open import Level open import Relation.Binary.PropositionalEquality module system-f {l : Level} where postulate A : Set postulate B : Set data _∨_ (A B : Set) : Set where or1 : A -> A ∨ B or2 : B -> A ∨ B lemma01 : A -> A ∨ B lemma01 a = or1 a lemma02 : B -> A ∨ B lemma02 b = or2 b lemma03 : {C : Set} -> (A ∨ B) -> (A -> C) -> (B -> C) -> C lemma03 (or1 a) ac bc = ac a lemma03 (or2 b) ac bc = bc b postulate U : Set l postulate V : Set l Bool = {X : Set l} -> X -> X -> X T : Bool T = \{X : Set l} -> \(x y : X) -> x F : Bool F = \{X : Set l} -> \(x y : X) -> y D : {U : Set l} -> U -> U -> Bool -> U D {U} u v t = t {U} u v lemma04 : {u v : U} -> D u v T ≡ u lemma04 = refl lemma05 : {u v : U} -> D u v F ≡ v lemma05 = refl _×_ : Set l -> Set l -> Set (suc l) U × V = {X : Set l} -> (U -> V -> X) -> X <_,_> : {U V : Set l} -> U -> V -> (U × V) <_,_> {U} {V} u v = \{X} -> \(x : U -> V -> X) -> x u v π1 : {U V : Set l} -> (U × V) -> U π1 {U} {V} t = t {U} (\(x : U) -> \(y : V) -> x) π2 : {U V : Set l} -> (U × V) -> V π2 {U} {V} t = t {V} (\(x : U) -> \(y : V) -> y) lemma06 : {U V : Set l } -> {u : U } -> {v : V} -> π1 ( < u , v > ) ≡ u lemma06 = refl lemma07 : {U V : Set l } -> {u : U } -> {v : V} -> π2 ( < u , v > ) ≡ v lemma07 = refl hoge : {U V : Set l} -> U -> V -> (U × V) hoge u v = < u , v > -- lemma08 : (t : U × V) -> < π1 t , π2 t > ≡ t -- lemma08 t = {!!}