changeset 1228:e3f20bc4fac9

last part of Tychonoff
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 08 Mar 2023 10:28:55 +0900
parents 72b5815be243
children 5e6dfe739f6a
files src/Topology.agda src/Tychonoff.agda
diffstat 2 files changed, 41 insertions(+), 29 deletions(-) [+]
line wrap: on
line diff
--- a/src/Topology.agda	Tue Mar 07 19:19:03 2023 +0900
+++ b/src/Topology.agda	Wed Mar 08 10:28:55 2023 +0900
@@ -224,12 +224,14 @@
 -- Product Topology is not
 --     ZFP (OS TP) (OS TQ) (box)
 
+-- Rectangle subset (zπ1 ⁻¹ p)
 record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where
    field
        p : Ordinal
        op : odef (OS TP) p
        prod : x ≡ & (ZFP (* p) Q )
 
+-- Rectangle subset (zπ12⁻¹ q )
 record BaseQ (P : HOD) {Q : HOD} (TQ : Topology Q ) (x : Ordinal) : Set n where
    field
        q  : Ordinal
@@ -287,7 +289,7 @@
 
 data Finite-∪ (S : HOD) : Ordinal → Set n where
    fin-e : Finite-∪ S o∅
-   fin-i : {x : Ordinal } → odef S x  → Finite-∪ S (& ( * x , * x ))
+   fin-i : {x : Ordinal } → odef S x  → Finite-∪ S (& ( * x , * x ))   -- an element of S
    fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y))
    --  Finite-∪ S y → Union y ⊆ S
 
@@ -621,8 +623,9 @@
 
 open Filter
 
--- Ultra Filter has limit point
-
+--
+-- {v | Neighbor lim v}  set of u ⊆ v ⊆ P where u is an open set u ∋ x
+--
 record Neighbor {P : HOD} (TP : Topology P) (x v : Ordinal) : Set n where
    field
        u : Ordinal
--- a/src/Tychonoff.agda	Tue Mar 07 19:19:03 2023 +0900
+++ b/src/Tychonoff.agda	Wed Mar 08 10:28:55 2023 +0900
@@ -490,6 +490,8 @@
             ... | case2 fnp = case2 (FPSet∋zpq (λ pp → proj1 pp)  (subst (λ k → odef (filter F) k) (cong (&) (proj1 ZFP\Q)) fnp ))
          uflp : UFLP TP FP UFP
          uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP
+         FPSet⊆F : {x : Ordinal } → odef FPSet x →  odef (filter F) (& (ZFP (* x) Q))
+         FPSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = ?
 
