module nat where -- Monad -- Category A -- A = Category -- Functor T : A → A --T(a) = t(a) --T(f) = tf(f) open import Category -- https://github.com/konn/category-agda open import Level --open import Category.HomReasoning open import HomReasoning open import cat-utility --T(g f) = T(g) T(f) open Functor Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } → A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] Lemma1 = \t → IsFunctor.distr ( isFunctor t ) open NTrans Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A} → (μ : NTrans A A F G) → {a b : Obj A} { f : Hom A a b } → A [ A [ FMap G f o TMap μ a ] ≈ A [ TMap μ b o FMap F f ] ] Lemma2 = \n → IsNTrans.naturality ( isNTrans n ) open import Category.Cat -- η : 1_A → T -- μ : TT → T -- μ(a)η(T(a)) = a -- μ(a)T(η(a)) = a -- μ(a)(μ(T(a))) = μ(a)T(μ(a)) open Monad Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] Lemma3 = \m → IsMonad.assoc ( isMonad m ) Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b} → A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] Lemma4 = \a → IsCategory.identityL ( Category.isCategory a ) Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma5 = \m → IsMonad.unity1 ( isMonad m ) Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ TMap μ a o (FMap T (TMap η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma6 = \m → IsMonad.unity2 ( isMonad m ) -- T = M x A -- nat of η -- g ○ f = μ(c) T(g) f -- η(b) ○ f = f -- f ○ η(a) = f -- h ○ (g ○ f) = (h ○ g) ○ f lemma12 : {c₁ c₂ ℓ : Level} (L : Category c₁ c₂ ℓ) { a b c : Obj L } → ( x : Hom L c a ) → ( y : Hom L b c ) → L [ L [ x o y ] ≈ L [ x o y ] ] lemma12 L x y = let open ≈-Reasoning ( L ) in begin L [ x o y ] ∎ open Kleisli -- η(b) ○ f = f Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → { T : Functor A A } ( η : NTrans A A identityFunctor T ) { μ : NTrans A A (T ○ T) T } { a : Obj A } ( b : Obj A ) ( f : Hom A a ( FObj T b) ) ( m : Monad A T η μ ) { k : Kleisli A T η μ m} → A [ join k b (TMap η b) f ≈ f ] Lemma7 c {T} η b f m {k} = let open ≈-Reasoning (c) μ = mu ( monad k ) in begin join k b (TMap η b) f ≈⟨ refl-hom ⟩ c [ TMap μ b o c [ FMap T ((TMap η b)) o f ] ] ≈⟨ IsCategory.associative (Category.isCategory c) ⟩ c [ c [ TMap μ b o FMap T ((TMap η b)) ] o f ] ≈⟨ car ( IsMonad.unity2 ( isMonad ( monad k )) ) ⟩ c [ id (FObj T b) o f ] ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ f ∎ -- f ○ η(a) = f Lemma8 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) { μ : NTrans A A (T ○ T) T } ( a : Obj A ) ( b : Obj A ) ( f : Hom A a ( FObj T b) ) ( m : Monad A T η μ ) ( k : Kleisli A T η μ m) → A [ join k b f (TMap η a) ≈ f ] Lemma8 c T η a b f m k = begin join k b f (TMap η a) ≈⟨ refl-hom ⟩ c [ TMap μ b o c [ FMap T f o (TMap η a) ] ] ≈⟨ cdr ( nat η ) ⟩ c [ TMap μ b o c [ (TMap η ( FObj T b)) o f ] ] ≈⟨ IsCategory.associative (Category.isCategory c) ⟩ c [ c [ TMap μ b o (TMap η ( FObj T b)) ] o f ] ≈⟨ car ( IsMonad.unity1 ( isMonad ( monad k )) ) ⟩ c [ id (FObj T b) o f ] ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ f ∎ where open ≈-Reasoning (c) μ = mu ( monad