Dense {L} {P} L⊆PP ) → (ctl-M C ) ∋ Dense.dense D  → ¬ (Dense.dense D ∩ (PDHOD L p0 C)) ≡ od∅
-        fdense D MD eq0  = ⊥-elim (  ∅< {Dense.dense D ∩ PDHOD L p0 C} fd01 (≡od∅→=od∅ eq0 )) where
-           open Dense
-           fd09 : (i : ℕ ) → odef L (find-p L C i (& p0))
-           fd09 zero = Lp0
-           fd09 (suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) )
-           ... | yes _ = fd09 i
-           ... | no not = fd17 where
-              fd19 =  ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))  
-              fd18 : PGHOD i L C (find-p L C i (& p0)) ∋ fd19
-              fd18 = ODC.x∋minimal O (PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))
-              fd17 :  odef L ( & (ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq)))  )
-              fd17 = proj1 fd18 
-           an : ℕ
-           an = ctl← C (& (dense D)) MD  
-           pn : Ordinal
-           pn = find-p L C an (& p0)
-           pn+1 : Ordinal
-           pn+1 = find-p L C (suc an) (& p0)
-           d=an : dense D ≡ * (ctl→ C an) 
-           d=an = begin dense D ≡⟨ sym *iso ⟩
-                    * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→  C MD )) ⟩
-                    * (ctl→ C an) ∎  where open ≡-Reasoning
-           fd07 : odef (dense D) pn+1
-           fd07 with is-o∅ ( & ( PGHOD an L C (find-p L C an (& p0))) )
-           ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 fd21 ) ) where
-              L∋pn : L ∋ * (find-p L C an (& p0))
-              L∋pn = subst (λ k → odef L k) (sym &iso) (fd09 an )
-              L∋df : L ∋ ( dense-f D L∋pn )
-              L∋df = (d⊆P D) (  dense-d D L∋pn )
-              pn∋df : (* (ctl→ C an)) ∋ ( dense-f D L∋pn )
-              pn∋df = subst (λ k → odef k (& ( dense-f D L∋pn ) )) d=an (  dense-d D L∋pn ) 
-              pn⊆df : (y : Ordinal) → odef (* (find-p L C an (& p0))) y → odef (* (& (dense-f D L∋pn))) y
-              pn⊆df y py = subst (λ k → odef k y ) (sym *iso) (dense-p D L∋pn py)
-              fd21 : odef (PGHOD an L C (find-p L C an (& p0)) ) (& (dense-f D L∋pn))
-              fd21 = ⟪ L∋df , ⟪ pn∋df , pn⊆df ⟫ ⟫
-              fd10 :  PGHOD an L C (find-p L C an (& p0)) =h= od∅
-              fd10 = ≡o∅→=od∅ y
-           ... | no not = fd27 where
-              fd29 =  ODC.minimal O ( PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
-              fd28 : PGHOD an L C (find-p L C an (& p0)) ∋ fd29
-              fd28 = ODC.x∋minimal O (PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
-              fd27 :  odef (dense D) (& fd29)
-              fd27 = subst (λ k → odef k (& fd29)) (sym d=an) (proj1 (proj2 fd28)) 
-           fd03 : odef (PDHOD L p0 C) pn+1
-           fd03 = record { gr = suc an ; pn<gr = λ y lt → lt ; x∈PP = fd09 (suc an)} 
-           fd01 : (dense D ∩ PDHOD L p0 C) ∋ (* pn+1)
-           fd01 = ⟪ subst (λ k → odef (dense D)  k ) (sym &iso) fd07 , subst (λ k → odef  (PDHOD L p0 C) k) (sym &iso) fd03 ⟫  
