view automaton-in-agda/src/gcd.agda @ 197:daeae196aa50

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 17 Jun 2021 16:00:58 +0900
parents 6764fe96994f
children 4b452c9d7e7b
line wrap: on
line source

{-# OPTIONS --allow-unsolved-metas #-}
module gcd where

open import Data.Nat 
open import Data.Nat.Properties
open import Data.Empty
open import Data.Unit using (⊤ ; tt)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.Definitions
open import nat
open import logic

record Factor (n m : ℕ ) : Set where
   field 
      factor : ℕ
      remain : ℕ
      is-factor : factor * n + remain ≡ m

record Dividable (n m : ℕ ) : Set where
   field 
      factor : ℕ
      is-factor : factor * n + 0 ≡ m 

open Factor

DtoF : {n m : ℕ} → Dividable n m → Factor n m
DtoF {n} {m} record { factor = f ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa }

FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m 
FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa }

decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n
decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } = 
 decf1 {n} {k} f r fa where
  dr : ( n k : ℕ ) → (f r : ℕ) → ℕ
  dr n zero (suc f) zero = 0
  dr n (suc k) (suc f) zero = k
  dr n k f (suc r) = r
  dr n zero zero zero = r
  dr n (suc k) zero zero = r
  decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n)  → Factor k n 
  decf1 {n} {k} f (suc r) fa  =  -- this case must be the first
     record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n
        f * k + r ≡⟨ cong pred ( begin
          suc ( f * k + r ) ≡⟨ +-comm _ r ⟩
          r + suc (f * k)  ≡⟨ sym (+-assoc r 1 _) ⟩
          (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩
          (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩
          f * k + suc r  ≡⟨ fa ⟩
          suc n ∎ ) ⟩ 
        n ∎ ) }  where open ≡-Reasoning
  decf1 {n} {zero} (suc f) zero fa  = ⊥-elim ( nat-≡< fa (
        begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero)  ⟩
        suc (f * 0) ≡⟨ cong suc (*-comm f zero)  ⟩
        suc zero ≤⟨ s≤s z≤n ⟩
        suc n ∎ )) where open ≤-Reasoning
  decf1 {n} {suc k} (suc f) zero fa  = 
     record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n
        f * suc k + k ≡⟨ +-comm _ k ⟩
        k + f * suc k ≡⟨ +-comm zero _ ⟩
        (k + f * suc k) + zero  ≡⟨ cong pred fa ⟩
        n ∎ ) }  where open ≡-Reasoning

decf-eq : {i k : ℕ } → k > 1 → (if : Factor k (suc i)) 
     → (div : Dividable k (suc i - remain if))  → factor if ≡ Dividable.factor div
decf-eq {i} {suc k} k>1 if div = if1 where
   if0 : suc (suc i) > remain if
   if0 = begin
        suc (remain if) ≤⟨ s≤s (m≤n+m _ (factor if * suc k)) ⟩
        suc (factor if * suc k + remain if) ≡⟨ cong suc ( is-factor if) ⟩
        suc (suc i) ∎  where open ≤-Reasoning
   if1 : factor if ≡ Dividable.factor div
   if1 = begin
        factor if  ≡⟨ *-cancelʳ-≡ _ _ {k} ( +-cancelʳ-≡ _ _ ( begin
        factor if * suc k + remain if ≡⟨ is-factor if ⟩
        suc i ≡⟨ sym (minus+n {suc i} {remain if} if0) ⟩
        (suc i - remain if) + remain if ≡⟨ cong (λ g → g + remain if) (sym (Dividable.is-factor div )) ⟩
        (Dividable.factor div * suc k + 0) + remain if  ≡⟨ cong (λ g → g + remain if) (+-comm _ 0) ⟩
        Dividable.factor div * suc k + remain if ∎  )) ⟩ Dividable.factor div ∎   where open ≡-Reasoning

div0 :  {k : ℕ} → Dividable k 0
div0 {k} = record { factor = 0; is-factor = refl }

ifk0 : (  i0 k : ℕ ) → (i0f : Factor k i0 )  → ( i0=0 : remain i0f ≡ 0 )  → factor i0f * k + 0 ≡ i0
ifk0 i0 k i0f i0=0 = begin
   factor i0f * k + 0  ≡⟨ cong (λ m → factor i0f * k + m) (sym i0=0)  ⟩
   factor i0f * k + remain i0f  ≡⟨ is-factor i0f ⟩
   i0 ∎ 
         where open ≡-Reasoning

