diff CCC.agda @ 783:bded2347efa4

CCC by equation
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 17 Apr 2019 12:03:45 +0900
parents 340708e8d54f
children f27d966939f8
line wrap: on
line diff
--- a/CCC.agda	Fri Mar 08 18:09:11 2019 +0900
+++ b/CCC.agda	Wed Apr 17 12:03:45 2019 +0900
@@ -4,8 +4,8 @@
 
 open import HomReasoning
 open import cat-utility
-open import Data.Product renaming (_×_ to _∧_)
-open import Category.Constructions.Product
+-- open import Data.Product renaming (_×_ to _∧_)
+-- open import Category.Constructions.Product
 open  import  Relation.Binary.PropositionalEquality
 
 open Functor
@@ -14,14 +14,6 @@
 --   ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b )
 --   ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c
 
-record IsoS {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') (a b : Obj A) ( a' b' : Obj B )
-          :  Set ( c₁  ⊔  c₂ ⊔ ℓ ⊔  c₁'  ⊔  c₂' ⊔ ℓ' ) where
-      field
-           ≅→ :  Hom A a b   → Hom B a' b'
-           ≅← :  Hom B a' b' → Hom A a b
-           iso→  : {f : Hom B a' b' }  → B [ ≅→ ( ≅← f) ≈ f ]
-           iso←  : {f : Hom A a b }    → A [ ≅← ( ≅→ f) ≈ f ]
-
 data One {c : Level} : Set c where
   OneObj : One   -- () in Haskell ( or any one object set )
 
@@ -44,14 +36,22 @@
          lemma {a} {b} {f} with f
          ... | OneObj = refl
 
+record IsoS {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') (a b : Obj A) ( a' b' : Obj B )
+          :  Set ( c₁  ⊔  c₂ ⊔ ℓ ⊔  c₁'  ⊔  c₂' ⊔ ℓ' ) where
+      field
+           ≅→ :  Hom A a b   → Hom B a' b'
+           ≅← :  Hom B a' b' → Hom A a b
+           iso→  : {f : Hom B a' b' }  → B [ ≅→ ( ≅← f) ≈ f ]
+           iso←  : {f : Hom A a b }    → A [ ≅← ( ≅→ f) ≈ f ]
 
-record IsCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (one : Obj A)
+
+record IsCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (1 : Obj A) ( _×_ : {a b c : Obj A ) → Hom A c a  → Hom A c b → Hom A (a * b) )
           ( _*_ : Obj A → Obj A → Obj A  ) ( _^_ : Obj A → Obj A → Obj A  ) :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
      field
-       ccc-1 : {a : Obj A}     →  --   Hom A a one ≅ {*}
-                          IsoS A OneCat  a one OneObj OneObj  
+       ccc-1 : {a : Obj A}     →  --   Hom A a 1 ≅ {*}
+                          IsoS A OneCat  a 1 OneObj OneObj  
        ccc-2 : {a b c : Obj A} →  --  Hom A c ( a * b ) ≅ ( Hom A c a ) * ( Hom A c b )
-                          IsoS A (A × A) c (a * b) (c , c) (a , b)
+                          IsoS A A c (a * b) {!!} {!!}
        ccc-3 : {a b c : Obj A} →  -- Hom A a ( c ^ b ) ≅ Hom A ( a * b ) c
                           IsoS A A  a (c ^ b) (a * b) c
         