-
+    f1 : {p q : HOD} → L ∋ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ p → p ⊆ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ q
+    f1 {p} {q} L∋q record { z = z ; az = az ; x=ψz = x=ψz } p⊆q = record { z = _ 
+       ; az = record { gr = gr az ;  pn<gr = f04 ; x∈PP = NEG L∋q } ; x=ψz = f05 } where
+       open ≡-Reasoning
+       f04 : (y : Ordinal) → odef (* (& (P \ q))) y → odef (* (find-p L C (gr az ) (& p0))) y
+       f04 y qy = PDN.pn<gr az  _ (subst (λ k → odef k y ) f06 (f03 qy ))  where
+          f06 : * (& (P \ p)) ≡ * z
+          f06 = begin
+            * (& (P \ p)) ≡⟨ *iso ⟩
+            P \ p ≡⟨ cong (λ k → P \ k) (sym *iso)  ⟩
+            P \ (* (& p)) ≡⟨ cong (λ k → P \ k) (cong (*) x=ψz) ⟩
+            P \ (* (& (P \ * z))) ≡⟨ cong ( λ k → P  \ k) *iso ⟩
+            P \ (P \ * z) ≡⟨ L\Lx=x  (λ {x} lt → L⊆PP (x∈PP az) _ lt ) ⟩
+            * z ∎ 
+          f03 :  odef (* (& (P \ q))) y →  odef (* (& (P \ p))) y
+          f03 pqy with subst (λ k → odef k y ) *iso pqy
+          ... | ⟪ Py , nqy ⟫ = subst (λ k → odef k y ) (sym *iso) ⟪ Py , (λ py → nqy (p⊆q py) ) ⟫
+       f05 : & q ≡ & (P \ * (& (P \ q)))
+       f05 = cong (&) ( begin
+          q ≡⟨ sym (L\Lx=x (λ {x} lt → L⊆PP L∋q _ (subst (λ k → odef k x) (sym *iso) lt) )) ⟩ 
+          P \ (P \ q )  ≡⟨  cong ( λ k → P  \ k) (sym *iso) ⟩ 
+          P \ * (& (P \ q)) ∎ )
+    f2 : {p q : HOD} → GP ∋ p → GP ∋ q → L ∋ (p ∩ q) → GP ∋ (p ∩ q)
+    f2 {p} {q} record { z = xp ; az = Pp ; x=ψz = peq }
+               record { z = xq ; az = Pq ; x=ψz = qeq } L∋pq with <-cmp (gr Pp) (gr Pq)
+    ... | tri< a ¬b ¬c = record { z = & ( (* xp) ∪ (* xq) ) ; az = gf10  ; x=ψz = cong (&) (gf121 gp gq) } where
+          gp = record { z = xp ; az = Pp ; x=ψz = peq }
+          gq = record { z = xq ; az = Pq ; x=ψz = qeq }
+          gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq))
+          gf10 = record { gr = PDN.gr Pq ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ( NEG L∋pq ) } where
+             gf16 : gr Pp ≤ gr Pq
+             gf16 = <to≤ a
+             gf15 :  (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pq) (& p0))) y
+             gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
+             ... | case1 xpy = p-monotonic L p0 C gf16 (PDN.pn<gr Pp y xpy )
+             ... | case2 xqy = PDN.pn<gr Pq _ xqy
+    ... | tri≈ ¬a eq ¬c = record { z = & (* xp ∪ * xq) ; az = record { gr = gr Pp ; pn<gr = gf21 ; x∈PP = gf22 } ; x=ψz = gf23 } where
+          gp = record { z = xp ; az = Pp ; x=ψz = peq }
+          gq = record { z = xq ; az = Pq ; x=ψz = qeq }
+          gf22 : odef L (& (* xp ∪ * xq))
+          gf22 = UNI (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pp)) (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pq))
+          gf21 : (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y
+          gf21 y xpqy with subst (λ k → odef k y) *iso xpqy