          --  copy and pasted, sorry
          --
@@ -636,40 +638,47 @@
 
          Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >)
          Pf = ab-pair (UFLP.P∋limit uflp) (UFLP.P∋limit uflq)  
+         record aSubbase (b : Ordinal) : Set n where
+           field
+             fp∋b∨fq∋b : odef (filter FP ) b ∨ odef (filter FP ) b 
+            
          isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → filter F ∋ * v
          isL {v} npq = filter1 F (λ z xz → Neighbor.v⊆P npq (subst (λ k → odef k z) *iso xz)) 
-                (subst (λ k → odef (filter F) k) (sym &iso) (F∋base pqb ?))  ? where
+                (subst (λ k → odef (filter F) k) (sym &iso) (F∋base pqb npq pqb⊆opq)) bpq⊆v where
+             --
+             -- Product Topolgy's open set contains a subbase which is an element of ZPF p Q or ZPF P q
+             --   Neighbor of limit contains an open set which conatins a limit
+             --   every point of an open set is covered by a subbase
+             --   so there is a subbase which contains a limit, the subbase is an element of projection of a filter (P or Q)
+             TPQ = ProductTopology TP TQ
+             lim = & < * (UFLP.limit uflp) , * (UFLP.limit uflq) >
              bpq : Base (ZFP P Q) (pbase TP TQ) (Neighbor.u npq) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >)
              bpq = Neighbor.ou npq (Neighbor.ux npq)
              pqb : Subbase (pbase TP TQ) (Base.b bpq )
              pqb = Base.sb bpq
              pqb⊆opq : * (Base.b bpq) ⊆ * ( Neighbor.u npq )
+             bpq⊆v : * (Base.b bpq) ⊆ * v
+             bpq⊆v {x} bx = Neighbor.u⊆v npq (pqb⊆opq bx)
              pqb⊆opq = Base.b⊆u bpq
-             F∋base : {b : Ordinal } →  Subbase (pbase TP TQ) b → * b ⊆  * (Neighbor.u npq) → odef (filter F) b
-             F∋base (gi (case1 px)) b⊆u  = ?  where
-                 -- F is ultra, so F ∋ b ∨ F ∋ (ZFP P Q \ b)
-                 --     FP ∋ b ∨ FQ ∋ b
-                 --     Neighbor b ∋ limit
-                 --  F ∋ (ZFP P Q \ b) → ¬  Neighbor b ∋ limit → ⊥
-                 -- F contains no od∅, because it projection contains no od∅
-                 --    x is an element of BaseP, which is a subset of Neighbor npq
-                 --    x is also an elment of Proj1 F because Proj1 F has UFLP (uflp)
-                 --    BaseP ∩ F is not empty
-                 --    (Base P ∩ F) ⊆ F , (Base P ) ⊆ F ,
-                 nei1 : HOD
-                 nei1 = ? -- ZFPproj1 (* (Neighbor.u npq)) (Power P) (Power Q)
-                 plimit : Ordinal
-                 plimit = UFLP.limit uflp
-                 nproper : {b : Ordinal } →  * b ⊆ nei1 → o∅ o< b
-                 nproper = {!!}
-                 bp : BaseP {P} TP Q ?
-                 bp = record { p = {!!} ; op = {!!} ; prod = {!!} }
-                 neip : {p : Ordinal } → ( bp : BaseP TP Q p ) → * p ⊆ filter F
-                 neip = {!!}
-                 il3 : filter F ∋ {!!}
-                 il3 = {!!}
-             F∋base (gi (case2 qx)) b⊆u = ?
-             F∋base (g∩ b1 b2) b⊆u = ?
+             F∋base : {b v : Ordinal } →  Subbase (pbase TP TQ) b → (npq : Neighbor TPQ lim v) → * b ⊆  * (Neighbor.u npq) → odef (filter F) b
+             F∋base {b} {v} (gi (case1 px)) npq b⊆u  = subst (λ k → odef (filter F) k) (sym (BaseP.prod px)) f∋b where
+                 px∋limit : odef (* (BaseP.p px)) (UFLP.limit uflp)
+                 px∋limit = ?
+                 fp∋b : filter FP ∋ * (BaseP.p px)
+                 fp∋b = UFLP.is-limit uflp record { u = _ ; ou = BaseP.op px ; ux = px∋limit 
+                     ; v⊆P = λ {x} lt → os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) (BaseP.op px)) lt ; u⊆v = λ x → x }
+                 f∋b : odef (filter F) (& (ZFP (* (BaseP.p px)) Q))
+                 f∋b = FPSet⊆F  (subst (λ k → odef (filter FP) k ) &iso fp∋b )
+             F∋base (gi (case2 qx)) npq b⊆u = ?
+             F∋base (g∩ {x} {y} b1 b2) npq xy⊆u = F∋x∩y where
+                 fb01 :  odef (filter F) x
+                 fb01 = F∋base b1 ? ?
+                 fb02 :  odef (filter F) y
+                 fb02 = F∋base b2 ? ?
+                 F∋x∩y : odef (filter F) (& (* x ∩ * y))
+                 F∋x∩y = filter2 F (subst (λ k → odef (filter F) k) (sym &iso) fb01) (subst (λ k → odef (filter F) k) (sym &iso) fb02) 
+                    (CAP (ZFP P Q) (subst (λ k → odef (Power (ZFP P Q)) k) (sym &iso) (f⊆L F fb01)) 
+                                   (subst (λ k → odef (Power (ZFP P Q)) k) (sym &iso) (f⊆L F fb02)))