k ) -- h ○ (g ○ f) = (h ○ g) ○ f Lemma9 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a b c d : Obj A } ( f : Hom A a ( FObj T b) ) ( g : Hom A b ( FObj T c) ) ( h : Hom A c ( FObj T d) ) ( m : Monad A T η μ ) { k : Kleisli A T η μ m} → A [ join k d h (join k c g f) ≈ join k d ( join k d h g) f ] Lemma9 A {T} {η} {μ} {a} {b} {c} {d} f g h m {k} = begin join k d h (join k c g f) ≈⟨⟩ join k d h ( ( TMap μ c o ( FMap T g o f ) ) ) ≈⟨ refl-hom ⟩ ( TMap μ d o ( FMap T h o ( TMap μ c o ( FMap T g o f ) ) ) ) ≈⟨ cdr ( cdr ( assoc )) ⟩ ( TMap μ d o ( FMap T h o ( ( TMap μ c o FMap T g ) o f ) ) ) ≈⟨ assoc ⟩ --- ( f o ( g o h ) ) = ( ( f o g ) o h ) ( ( TMap μ d o FMap T h ) o ( (TMap μ c o FMap T g ) o f ) ) ≈⟨ assoc ⟩ ( ( ( TMap μ d o FMap T h ) o (TMap μ c o FMap T g ) ) o f ) ≈⟨ car (sym assoc) ⟩ ( ( TMap μ d o ( FMap T h o ( TMap μ c o FMap T g ) ) ) o f ) ≈⟨ car ( cdr (assoc) ) ⟩ ( ( TMap μ d o ( ( FMap T h o TMap μ c ) o FMap T g ) ) o f ) ≈⟨ car assoc ⟩ ( ( ( TMap μ d o ( FMap T h o TMap μ c ) ) o FMap T g ) o f ) ≈⟨ car (car ( cdr ( begin ( FMap T h o TMap μ c ) ≈⟨ nat μ ⟩ ( TMap μ (FObj T d) o FMap T (FMap T h) ) ∎ ))) ⟩ ( ( ( TMap μ d o ( TMap μ ( FObj T d) o FMap T ( FMap T h ) ) ) o FMap T g ) o f ) ≈⟨ car (sym assoc) ⟩ ( ( TMap μ d o ( ( TMap μ ( FObj T d) o FMap T ( FMap T h ) ) o FMap T g ) ) o f ) ≈⟨ car ( cdr (sym assoc) ) ⟩ ( ( TMap μ d o ( TMap μ ( FObj T d) o ( FMap T ( FMap T h ) o FMap T g ) ) ) o f ) ≈⟨ car ( cdr (cdr (sym (distr T )))) ⟩ ( ( TMap μ d o ( TMap μ ( FObj T d) o FMap T ( ( FMap T h o g ) ) ) ) o f ) ≈⟨ car assoc ⟩ ( ( ( TMap μ d o TMap μ ( FObj T d) ) o FMap T ( ( FMap T h o g ) ) ) o f ) ≈⟨ car ( car ( begin ( TMap μ d o TMap μ (FObj T d) ) ≈⟨ IsMonad.assoc ( isMonad m) ⟩ ( TMap μ d o FMap T (TMap μ d) ) ∎ )) ⟩ ( ( ( TMap μ d o FMap T ( TMap μ d) ) o FMap T ( ( FMap T h o g ) ) ) o f ) ≈⟨ car (sym assoc) ⟩ ( ( TMap μ d o ( FMap T ( TMap μ d ) o FMap T ( ( FMap T h o g ) ) ) ) o f ) ≈⟨ sym assoc ⟩ ( TMap μ d o ( ( FMap T ( TMap μ d ) o FMap T ( ( FMap T h o g ) ) ) o f ) ) ≈⟨ cdr ( car ( sym ( distr T ))) ⟩ ( TMap μ d o ( FMap T ( ( ( TMap μ d ) o ( FMap T h o g ) ) ) o f ) ) ≈⟨ refl-hom ⟩ join k d ( ( TMap μ d o ( FMap T h o g ) ) ) f ≈⟨ refl-hom ⟩ join k d ( join k d h g) f ∎ where open ≈-Reasoning (A) -- Kleisli-join : {!!} -- Kleisli-join = {!!} -- Kleisli-id : {!!} -- Kleisli-id = {!!} -- Lemma10 : {!!} -- Lemma10 = {!!} -- open import Relation.Binary.Core -- isKleisliCategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -- { T : Functor A A } -- { η : NTrans A A identityFunctor T } -- { μ : NTrans A A (T ○ T) T } -- ( m : Monad A T η μ ) -- { k : Kleisli A T η μ m} → -- IsCategory ( Obj A ) ( Hom A ) ( Category._≈_ A ) ( Kleisli-join ) Kleisli-id -- isKleisliCategory A {T} {η} m = record { isEquivalence = IsCategory.isEquivalence ( Category.isCategory A ) -- ; identityL = {!!} -- ; identityR = {!!} -- ; o-resp-≈ = {!!} -- ; associative = {!!} -- } -- where -- KidL : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) { T : Functor A A } -- { η : NTrans A A identityFunctor T } -- { μ : NTrans A A (T ○ T) T } ( m : Monad A T η μ ) → {!!