module nat where -- Monad -- Category A -- A = Category -- Functor T : A → A --T(a) = t(a) --T(f) = tf(f) open import Category -- https://github.com/konn/category-agda open import Level open Functor --T(g f) = T(g) T(f) Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } → A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] Lemma1 = \t → IsFunctor.distr ( isFunctor t ) -- F(f) -- F(a) ---→ F(b) -- | | -- |t(a) |t(b) G(f)t(a) = t(b)F(f) -- | | -- v v -- G(a) ---→ G(b) -- G(f) record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′) ( F G : Functor D C ) (Trans : (A : Obj D) → Hom C (FObj F A) (FObj G A)) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where field naturality : {a b : Obj D} {f : Hom D a b} → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ] -- uniqness : {d : Obj D} -- → C [ Trans d ≈ Trans d ] record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where field Trans : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A) isNTrans : IsNTrans domain codomain F G Trans open NTrans Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A} → (μ : NTrans A A F G) → {a b : Obj A} { f : Hom A a b } → A [ A [ FMap G f o Trans μ a ] ≈ A [ Trans μ b o FMap F f ] ] Lemma2 = \n → IsNTrans.naturality ( isNTrans n ) open import Category.Cat -- η : 1_A → T -- μ : TT → T -- μ(a)η(T(a)) = a -- μ(a)T(η(a)) = a -- μ(a)(μ(T(a))) = μ(a)T(μ(a)) record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) ( μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field assoc : {a : Obj A} → A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] unity1 : {a : Obj A} → A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity2 : {a : Obj A} → A [ A [ Trans μ a o (FMap T (Trans η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where eta : NTrans A A identityFunctor T eta = η mu : NTrans A A (T ○ T) T mu = μ field isMonad : IsMonad A T η μ open Monad Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] Lemma3 = \m → IsMonad.assoc ( isMonad m ) Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b} → A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] Lemma4 = \a → IsCategory.identityL ( Category.isCategory a ) Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma5 = \m → IsMonad.unity1 ( isMonad m ) Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } → ( M : Monad A T η μ ) → A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] Lemma6 = \m → IsMonad.unity2 ( isMonad m ) -- T = M x A -- nat of η -- g ○ f = μ(c) T(g) f -- η(b) ○ f = f -- f ○ η(a) = f -- h ○ (g ○ f) = (h ○ g) ○ f record Kleisli { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) ( μ : NTrans A A (T ○ T) T ) ( M : Monad A T η μ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where monad : Monad A T η μ monad = M -- g ○ f = μ(c) T(g) f join : { a b : Obj A } → ( c : Obj A ) → ( Hom A b ( FObj T c )) → ( Hom A a ( FObj T b)) → Hom A a ( FObj T c ) join c g f = A [ Trans μ c o A [ FMap T g o f ] ] module ≈-Reasoning {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where open import Relation.Binary.Core renaming ( Trans to Trasn1 ) refl-hom : {a b : Obj A } { x : Hom A a b } → A [ x ≈ x ] refl-hom = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A )) trans-hom : {a b : Obj A } { x y z : Hom A a b } → A [ x ≈ y ] → A [ y ≈ z ] → A [ x ≈ z ] trans-hom b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory A ))) b c -- some short cuts car-eq : {a b c : Obj A } {x y : Hom A a b } ( f : Hom A c a ) → A [ x ≈ y ] → A [ A [ x o f ] ≈ A [ y o f ] ] car-eq f eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) ( refl-hom ) eq cdr-eq : {a b c : Obj A } {x y : Hom A a b } ( f : Hom A b c ) → A [ x ≈ y ] → A [ A [ f o x ] ≈ A [ f o y ] ] cdr-eq f eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) eq (refl-hom ) id : (a : Obj A ) → Hom A a a id a = (Id {_} {_} {_} {A} a) idL : {a b : Obj A } { f : Hom A b a } → A [ A [ id a o f ] ≈ f ] idL = IsCategory.identityL (Category.isCategory A) idR : {a b : Obj A } { f : Hom A a b } → A [ A [ f o id a ] ≈ f ] idR = IsCategory.identityR (Category.isCategory A) sym : {a b : Obj A } { f g : Hom A a b } -> A [ f ≈ g ] -> A [ g ≈ f ] sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) assoc : {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b} → A [ A [ f o A [ g o h ] ] ≈ A [ A [ f o g ] o h ] ] assoc = IsCategory.associative (Category.isCategory A) distr : (T : Functor A A) → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } → A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] distr T = IsFunctor.distr ( isFunctor T ) nat : { c₁′ c₂′ ℓ′ : Level} (D : Category c₁′ c₂′ ℓ′) {a b : Obj D} {f : Hom D a b} {F G : Functor D A } → (η : NTrans D A F G ) → A [ A [ ( FMap G f ) o ( Trans η a ) ] ≈ A [ (Trans η b ) o (FMap F f) ] ] nat _ η = IsNTrans.naturality ( isNTrans η ) infixr 2 _∎ infixr 2 _≈⟨_⟩_ infix 1 begin_ ------ If we have this, for example, as an axiom of a category, we can use ≡-Reasoning directly -- ≈-to-≡ : {a b : Obj A } { x y : Hom A a b } -> A [ x ≈ y ] -> x ≡ y -- ≈-to-≡ refl-hom = refl data _IsRelatedTo_ { a b : Obj A } ( x y : Hom A a b ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where relTo : (x≈y : A [ x ≈ y ] ) → x IsRelatedTo y begin_ : { a b : Obj A } { x y : Hom A a b } → x IsRelatedTo y → A [ x ≈ y ] begin relTo x≈y = x≈y _≈⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → A [ x ≈ y ] → y IsRelatedTo z → x IsRelatedTo z _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z) _∎ : { a b : Obj A } ( x : Hom A a b ) → x IsRelatedTo x _∎ _ = relTo refl-hom lemma12 : {c₁ c₂ ℓ : Level} (L : Category c₁ c₂ ℓ) { a b c : Obj L } → ( x : Hom L c a ) → ( y : Hom L b c ) → L [ L [ x o y ] ≈ L [ x o y ] ] lemma12 L x y = let open ≈-Reasoning ( L ) in begin L [ x o y ] ∎ Lemma61 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → { a : Obj A } ( b : Obj A ) → ( f : Hom A a b ) → A [ A [ (Id {_} {_} {_} {A} b) o f ] ≈ f ] Lemma61 c b g = -- IsCategory.identityL (Category.isCategory c) let open ≈-Reasoning (c) in begin c [ Id {_} {_} {_} {c} b o g ] ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ g ∎ open Kleisli -- η(b) ○ f = f Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) → ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) { μ : NTrans A A (T ○ T) T } { a : Obj A } ( b : Obj A ) ( f : Hom A a ( FObj T b) ) ( m : Monad A T η μ ) ( k : Kleisli A T η μ m) → A [ join k b (Trans η b) f ≈ f ] Lemma7 c T η b f m k = let open ≈-Reasoning (c) μ = mu ( monad k ) in begin join k b (Trans η b) f ≈⟨ refl-hom ⟩ c [ Trans μ b o c [ FMap T ((Trans η b)) o f ] ] ≈⟨ IsCategory.associative (Category.isCategory c) ⟩ c [ c [ Trans μ b o FMap T ((Trans η b)) ] o f ] ≈⟨ car-eq f ( IsMonad.unity2 ( isMonad ( monad k )) ) ⟩ c [ id (FObj T b) o f ] ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ f ∎ -- f ○ η(a) = f Lemma8 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) { μ : NTrans A A (T ○ T) T } ( a : Obj A ) ( b : Obj A ) ( f : Hom A a ( FObj T b) ) ( m : Monad A T η μ ) ( k : Kleisli A T η μ m) → A [ join k b f (Trans η a) ≈ f ] Lemma8 c T η a b f m k = begin join k b f (Trans η a) ≈⟨ refl-hom ⟩ c [ Trans μ b o c [ FMap T f o (Trans η a) ] ] ≈⟨ cdr-eq (Trans μ b) ( IsNTrans.naturality ( isNTrans η )) ⟩ c [ Trans μ b o c [ (Trans η ( FObj T b)) o f ] ] ≈⟨ IsCategory.associative (Category.isCategory c) ⟩ c [ c [ Trans μ b o (Trans η ( FObj T b)) ] o f ] ≈⟨ car-eq f ( IsMonad.unity1 ( isMonad ( monad k )) ) ⟩ c [ id (FObj T b) o f ] ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ f ∎ where open ≈-Reasoning (c) μ = mu ( monad k ) -- h ○ (g ○ f) = (h ○ g) ○ f Lemma9 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) ( μ : NTrans A A (T ○ T) T ) ( a b c d : Obj A ) ( f : Hom A a ( FObj T b) ) ( g : Hom A b ( FObj T c) ) ( h : Hom A c ( FObj T d) ) ( m : Monad A T η μ ) ( k : Kleisli A T η μ m) → A [ join k d h (join k c g f) ≈ join k d ( join k d h g) f ] Lemma9 A T η μ a b c d f g h m k = begin join k d h (join k c g f) ≈⟨ refl-hom ⟩ join k d h ( A [ Trans μ c o A [ FMap T g o f ] ] ) ≈⟨ refl-hom ⟩ A [ Trans μ d o A [ FMap T h o A [ Trans μ c o A [ FMap T g o f ] ] ] ] ≈⟨ cdr-eq ( Trans μ d ) ( cdr-eq ( FMap T h ) ( assoc )) ⟩ A [ Trans μ d o A [ FMap T h o A [ A [ Trans μ c o FMap T g ] o f ] ] ] ≈⟨ assoc ⟩ --- A [ f o A [ g o h ] ] = A [ A [ f o g ] o h ] A [ A [ Trans μ d o FMap T h ] o A [ A [ Trans μ c o FMap T g ] o f ] ] ≈⟨ assoc ⟩ A [ A [ A [ Trans μ d o FMap T h ] o A [ Trans μ c o FMap T g ] ] o f ] ≈⟨ car-eq f (sym assoc) ⟩ A [ A [ Trans μ d o A [ FMap T h o A [ Trans μ c o FMap T g ] ] ] o f ] ≈⟨ car-eq f ( cdr-eq ( Trans μ d ) (assoc) ) ⟩ A [ A [ Trans μ d o A [ A [ FMap T h o Trans μ c ] o FMap T g ] ] o f ] ≈⟨ car-eq f assoc ⟩ A [ A [ A [ Trans μ d o A [ FMap T h o Trans μ c ] ] o FMap T g ] o f ] ≈⟨ car-eq f (car-eq ( FMap T g) ( cdr-eq ( Trans μ d ) ( begin A [ FMap T h o Trans μ c ] ≈⟨ nat A μ ⟩ A [ Trans μ (FObj T d) o FMap T (FMap T h) ] ∎ ))) ⟩ A [ A [ A [ Trans μ d o A [ Trans μ ( FObj T d) o FMap T ( FMap T h ) ] ] o FMap T g ] o f ] ≈⟨ car-eq f (sym assoc) ⟩ A [ A [ Trans μ d o A [ A [ Trans μ ( FObj T d) o FMap T ( FMap T h ) ] o FMap T g ] ] o f ] ≈⟨ car-eq f ( cdr-eq ( Trans μ d ) (sym assoc) ) ⟩ A [ A [ Trans μ d o A [ Trans μ ( FObj T d) o A [ FMap T ( FMap T h ) o FMap T g ] ] ] o f ] ≈⟨ car-eq f ( cdr-eq ( Trans μ d) (cdr-eq (Trans μ ( FObj T d) ) (sym (distr T )))) ⟩ A [ A [ Trans μ d o A [ Trans μ ( FObj T d) o FMap T ( A [ FMap T h o g ] ) ] ] o f ] ≈⟨ car-eq f assoc ⟩ A [ A [ A [ Trans μ d o Trans μ ( FObj T d) ] o FMap T ( A [ FMap T h o g ] ) ] o f ] ≈⟨ car-eq f ( car-eq (FMap T ( A [ FMap T h o g ] )) ( begin A [ Trans μ d o Trans μ (FObj T d) ] ≈⟨ IsMonad.assoc ( isMonad m) ⟩ A [ Trans μ d o FMap T (Trans μ d) ] ∎ )) ⟩ A [ A [ A [ Trans μ d o FMap T ( Trans μ d) ] o FMap T ( A [ FMap T h o g ] ) ] o f ] ≈⟨ car-eq f (sym assoc) ⟩ A [ A [ Trans μ d o A [ FMap T ( Trans μ d ) o FMap T ( A [ FMap T h o g ] ) ] ] o f ] ≈⟨ sym assoc ⟩ A [ Trans μ d o A [ A [ FMap T ( Trans μ d ) o FMap T ( A [ FMap T h o g ] ) ] o f ] ] ≈⟨ cdr-eq ( Trans μ d ) ( car-eq f ( sym ( distr T ))) ⟩ A [ Trans μ d o A [ FMap T ( A [ ( Trans μ d ) o A [ FMap T h o g ] ] ) o f ] ] ≈⟨ refl-hom ⟩ join k d ( A [ Trans μ d o A [ FMap T h o g ] ] ) f ≈⟨ refl-hom ⟩ join k d ( join k d h g) f ∎ where open ≈-Reasoning (A) -- Kleisli : -- Kleisli = record { Hom = -- ; Hom = _⟶_ -- ; Id = IdProd -- ; _o_ = _∘_ -- ; _≈_ = _≈_ -- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ} -- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ} -- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ} -- } -- ; identityL = identityL -- ; identityR = identityR -- ; o-resp-≈ = o-resp-≈ -- ; associative = associative -- } -- }