open import Level open import Category module deductive {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where -- Deduction Theorem -- positive logic record PositiveLogic {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field ⊤ : Obj A ○ : (a : Obj A ) → Hom A a ⊤ _∧_ : Obj A → Obj A → Obj A <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b) π : {a b : Obj A } → Hom A (a ∧ b) a π' : {a b : Obj A } → Hom A (a ∧ b) b _<=_ : (a b : Obj A ) → Obj A _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a module ccc-from-graph ( Atom : Set ) ( Hom : Atom → Atom → Set ) where open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) data Objs : Set where ⊤ : Objs atom : Atom → Objs _∧_ : Objs → Objs → Objs _<=_ : Objs → Objs → Objs data Arrow : Objs → Objs → Set where hom : (a b : Atom) → Hom a b → Arrow (atom a) (atom b) id : (a : Objs ) → Arrow a a _・_ : {a b c : Objs } → Arrow b c → Arrow a b → Arrow a c ○ : (a : Objs ) → Arrow a ⊤ π : {a b : Objs } → Arrow ( a ∧ b ) a π' : {a b : Objs } → Arrow ( a ∧ b ) b <_,_> : {a b c : Objs } → Arrow c a → Arrow c b → Arrow c (a ∧ b) ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a _* : {a b c : Objs } → Arrow (c ∧ b ) a → Arrow c ( a <= b ) record GraphCat : Set where field identityL : {a b : Objs} {f : Arrow a b } → (id b ・ f) ≡ f identityR : {a b : Objs} {f : Arrow a b } → (f ・ id a) ≡ f resp : {a b c : Objs} {f g : Arrow a b } {h i : Arrow b c } → f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) associative : {a b c d : Objs} {f : Arrow c d }{g : Arrow b c }{h : Arrow a b } → (f ・ (g ・ h)) ≡ ((f ・ g) ・ h) GLCat : GraphCat → Category Level.zero Level.zero Level.zero GLCat gc = record { Obj = Objs ; Hom = λ a b → Arrow a b ; _o_ = _・_ ; -- λ{a} {b} {c} x y → ; -- _×_ {c₁ } { c₂} {a} {b} {c} x y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → id a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → GraphCat.identityL gc ; identityR = λ{a b f} → GraphCat.identityR gc ; o-resp-≈ = λ {a b c f g h i} f=g h=i → GraphCat.resp gc f=g h=i ; associative = λ{a b c d f g h } → GraphCat.associative gc } } GL : (gc : GraphCat ) → PositiveLogic (GLCat gc ) GL _ = record { ⊤ = ⊤ ; ○ = ○ ; _∧_ = _∧_ ; <_,_> = <_,_> ; π = π ; π' = π' ; _<=_ = _<=_ ; _* = _* ; ε = ε } module deduction-theorem ( L : PositiveLogic A ) where open PositiveLogic L _・_ = _[_o_] A -- every proof b → c with assumption a has following forms data φ {a : Obj A } ( x : Hom A ⊤ a ) : {b c : Obj A } → Hom A b c → Set ( c₁ ⊔ c₂ ) where i : {b c : Obj A} {k : Hom A b c } → φ x k ii : φ x {⊤} {a} x iii : {b c' c'' : Obj A } { f : Hom A b c' } { g : Hom A b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x {b} {c' ∧ c''} < f , g > iv : {b c d : Obj A } { f : Hom A d c } { g : Hom A b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) v : {b c' c'' : Obj A } { f : Hom A (b ∧ c') c'' } (ψ : φ x f ) → φ x {b} {c'' <= c'} ( f * ) α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < π ・ π , < π' ・ π , π' > > -- genetate (a ∧ b) → c proof from proof b → c with assumption a kx∈a : {a b c : Obj A } → ( x : Hom A ⊤ a ) → {z : Hom A b c } → ( y : φ {a} x z ) → Hom A (a ∧ b) c kx∈a x {k} i = k ・ π' kx∈a x ii = π kx∈a x (iii ψ χ ) = < kx∈a x ψ , kx∈a x χ > kx∈a x (iv ψ χ ) = kx∈a x ψ ・ < π , kx∈a x χ > kx∈a x (v ψ ) = ( kx∈a x ψ ・ α ) *