} -- KidL = {!!} -- KidR : {!!} -- KidR = {!!} -- Ko-resp : {!!} -- Ko-resp = {!!} -- Kassoc : {!!} -- Kassoc = {!!} -- Kleisli : -- Kleisli = record { Hom = -- ; Hom = _⟶_ -- ; Id = IdProd -- ; _o_ = _∘_ -- ; _≈_ = _≈_ -- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ} -- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ} -- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ} -- } -- ; identityL = identityL -- ; identityR = identityR -- ; o-resp-≈ = o-resp-≈ -- ; associative = associative -- } -- } ---- -- -- Adjunction to Monad -- ---- open Adjunction UεF : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) → NTrans A A (( U ○ F ) ○ ( U ○ F )) ( U ○ F ) UεF A B U F ε = lemma11 ( Functor*Nat A {B} A U {( F ○ U) ○ F} {identityFunctor ○ F} ( Nat*Functor A {B} B { F ○ U} {identityFunctor} ε F) ) where lemma11 : NTrans A A ( U ○ ((F ○ U) ○ F )) ( U ○ (identityFunctor ○ F) ) → NTrans A A (( U ○ F ) ○ ( U ○ F )) ( U ○ F ) lemma11 n = record { TMap = \a → TMap n a; isNTrans = record { naturality = IsNTrans.naturality ( isNTrans n ) }} Adj2Monad : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') { U : Functor B A } { F : Functor A B } { η : NTrans A A identityFunctor ( U ○ F ) } { ε : NTrans B B ( F ○ U ) identityFunctor } → Adjunction A B U F η ε → Monad A (U ○ F) η (UεF A B U F ε) Adj2Monad A B {U} {F} {η} {ε} adj = record { isMonad = record { assoc = assoc1; unity1 = unity1; unity2 = unity2 } } where T : Functor A A T = U ○ F μ : NTrans A A ( T ○ T ) T μ = UεF A B U F ε lemma-assoc1 : {a b : Obj B} → ( f : Hom B a b) → B [ B [ f o TMap ε a ] ≈ B [ TMap ε b o FMap F (FMap U f ) ] ] lemma-assoc1 f = IsNTrans.naturality ( isNTrans ε ) assoc1 : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] assoc1 {a} = let open ≈-Reasoning (A) in begin TMap μ a o TMap μ ( FObj T a ) ≈⟨⟩ (FMap U (TMap ε ( FObj F a ))) o (FMap U (TMap ε ( FObj F ( FObj U (FObj F a ))))) ≈⟨ sym (distr U) ⟩ FMap U (B [ TMap ε ( FObj F a ) o TMap ε ( FObj F ( FObj U (FObj F a ))) ] ) ≈⟨ (IsFunctor.≈-cong (isFunctor U)) (lemma-assoc1 ( TMap ε (FObj F a ))) ⟩ FMap U (B [ (TMap ε ( FObj F a )) o FMap F (FMap U (TMap ε ( FObj F a ))) ] ) ≈⟨ distr U ⟩ (FMap U (TMap ε ( FObj F a ))) o FMap U (FMap F (FMap U (TMap ε ( FObj F a )))) ≈⟨⟩ TMap μ a o FMap T (TMap μ a) ∎ unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity1 {a} = let open ≈-Reasoning (A) in begin TMap μ a o TMap η ( FObj T a ) ≈⟨⟩ (FMap U (TMap ε ( FObj F a ))) o TMap η ( FObj U ( FObj F a )) ≈⟨ IsAdjunction.adjoint1 ( isAdjunction adj ) ⟩ id (FObj U ( FObj F a )) ≈⟨⟩ id (FObj T a) ∎ unity2 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity2 {a} = let open ≈-Reasoning (A) in begin TMap μ a o (FMap T (TMap η a )) ≈⟨⟩ (FMap U (TMap ε ( FObj F a ))) o (FMap U ( FMap F (TMap η a ))) ≈⟨ sym (distr U ) ⟩ FMap U ( B [ (TMap ε ( FObj F a )) o ( FMap F (TMap η a )) ]) ≈⟨ (IsFunctor.≈-cong (isFunctor U)) (IsAdjunction.adjoint2 ( isAdjunction adj )) ⟩ FMap U ( id1 B (FObj F a) ) ≈⟨ IsFunctor.identity ( isFunctor U ) ⟩ id (FObj T a) ∎