ifzero : {k : ℕ } → (jf :  Factor k zero ) →  remain jf ≡ 0
ifzero {k} record { factor = zero ; remain = zero ; is-factor = is-factor } = refl
ifzero {zero} record { factor = (suc factor₁) ; remain = zero ; is-factor = is-factor } = refl
ifzero {zero} record { factor = (suc f) ; remain = (suc r) ; is-factor = is-factor } =
      ⊥-elim (nat-≡< (sym is-factor) (subst (λ k → zero < k ) (+-comm (suc r)  _) if1 )) where
   if1 : zero < suc r + suc f * zero 
   if1 = s≤s z≤n

gcd1 : ( i i0 j j0 : ℕ ) → ℕ
gcd1 zero i0 zero j0 with <-cmp i0 j0
... | tri< a ¬b ¬c = i0
... | tri≈ ¬a refl ¬c = i0
... | tri> ¬a ¬b c = j0
gcd1 zero i0 (suc zero) j0 = 1
gcd1 zero zero (suc (suc j)) j0 = j0
gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j))
gcd1 (suc zero) i0 zero j0 = 1
gcd1 (suc (suc i)) i0 zero zero = i0
gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i))  j0 (suc j0)
gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0  

gcd : ( i j : ℕ ) → ℕ
gcd i j = gcd1 i i j j 

div1 : { k : ℕ } → k > 1 →  ¬  Dividable k 1
div1 {k} k>1 record { factor = (suc f) ; is-factor = fa } = ⊥-elim ( nat-≡< (sym fa) ( begin
    2 ≤⟨ k>1 ⟩
    k ≡⟨ +-comm 0 _ ⟩
    k + 0 ≡⟨ refl  ⟩
    1 * k ≤⟨ *-mono-≤ {1} {suc f} (s≤s z≤n ) ≤-refl ⟩
    suc f * k ≡⟨ +-comm 0 _ ⟩
    suc f * k + 0 ∎  )) where open ≤-Reasoning  

div-div : { i j k : ℕ } → k > 1 →  Dividable k i →  Dividable k j → Dividable k (i - j) ∧ Dividable k (j - i)
div-div {i} {j} {suc k} k>1 di dj = div-div0 di dj where
   div-div1 : {i j : ℕ}   →  Dividable (suc k) i →  Dividable (suc k) j → i < j  → Dividable (suc k) (j - i)
   div-div1 {i} {j} record { factor = fi ; is-factor = fai } record { factor = fj ; is-factor = faj } i<j =
            subst (λ g →  Dividable (suc k) g ) div-div3 ( div-div2 fj fi {!!} ) where
      div-div3 : (fj * suc k) - (fi * suc k) ≡ j - i
      div-div3 = begin (fj * suc k) - (fi * suc k) ≡⟨  cong₂ (λ g h → g - h) (+-comm 0 (fj * suc k)) (+-comm 0 (fi * suc k)) ⟩
          (fj * suc k + 0) - (fi * suc k + 0) ≡⟨  cong₂ (λ g h → g - h) faj  fai ⟩
          j - i ∎  where open ≡-Reasoning  
      div-div2 : (fj fi : ℕ) → fi ≤ fj → Dividable (suc k) ((fj * suc k) - (fi * suc k))
      div-div2 zero fi i≤j = subst (λ g → Dividable (suc k) g) (begin
          0 ≡⟨ sym (minus<=0 {0} {fi * suc k} z≤n ) ⟩
          0 -  (fi * suc k) ≡⟨ refl ⟩
          (zero * suc k) - (fi * suc k) ∎ ) div0
          where open ≡-Reasoning  
      div-div2 (suc fj) zero i≤j = {!!}
      div-div2 (suc fj) (suc fi) i≤j = record { factor = suc (Dividable.factor (div-div2 fj (suc fi) fi<fj )) ; is-factor = ( begin 
          suc (Dividable.factor (div-div2 fj (suc fi) fi<fj )) * suc k + 0 ≡⟨ +-comm _ 0 ⟩
          suc (Dividable.factor (div-div2 fj (suc fi) fi<fj )) * suc k  ≡⟨ refl ⟩
          suc k + ((Dividable.factor (div-div2 fj (suc fi) fi<fj )) * suc k )  ≡⟨ cong (λ g → suc k + g ) (+-comm 0 _) ⟩
          suc k + ((Dividable.factor (div-div2 fj (suc fi) fi<fj )) * suc k + 0)
                     ≡⟨ cong (λ g → suc k + g) (Dividable.is-factor (div-div2 fj (suc fi) fi<fj) ) ⟩
          suc k + ((fj * suc k) - ((suc fi) * suc k)) ≡⟨ minus+yz {suc k} {fj * suc k} {(suc fi) * suc k} {!!}  ⟩
           ( (suc k + (fj * suc k)) - ((suc fi) * suc k)) ≡⟨ refl ⟩
          ((suc fj * suc k) - ((suc fi) * suc k)) ∎ ) } where
             open ≡-Reasoning  
             fi<fj : suc fi ≤ fj 
             fi<fj = {!!}
   div-div0 : { i j : ℕ } →  Dividable (suc k) i →  Dividable (suc k) j → Dividable (suc k) (i - j) ∧ Dividable (suc k) (j - i)
   div-div0 {i} {j} di dj with <-cmp i j
   ... | tri< a ¬b ¬c    = ⟪ subst (λ g → Dividable (suc k) g) (sym (minus<=0 {i} {j} (<to≤ a))) div0 , div-div1 di dj a ⟫ 
   ... | tri≈ ¬a refl ¬c = ⟪ subst (λ g → Dividable (suc k) g) (sym (minus<=0 {i} {i} refl-≤)) div0 ,
                             subst (λ g → Dividable (suc k) g) (sym (minus<=0 {i} {i} refl-≤)) div0 ⟫
   ... | tri> ¬a ¬b c    = ⟪ div-div1 dj di c , subst (λ g → Dividable (suc k) g) (sym (minus<=0 {j} {i} (<to≤ c))) div0  ⟫ 