+          ... | case1 xpy = PDN.pn<gr Pp _ xpy
+          ... | case2 xqy = subst (λ k → odef (* (find-p L C k (& p0))) y ) (sym eq) ( PDN.pn<gr Pq _ xqy )
+          gf25 : odef L (& p)
+          gf25 = subst (λ k → odef L k ) (sym peq) ( NEG (subst (λ k → odef L k) (sym &iso) (PDN.x∈PP Pp) ))
+          gf27 : {x : Ordinal} → odef p x → odef (P \ * xp) x
+          gf27 {x} px = subst (λ k → odef k x) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) peq)) px
+          -- gf02 : {P a b : HOD } → (P \ a) ∩ (P \ b) ≡ ( P \ (a ∪ b) )
+          gf23 : & (p ∩ q) ≡ & (P \ * (& (* xp ∪ * xq)))
+          gf23 = cong (&) (gf121 gp gq )
+    ... | tri> ¬a ¬b c = record { z = & ( (* xp) ∪ (* xq) ) ; az = gf10  ; x=ψz = cong (&) (gf121 gp gq ) } where
+          gp = record { z = xp ; az = Pp ; x=ψz = peq }
+          gq = record { z = xq ; az = Pq ; x=ψz = qeq }
+          gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq))
+          gf10 = record { gr = PDN.gr Pp ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ( NEG L∋pq ) } where
+             gf16 : gr Pq ≤ gr Pp
+             gf16 = <to≤ c
+             gf15 :  (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y
+             gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy
+             ... | case1 xpy = PDN.pn<gr Pp _ xpy
+             ... | case2 xqy = p-monotonic L p0 C gf16 (PDN.pn<gr Pq y xqy )
+    gf00 : Replace (Replace (PDHOD L p0 C) (λ x → P \ x)) (_\_ P) ≡ PDHOD L p0 C
+    gf00 = ==→o≡ record { eq→ = gf20 ; eq← = gf22 } where
+         gf20 : {x : Ordinal} → odef (Replace (Replace (PDHOD L p0 C) (λ x₁ → P \ x₁)) (_\_ P)) x → PDN L p0 C x
+         gf20 {x} record { z = z₁ ; az = record { z = z ; az = az ; x=ψz = x=ψz₁ } ; x=ψz = x=ψz } =
+            subst (λ k → PDN L p0 C k ) (begin
+              z ≡⟨ sym &iso ⟩
+              & (* z) ≡⟨ cong (&) (sym (L\Lx=x gf21 ))  ⟩
+              & (P \ ( P \ (* z) )) ≡⟨ cong (λ k →  & ( P \ k)) (sym *iso)   ⟩
+              & (P \ (* ( & (P \ (* z )))))  ≡⟨ cong (λ k → & (P \ (* k))) (sym x=ψz₁)  ⟩
+              & (P \ (* z₁))  ≡⟨  sym x=ψz  ⟩
+              x ∎ ) az where
+              open ≡-Reasoning
+              gf21 : {x : Ordinal } → odef (* z) x → odef P x
+              gf21 {x} lt = L⊆PP ( PDN.x∈PP az) _ lt
+         gf22 : {x : Ordinal} → PDN L p0 C x → odef (Replace (Replace (PDHOD L p0 C) (λ x₁ → P \ x₁)) (_\_ P)) x
+         gf22 {x} pdx = record { z = _ ; az = record { z = _ ; az = pdx ; x=ψz = refl } ; x=ψz = ( begin
+           x ≡⟨ sym &iso ⟩
+           & (* x)  ≡⟨ cong (&) (sym (L\Lx=x gf21 ))  ⟩
+           & (P \ (P \ * x))  ≡⟨ cong (λ k →  & ( P \ k)) (sym *iso)   ⟩
+           & (P \ * (& (P \ * x)))  ∎ ) } where
+              open ≡-Reasoning
+              gf21 : {z : Ordinal } → odef (* x) z → odef P z
+              gf21 {z} lt = L⊆PP ( PDN.x∈PP pdx ) z lt
+    fdense : (D : Dense {L} {P} L⊆PP ) → (ctl-M C ) ∋ Dense.dense D  → ¬ (Dense.dense D ∩ (PDHOD L p0 C)) ≡ od∅
