open import Level open import Relation.Binary.PropositionalEquality module system-f {l : Level} where postulate A : Set postulate B : Set data _∨_ (A B : Set) : Set where or1 : A -> A ∨ B or2 : B -> A ∨ B lemma01 : A -> A ∨ B lemma01 a = or1 a lemma02 : B -> A ∨ B lemma02 b = or2 b lemma03 : {C : Set} -> (A ∨ B) -> (A -> C) -> (B -> C) -> C lemma03 (or1 a) ac bc = ac a lemma03 (or2 b) ac bc = bc b postulate U : Set l postulate V : Set l Bool = {X : Set l} -> X -> X -> X T : Bool T = \{X : Set l} -> \(x y : X) -> x F : Bool F = \{X : Set l} -> \(x y : X) -> y D : {U : Set l} -> U -> U -> Bool -> U D {U} u v t = t {U} u v lemma04 : {u v : U} -> D u v T ≡ u lemma04 = refl lemma05 : {u v : U} -> D u v F ≡ v lemma05 = refl _×_ : {l : Level} -> Set l -> Set l -> Set (suc l) _×_ {l} U V = {X : Set l} -> (U -> V -> X) -> X <_,_> : {l : Level} {U V : Set l} -> U -> V -> (U × V) <_,_> {l} {U} {V} u v = \{X} -> \(x : U -> V -> X) -> x u v π1 : {l : Level} {U V : Set l} -> (U × V) -> U π1 {l} {U} {V} t = t {U} (\(x : U) -> \(y : V) -> x) π2 : {l : Level} {U V : Set l} -> (U × V) -> V π2 {l} {U} {V} t = t {V} (\(x : U) -> \(y : V) -> y) lemma06 : {U V : Set l } -> {u : U } -> {v : V} -> π1 ( < u , v > ) ≡ u lemma06 = refl lemma07 : {U V : Set l } -> {u : U } -> {v : V} -> π2 ( < u , v > ) ≡ v lemma07 = refl hoge : {U V : Set l} -> U -> V -> (U × V) hoge u v = < u , v > -- lemma08 : (t : U × V) -> < π1 t , π2 t > ≡ t -- lemma08 t = {!!} -- Emp definision is still wrong... Emp : ∀{l : Level} {X : Set l} -> Set l Emp {l} = \{X : Set l} -> X -- ε : {l : Level} {U : Set l} -> Emp -> Emp -- ε {l} {U} t = t {l} {U} -- lemma09 : {l : Level} {U : Set l} -> (t : Emp) -> ε U (ε Emp t) ≡ ε U t -- lemma09 t = refl -- lemma10 : {l : Level} {U V X : Set l} -> (t : Emp ) -> (U × V) -- lemma10 {l} {U} {V} t = ε (U × V) t -- lemma100 : {l : Level} {U V X : Set l} -> (t : Emp ) -> Emp -- lemma100 {l} {U} {V} t = ε U t -- lemma101 : {l k : Level} {U V : Set l} -> (t : Emp ) -> π1 (ε (U × V) t) ≡ ε U t -- lemma101 t = refl -- lemma102 : {l k : Level} {U V : Set l} -> (t : Emp ) -> π2 (ε (U × V) t) ≡ ε V t -- lemma102 t = refl -- lemma103 : {l : Level} {U V : Set l} -> (u : U) -> (t : Emp) -> ε (U -> V) u ≡ ε V t -- lemma103 u t = refl _+_ : Set l -> Set l -> Set (suc l) U + V = {X : Set l} -> ( U -> X ) -> (V -> X) -> X ι1 : {U V : Set l} -> U -> U + V ι1 {U} {V} u = \{X} -> \(x : U -> X) -> \(y : V -> X ) -> x u ι2 : {U V : Set l} -> V -> U + V ι2 {U} {V} v = \{X} -> \(x : U -> X) -> \(y : V -> X ) -> y v δ : { U V R S : Set l } -> (R -> U) -> (S -> U) -> ( R + S ) -> U δ {U} {V} {R} {S} u v t = t {U} (\(x : R) -> u x) ( \(y : S) -> v y) lemma11 : { U V R S : Set l } -> (u : R -> U ) (v : S -> U ) -> (r : R) -> δ {U} {V} {R} {S} u v ( ι1 r ) ≡ u r lemma11 u v r = refl lemma12 : { U V R S : Set l } -> (u : R -> U ) (v : S -> U ) -> (s : S) -> δ {U} {V} {R} {S} u v ( ι2 s ) ≡ v s lemma12 u v s = refl _××_ : {l : Level} -> Set (suc l) -> Set l -> Set (suc l) _××_ {l} U V = {X : Set l} -> (U -> V -> X) -> X <<_,_>> : {l : Level} {U : Set (suc l) } {V : Set l} -> U -> V -> (U ×× V) <<_,_>> {l} {U} {V} u v = \{X} -> \(x : U -> V -> X) -> x u v Int = \{l : Level } -> \{ X : Set l } -> X -> ( X -> X ) -> X Zero : {l : Level } -> { X : Set l } -> Int Zero {l} {X} = \(x : X ) -> \(y : X -> X ) -> x S : {l : Level } -> { X : Set l } -> Int -> Int S {l} {X} t = \(x : X) -> \(y : X -> X ) -> y ( t x y ) n1 : {l : Level } -> { X : Set l } -> Int {l} {X} n1 {l} {X} = \(x : X ) -> \(y : X -> X ) -> y x n2 : {l : Level } -> { X : Set l } -> Int {l} {X} n2 {l} {X} = \(x : X ) -> \(y : X -> X ) -> y (y x) lemma13 : {l : Level } -> { X : Set l } -> S ( S ( Zero {l} {X}) ) ≡ n2 lemma13 {l} {X} = refl It : {l : Level} {U : Set l} -> U -> ( U -> U ) -> Int -> U It {l} {U} u f t = t u f