open _∧_

gcd-gt : ( i i0 j j0 k : ℕ ) → k > 1 → (if : Factor k i) (i0f : Dividable k i0 ) (jf : Factor k j ) (j0f : Dividable k j0)
   → Dividable k (i - j) ∧ Dividable k (j - i)
   → Dividable k ( gcd1 i i0 j j0 ) 
gcd-gt zero i0 zero j0 k k>1 if i0f jf j0f i-j with <-cmp i0 j0
... | tri< a ¬b ¬c = i0f 
... | tri≈ ¬a refl ¬c = i0f
... | tri> ¬a ¬b c = j0f
gcd-gt zero i0 (suc zero) j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj2 i-j)) -- can't happen
gcd-gt zero zero (suc (suc j)) j0 k k>1 if i0f jf j0f i-j = j0f
gcd-gt zero (suc i0) (suc (suc j)) j0 k k>1 if i0f jf j0f i-j =   
    gcd-gt i0 (suc i0) (suc j) (suc (suc j))  k k>1 (decf (DtoF i0f)) i0f (decf jf) (proj2 i-j) (div-div k>1 i0f (proj2 i-j))
gcd-gt (suc zero) i0 zero j0 k k>1 if i0f jf j0f i-j  = ⊥-elim (div1 k>1 (proj1 i-j)) -- can't happen
gcd-gt (suc (suc i)) i0 zero zero k k>1 if i0f jf j0f i-j  = i0f
gcd-gt (suc (suc i)) i0 zero (suc j0) k k>1 if i0f jf j0f i-j  = --   
     gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k k>1 (decf if) (proj1 i-j) (decf (DtoF j0f)) j0f (div-div k>1 (proj1 i-j) j0f )
gcd-gt (suc zero) i0 (suc j) j0 k k>1 if i0f jf j0f i-j  =  
     gcd-gt zero i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j
gcd-gt (suc (suc i)) i0 (suc j) j0 k k>1 if i0f jf j0f i-j  = 
     gcd-gt (suc i) i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j 

gcd-div : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j ) 
   → Dividable k ( gcd i  j ) 
gcd-div i j k k>1 if jf = gcd-gt i i j j k k>1 (DtoF if) if (DtoF jf) jf (div-div k>1 if jf)

gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0
gcd22 zero i0 zero o0 = refl
gcd22 zero i0 (suc o) o0 = refl
gcd22 (suc i) i0 zero o0 = refl
gcd22 (suc i) i0 (suc o) o0 = refl 

gcd20 : (i : ℕ) → gcd i 0 ≡ i
gcd20 zero = refl
gcd20 (suc i) = gcd201 (suc i) where
    gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i
    gcd201 zero = refl
    gcd201 (suc zero) = refl
    gcd201 (suc (suc i)) = refl

gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m
gcdmm zero m with <-cmp m m
... | tri< a ¬b ¬c = refl
... | tri≈ ¬a refl ¬c = refl
... | tri> ¬a ¬b c = refl
gcdmm (suc n) m  = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m )

gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i
gcdsym2 i j with <-cmp i j | <-cmp j i
... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁) 
... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) 
... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) 
... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c) 
... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c) 
... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁) 
gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0
gcdsym1 zero zero zero zero = refl
gcdsym1 zero zero zero (suc j0) = refl
gcdsym1 zero (suc i0) zero zero = refl
gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0)
gcdsym1 zero zero (suc zero) j0 = refl
gcdsym1 zero zero (suc (suc j)) j0 = refl
gcdsym1 zero (suc i0) (suc zero) j0 = refl
gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j))
gcdsym1 (suc zero) i0 zero j0 = refl
gcdsym1 (suc (suc i)) i0 zero zero = refl
gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0) 
gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 )

gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n
gcdsym {n} {m} = gcdsym1 n n m m 

gcd11 : ( i  : ℕ ) → gcd i i ≡ i
gcd11 i = gcdmm i i 

gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1
gcd203 zero = refl
gcd203 (suc i) = gcd205 (suc i) where
   gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1
   gcd205 zero = refl
   gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j)  (suc (suc i)) j (suc i)) (gcd205 j)
gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1
gcd204 zero = refl
gcd204 (suc zero) = refl
gcd204 (suc (suc zero)) = refl
gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i)) 

gcd2 : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j
gcd2 i j = gcd200 i i j j refl refl where
       gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1)
       gcd202 zero j1 = refl
       gcd202 (suc i) j1 = cong suc (gcd202 i j1)
       gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0
       gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl
       gcd201 i i0 j j0 (suc j1) = begin
          gcd1 (i + suc j1)   (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩
          gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩
          gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩
          gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning
       gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0
       gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl 
       gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j)
       gcd200 zero zero (suc zero) .1 i=i0 refl = refl
       gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin
          gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩
          suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩
          gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning
       gcd200 zero (suc i0) (suc j) .(suc j) () refl
       gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin
          gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩
          1 ≡⟨ sym ( gcd204 (suc j)) ⟩
          gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning
       gcd200 (suc (suc i)) i0 (suc j) zero i=i0 ()

gcd52 : {i : ℕ } → 1 < suc (suc i)
gcd52 {zero} = a<sa
gcd52 {suc i} = <-trans (gcd52 {i}) a<sa

gcd50 : (i i0 j j0 : ℕ) → 1 < i0 → i ≤ i0 → j ≤ j0 →  gcd1 i i0 j j0 ≤ i0 
gcd50 zero i0 zero j0 0<i i<i0 j<j0 with <-cmp i0 j0
... | tri< a ¬b ¬c = ≤-refl    
... | tri≈ ¬a refl ¬c =  ≤-refl 
... | tri> ¬a ¬b c = ≤-trans refl-≤s c  
gcd50 zero (suc i0) (suc zero) j0 0<i i<i0 j<j0 = gcd51 0<i where 
   gcd51 : 1 < suc i0 → gcd1 zero (suc i0) 1 j0 ≤ suc i0
   gcd51 1<i = <to≤ 1<i
gcd50 zero (suc i0) (suc (suc j)) j0 0<i i<i0 j<j0 = gcd50 i0 (suc i0) (suc j) (suc (suc j)) 0<i refl-≤s refl-≤s
gcd50 (suc zero) i0 zero j0 0<i i<i0 j<j0 = <to≤ 0<i
gcd50 (suc (suc i)) i0 zero zero 0<i i<i0 j<j0 = ≤-refl
gcd50 (suc (suc i)) i0 zero (suc j0) 0<i i<i0 j<j0 = ≤-trans (gcd50 (suc i) (suc (suc i))  j0 (suc j0) gcd52  refl-≤s refl-≤s) i<i0
gcd50 (suc i) i0 (suc j) j0 0<i i<i0 j<j0 = subst (λ k → k ≤ i0 ) (sym (gcd22 i i0 j j0))
   (gcd50 i i0 j j0 0<i (≤-trans refl-≤s i<i0) (≤-trans refl-≤s j<j0)) 

gcd5 : ( n k : ℕ ) → 1 < n → gcd n k ≤ n
gcd5 n k 0<n = gcd50 n n k k 0<n ≤-refl ≤-refl 

gcd6 : ( n k : ℕ ) → 1 < n → gcd k n ≤ n
gcd6 n k 1<n = subst (λ m → m ≤ n) (gcdsym {n} {k}) (gcd5 n k 1<n)

gcd4 : ( n k : ℕ ) → 1 < n  → gcd n k ≡ k → k ≤ n
gcd4 n k 1<n eq = subst (λ m → m ≤ n ) eq (gcd5 n k 1<n)

gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1
gcdmul+1 zero n = gcd204 n
gcdmul+1 (suc m) n = begin
      gcd (suc m * n + 1) n ≡⟨⟩
      gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin
         n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩
         m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩
         m * n + (n + 1)  ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩
         m * n + (1 + n)  ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩
         m * n + 1 + n ∎ 
       ) ⟩
      gcd (m * n + 1 + n) n ≡⟨ gcd2 (m * n + 1) n ⟩
      gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩
      1 ∎ where open ≡-Reasoning