+    fdense D MD eq0  = ⊥-elim (  ∅< {Dense.dense D ∩ PDHOD L p0 C} fd01 (≡od∅→=od∅ eq0 )) where
+       open Dense
+       fd09 : (i : ℕ ) → odef L (find-p L C i (& p0))
+       fd09 zero = Lp0
+       fd09 (suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) )
+       ... | yes _ = fd09 i
+       ... | no not = fd17 where
+          fd19 =  ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))  
+          fd18 : PGHOD i L C (find-p L C i (& p0)) ∋ fd19
+          fd18 = ODC.x∋minimal O (PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+          fd17 :  odef L ( & (ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq)))  )
+          fd17 = proj1 fd18 
+       an : ℕ
+       an = ctl← C (& (dense D)) MD  
+       pn : Ordinal
+       pn = find-p L C an (& p0)
+       pn+1 : Ordinal
+       pn+1 = find-p L C (suc an) (& p0)
+       d=an : dense D ≡ * (ctl→ C an) 
+       d=an = begin dense D ≡⟨ sym *iso ⟩
+                * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→  C MD )) ⟩
+                * (ctl→ C an) ∎  where open ≡-Reasoning
+       fd07 : odef (dense D) pn+1
+       fd07 with is-o∅ ( & ( PGHOD an L C (find-p L C an (& p0))) )
+       ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 fd21 ) ) where
+          L∋pn : L ∋ * (find-p L C an (& p0))
+          L∋pn = subst (λ k → odef L k) (sym &iso) (fd09 an )
+          L∋df : L ∋ ( dense-f D L∋pn )
+          L∋df = (d⊆P D) (  dense-d D L∋pn )
+          pn∋df : (* (ctl→ C an)) ∋ ( dense-f D L∋pn )
+          pn∋df = subst (λ k → odef k (& ( dense-f D L∋pn ) )) d=an (  dense-d D L∋pn ) 
+          pn⊆df : (y : Ordinal) → odef (* (find-p L C an (& p0))) y → odef (* (& (dense-f D L∋pn))) y
+          pn⊆df y py = subst (λ k → odef k y ) (sym *iso) (dense-p D L∋pn py)
+          fd21 : odef (PGHOD an L C (find-p L C an (& p0)) ) (& (dense-f D L∋pn))
+          fd21 = ⟪ L∋df , ⟪ pn∋df , pn⊆df ⟫ ⟫
+          fd10 :  PGHOD an L C (find-p L C an (& p0)) =h= od∅
+          fd10 = ≡o∅→=od∅ y
+       ... | no not = fd27 where
+          fd29 =  ODC.minimal O ( PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+          fd28 : PGHOD an L C (find-p L C an (& p0)) ∋ fd29
+          fd28 = ODC.x∋minimal O (PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+          fd27 :  odef (dense D) (& fd29)
+          fd27 = subst (λ k → odef k (& fd29)) (sym d=an) (proj1 (proj2 fd28)) 
+       fd03 : odef (PDHOD L p0 C) pn+1
+       fd03 = record { gr = suc an ; pn<gr = λ y lt → lt ; x∈PP = fd09 (suc an)} 
+       fd01 : (dense D ∩ PDHOD L p0 C) ∋ (* pn+1)
+       fd01 = ⟪ subst (λ k → odef (dense D)  k ) (sym &iso) fd07 , subst (λ k → odef  (PDHOD L p0 C) k) (sym &iso) fd03 ⟫  
+    gfilter1 : {p q : HOD} → GPR ∋ p → q ⊆ p → GPR ∋ q
+    gfilter1 {p} {q} record { z = z ; az = az ; x=ψz = x=ψz } q⊆p = record { z = _ ; az = gf30 ; x=ψz = ? }  where
+        gf30 : GP ∋ (P \ q )
+        gf30 = f1 ? ? ?