@@ -61,11 +61,77 @@
        one : Obj A
        _*_ : Obj A → Obj A → Obj A
        _^_ : Obj A → Obj A → Obj A  
-       isCCC : IsCCC A one _*_ _^_
+       _×_ : Obj A → Obj A → Obj A  
+       isCCC : IsCCC A one _×_  _*_ _^_
+
+open import HomReasoning 
+
+record IsEqCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) 
+         ( 1 : Obj A )
+         ( ○ : (a : Obj A ) → Hom A a 1 )
+          ( _∧_ : Obj A → Obj A → Obj A  ) 
+          ( <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b)  ) 
+          ( π : {a b : Obj A } → Hom A (a ∧ b) a ) 
+          ( π' : {a b : Obj A } → Hom A (a ∧ b) b ) 
+          ( _<=_ : (a b : Obj A ) → Obj A ) 
+          ( _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ) 
+          ( ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a )
+             :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
+     field
+       -- cartesian
+       e2  : {a : Obj A} → ∀ ( f : Hom A a 1 ) →  A [ f ≈ ○ a ]
+       e3a : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } →  A [ A [ π o < f , g > ] ≈ f ]
+       e3b : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } →  A [ A [ π' o < f , g > ] ≈ g ]
+       e3c : {a b c : Obj A} → { h : Hom A c (a ∧ b) } →  A [ < A [ π o h ] , A [ π' o h  ] >  ≈ h ]
+       π-congl :  {a b c : Obj A} → { f f' : Hom A c a }{ g : Hom A c b } → A [ f ≈ f' ]  →  A [ < f , g >  ≈ < f' , g > ] 
+       π-congr :  {a b c : Obj A} → { f : Hom A c a }{ g g' : Hom A c b } → A [ g ≈ g' ]  →  A [ < f , g >  ≈ < f , g' > ] 
+       -- closed
+       e4a : {a b c : Obj A} → { h : Hom A (c ∧ b) a } →  A [ A [ ε o < A [ (h *) o π ]  ,  π' > ] ≈ h ]
+       e4b : {a b c : Obj A} → { k : Hom A c (a <= b ) } →  A [ ( A [ ε o < A [ k o  π ]  ,  π' > ] ) * ≈ k ]
 
-record IsEqCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (one : Obj A) ( oneT : ( a : Obj A ) → Hom A a one )
-          ( _*_ : Obj A → Obj A → Obj A  ) ( _^_ : Obj A → Obj A → Obj A  ) :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
+     e'2 : A [ ○ 1 ≈ id1 A 1 ]
+     e'2 = let open  ≈-Reasoning A in begin
+            ○ 1
+        ≈↑⟨ e2 (id1 A 1 ) ⟩
+           id1 A 1
+        ∎
+     e''2 : {a b : Obj A} {f : Hom A a b } → A [ A [  ○ b o f ] ≈ ○ a ]
+     e''2 {a} {b} {f} = let open  ≈-Reasoning A in begin
+           ○ b o f
+        ≈⟨ e2 (○ b o f) ⟩
+           ○ a
+        ∎
+     distr : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → A [ A [ < f , g > o h ]  ≈  < A [ f o h ] , A [ g o h ] > ]
+     distr {a} {b} {c} {d} {f} {g} {h} = let open  ≈-Reasoning A in begin
+            < f , g > o h
+        ≈↑⟨ e3c ⟩
+            < π o  < f , g > o h  , π' o  < f , g > o h  >
+        ≈⟨ π-congl assoc ⟩
+            < ( π o  < f , g > ) o h  , π' o  < f , g > o h  >
+        ≈⟨ π-congl (car e3a ) ⟩
+            < f o h  , π' o  < f , g > o h  >
+        ≈⟨ π-congr assoc ⟩
+            < f o h  , (π' o  < f , g > ) o h  >
+        ≈⟨  π-congr (car e3b ) ⟩
+            < f o h ,  g o h  >
+        ∎
+     _×_ :  {  a b c d e : Obj A } ( f : Hom A a d ) (g : Hom A b e ) ( h : Hom A c (a ∧ b) ) → Hom A c ( d ∧ e )
+     f × g  = λ h →  < A [ f o A [ π o h  ] ] , A [ g o A [ π' o h ] ] >
+
+record EqCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) :  Set ( c₁  ⊔  c₂ ⊔ ℓ ) where
      field
-       e2  : {a : Obj A} { f : Hom A a one } →  A [ f ≈ oneT a ]
-       e3a : {!!}
+         1 : Obj A 
+         ○ : (a : Obj A ) → Hom A a 1 
+         _∧_ : Obj A → Obj A → Obj A   
+         <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b)  
+         π : {a b : Obj A } → Hom A (a ∧ b) a 
+         π' : {a b : Obj A } → Hom A (a ∧ b) b  
+         _<=_ : (a b : Obj A ) → Obj A 
+         _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) 
+         ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a 
+         isEqCCC : IsEqCCC A 1 ○ _∧_ <_,_> π π' _<=_ _* ε 
 
+
+
+
+