open import Category -- https://github.com/konn/category-agda open import Algebra open import Level open import Category.Sets module monoid-monad {c : Level} where open import Algebra.Structures open import HomReasoning open import cat-utility open import Category.Cat open import Data.Product open import Relation.Binary.Core open import Relation.Binary -- open Monoid open import Algebra.FunctionProperties using (Op₁; Op₂) open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym ) record ≡-Monoid c : Set (suc c) where infixl 7 _*_ field Carrier : Set c _*_ : Op₂ Carrier ε : Carrier -- id in Monoid isMonoid : IsMonoid _≡_ _*_ ε postulate M : ≡-Monoid c open ≡-Monoid infixl 7 _∙_ _∙_ : ( m m' : Carrier M ) → Carrier M _∙_ m m' = _*_ M m m' A = Sets {c} -- T : A → (M x A) T : Functor A A T = record { FObj = λ a → (Carrier M) × a ; FMap = λ f p → (proj₁ p , f (proj₂ p )) ; isFunctor = record { identity = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets )) ; distr = (IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets ))) ; ≈-cong = cong1 } } where cong1 : {ℓ′ : Level} → {a b : Set ℓ′} { f g : Hom (Sets {ℓ′}) a b} → Sets [ f ≈ g ] → Sets [ map (λ (x : Carrier M) → x) f ≈ map (λ (x : Carrier M) → x) g ] cong1 _≡_.refl = _≡_.refl open Functor Lemma-MM1 : {a b : Obj A} {f : Hom A a b} → A [ A [ FMap T f o (λ x → ε M , x) ] ≈ A [ (λ x → ε M , x) o f ] ] Lemma-MM1 {a} {b} {f} = let open ≈-Reasoning A renaming ( _o_ to _*_ ) in begin FMap T f o (λ x → ε M , x) ≈⟨⟩ (λ x → ε M , x) o f ∎ -- η : a → (ε,a) η : NTrans A A identityFunctor T η = record { TMap = λ a → λ(x : a) → ( ε M , x ) ; isNTrans = record { commute = Lemma-MM1 } } -- μ : (m,(m',a)) → (m*m,a) muMap : (a : Obj A ) → FObj T ( FObj T a ) → Σ (Carrier M) (λ x → a ) muMap a ( m , ( m' , x ) ) = ( m ∙ m' , x ) Lemma-MM2 : {a b : Obj A} {f : Hom A a b} → A [ A [ FMap T f o (λ x → muMap a x) ] ≈ A [ (λ x → muMap b x) o FMap (T ○ T) f ] ] Lemma-MM2 {a} {b} {f} = let open ≈-Reasoning A renaming ( _o_ to _*_ ) in begin FMap T f o (λ x → muMap a x) ≈⟨⟩ (λ x → muMap b x) o FMap (T ○ T) f ∎ μ : NTrans A A ( T ○ T ) T μ = record { TMap = λ a → λ x → muMap a x ; isNTrans = record { commute = λ{a} {b} {f} → Lemma-MM2 {a} {b} {f} } } open NTrans Lemma-MM33 : {a : Level} {b : Level} {A : Set a} {B : A → Set b} {x : Σ A B } → (((proj₁ x) , proj₂ x ) ≡ x ) Lemma-MM33 = _≡_.refl Lemma-MM34 : ∀( x : Carrier M ) → ε M ∙ x ≡ x Lemma-MM34 x = (( proj₁ ( IsMonoid.identity ( isMonoid M )) ) x ) Lemma-MM35 : ∀( x : Carrier M ) → x ∙ ε M ≡ x Lemma-MM35 x = ( proj₂ ( IsMonoid.identity ( isMonoid M )) ) x Lemma-MM36 : ∀( x y z : Carrier M ) → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z ) Lemma-MM36 x y z = ( IsMonoid.assoc ( isMonoid M )) x y z -- Functional Extensionality Axiom (We cannot prove this in Agda / Coq, just assumming ) import Relation.Binary.PropositionalEquality -- postulate extensionality : { a b : Obj A } {f g : Hom A a b } → Relation.Binary.PropositionalEquality.Extensionality c c postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c c -- Multi Arguments Functional Extensionality extensionality30 : {f g : Carrier M → Carrier M → Carrier M → Carrier M } → (∀ x y z → f x y z ≡ g x y z ) → ( f ≡ g ) extensionality30 eq = extensionality ( λ x → extensionality ( λ y → extensionality (eq x y) ) ) Lemma-MM9 : (λ(x : Carrier M) → ( ε M ∙ x )) ≡ ( λ(x : Carrier M) → x ) Lemma-MM9 = extensionality Lemma-MM34 Lemma-MM10 : ( λ x → (x ∙ ε M)) ≡ ( λ x → x ) Lemma-MM10 = extensionality Lemma-MM35 Lemma-MM11 : (λ x y z → ((x ∙ y ) ∙ z)) ≡ (λ x y z → ( x ∙ (y ∙ z ) )) Lemma-MM11 = extensionality30 Lemma-MM36 MonoidMonad : Monad A MonoidMonad = record { T = T ; η = η ; μ = μ ; isMonad = record { unity1 = Lemma-MM3 ; unity2 = Lemma-MM4 ; assoc = Lemma-MM5 } } where Lemma-MM3 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma-MM3 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) in begin TMap μ a o TMap η ( FObj T a ) ≈⟨⟩ ( λ x → ε M ∙ (proj₁ x) , proj₂ x ) ≈⟨ cong ( λ f → ( λ x → ( ( f (proj₁ x) ) , proj₂ x ))) ( Lemma-MM9 ) ⟩ ( λ (x : FObj T a) → (proj₁ x) , proj₂ x ) ≈⟨⟩ ( λ x → x ) ≈⟨⟩ Id {_} {_} {_} {A} (FObj T a) ∎ Lemma-MM4 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma-MM4 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) in begin TMap μ a o (FMap T (TMap η a )) ≈⟨⟩ ( λ x → ( proj₁ x ∙ (ε M) , proj₂ x )) ≈⟨ cong ( λ f → ( λ x → ( f (proj₁ x) ) , proj₂ x )) ( Lemma-MM10 ) ⟩ ( λ x → (proj₁ x) , proj₂ x ) ≈⟨⟩ ( λ x → x ) ≈⟨⟩ Id {_} {_} {_} {A} (FObj T a) ∎ Lemma-MM5 : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] Lemma-MM5 {a} = let open ≈-Reasoning (A) renaming ( _o_ to _*_ ) in begin TMap μ a o TMap μ ( FObj T a ) ≈⟨⟩ ( λ x → (proj₁ x) ∙ (proj₁ (proj₂ x)) ∙ (proj₁ (proj₂ (proj₂ x))) , proj₂ (proj₂ (proj₂ x))) ≈⟨ cong ( λ f → ( λ x → (( f ( proj₁ x ) ((proj₁ (proj₂ x))) ((proj₁ (proj₂ (proj₂ x))) )) , proj₂ (proj₂ (proj₂ x)) ) )) Lemma-MM11 ⟩ ( λ x → ( proj₁ x) ∙(( proj₁ (proj₂ x)) ∙ (proj₁ (proj₂ (proj₂ x)))) , proj₂ (proj₂ (proj₂ x))) ≈⟨⟩ TMap μ a o FMap T (TMap μ a) ∎ F : (m : Carrier M) → { a b : Obj A } → ( f : a → b ) → Hom A a ( FObj T b ) F m {a} {b} f = λ (x : a ) → ( m , ( f x) ) postulate m m' : Carrier M postulate a b c' : Obj A postulate f : b → c' postulate g : a → b Lemma-MM12 = Monad.join MonoidMonad (F m f) (F m' g) open import kleisli {_} {_} {_} {A} {T} {η} {μ} {Monad.isMonad MonoidMonad} -- nat-ε TMap = λ a₁ → record { KMap = λ x → x } -- nat-η TMap = λ a₁ → _,_ (ε, M) -- U_T Functor Kleisli A -- U_T FObj = λ B → Σ (Carrier M) (λ x → B) FMap = λ {a₁} {b₁} f₁ x → ( proj₁ x ∙ (proj₁ (KMap f₁ (proj₂ x))) , proj₂ (KMap f₁ (proj₂ x)) -- F_T Functor A Kleisli -- F_T FObj = λ a₁ → a₁ FMap = λ {a₁} {b₁} f₁ → record { KMap = λ x → ε M , f₁ x }