+    gfilter2 : {p q : HOD} → (GPR ∋ p) ∧ (GPR ∋ q) → Replace GP (_\_ P) ∋ (p ∪ q)
+    gfilter2 {p} {q} ⟪ record { z = zp ; az = azp ; x=ψz = x=ψzp } , record { z = zq ; az = azq ; x=ψz = x=ψzq } ⟫ 
+       = record { z = _ ; az = gf31 ; x=ψz = ? } where
+        gfp : GP ∋ (P \ p ) 
+        gfp = ?
+        gf31 : GP ∋ ( (P \ p ) ∩ (P \ q ) )
+        gf31 = f2 gfp ? ? 
 
 open GenericFilter
 open Filter
@@ -360,32 +373,37 @@
       → (UNI : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∪ q ))
       → (NEG : ({p : HOD} → L ∋ p → L ∋ ( P \ p)))
       → (C : CountableModel ) 
-      → ( MP : ctl-M C ∋ P )
       → ( {p : HOD} → (Lp : L ∋ p ) → NotCompatible L p Lp )
       →  ¬ ( ctl-M C ∋  rgen ( P-GenericFilter P L p0 LPP Lp0 CAP UNI NEG  C ))
-lemma232 P L p0 LPP Lp0 CAP UNI NEG C MP NC M∋gf = ¬gf∩D=0 record { eq→ = λ {x} gf∩D → ⊥-elim( proj2 (proj2 gf∩D) (proj1 gf∩D)) 
+lemma232 P L p0 LPP Lp0 CAP UNI NEG C NC MF = ¬rgf∩D=0 record { eq→ = λ {x} rgf∩D → ⊥-elim( proj2 (proj2 rgf∩D) (proj1 rgf∩D)) 
         ; eq← = λ lt → ⊥-elim (¬x<0 lt) } where
-    gf =  rgen ( P-GenericFilter P L p0 LPP Lp0 CAP UNI NEG  C )
+    GF =  genf ( P-GenericFilter P L p0 LPP Lp0 CAP UNI NEG  C )
+    rgf =  rgen ( P-GenericFilter P L p0 LPP Lp0 CAP UNI NEG  C )
     M = ctl-M C
     D : HOD  
-    D = L \ gf
-    M∋D : M ∋ D
-    M∋D = subst (λ k → odef M k) ? (ctl<M C ?) 
+    D = L \ rgf
+    M∋DM : M ∋ (D ∩ M )
+    M∋DM = is-model C D
     D⊆PP : D ⊆ Power P
     D⊆PP {x} ⟪ Lx , ngx ⟫  = LPP Lx 
+    ll01 : {q r : HOD } → (rgf ∋ q) ∧ (rgf ∋ r) → (q ⊆ rgf ) ∧ (r ⊆ rgf )
+    ll01 {q} {r} rgfpq = ⟪ ll02 , ? ⟫  where
+        ll02 : {x : Ordinal } → odef q x → odef rgf x
+        ll02 {x} qx = record { z = ? ; az = record { z = ? ; az = ? ; x=ψz = ? }  ; x=ψz = ? }
+        -- filter2 GF ? ? ?
+    -- with contra-position ? ?
+    -- ... | t = ?
     DD : Dense {L} {P} LPP
     Dense.dense DD = D
     Dense.d⊆P DD ⟪ Lx , _ ⟫ = Lx
     Dense.dense-f DD Lp = ? where
         ll00 : HOD
         ll00 with NotCompatible.¬compat (NC Lp)
-        ... | nc = ? where
-           ll01 : {q r : HOD } → (s : HOD) → ¬ ( (q ⊆ s) ∧ (r ⊆ s)) → (¬ (gf ∋ q)) ∨ (¬ (gf ∋ q))
-           ll01 = ?
+        ... | nc = ? 
     Dense.dense-d DD = ?
     Dense.dense-p DD = ?
-    ¬gf∩D=0 : ¬ ( (gf ∩ D) =h= od∅ )
-    ¬gf∩D=0 = ?
+    ¬rgf∩D=0 : ¬ ( (rgf ∩ D) =h= od∅ )
+    ¬rgf∩D=0 = ?
 
 --
 -- P-Generic Filter defines a countable model D ⊂ C from P