# HG changeset patch # User Shinji KONO # Date 1586770798 -32400 # Node ID 4d64a90410c67d3c2fe2463ca276697e2c633d77 # Parent 2e52bb0a409729a43fd0113770dbef405245b705 clean up diff -r 2e52bb0a4097 -r 4d64a90410c6 CCCGraph.agda --- a/CCCGraph.agda Mon Apr 13 18:01:05 2020 +0900 +++ b/CCCGraph.agda Mon Apr 13 18:39:58 2020 +0900 @@ -96,6 +96,12 @@ Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ] *-cong refl = refl + +-------- +-- +-- Graph to positive logic +-- + open import graph module ccc-from-graph {c₁ c₂ : Level} (G : Graph {c₁} {c₂} ) where open import Relation.Binary.PropositionalEquality hiding ( [_] ) @@ -162,6 +168,11 @@ f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) o-resp-≈ refl refl = refl +-------- +-- +-- Functor from Positive Logic to Sets +-- + -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ @@ -190,9 +201,9 @@ fmap < f , g > x = ( fmap f x , fmap g x ) fmap (iv x f) a = amap x ( fmap f a ) - -- CS is a map from Positive logic to Sets - -- Sets is CCC, so we have a cartesian closed category generated by a graph - -- as a sub category of Sets +-- CS is a map from Positive logic to Sets +-- Sets is CCC, so we have a cartesian closed category generated by a graph +-- as a sub category of Sets CS : Functor PL (Sets {c₁ ⊔ c₂}) FObj CS a = fobj a @@ -217,7 +228,7 @@ CSC = FCat PL (Sets {c₁ ⊔ c₂}) CS - cc1 : CCC CSC + cc1 : CCC CSC -- SCS is CCC cc1 = record { 1 = ⊤ ; ○ = λ a x → OneObj ; @@ -229,17 +240,25 @@ _* = λ f x y → f ( x , y ) ; ε = λ x → ( proj₁ x) (proj₂ x) ; isCCC = record { - e2 = extensionality Sets ( λ x → {!!} ) ; + e2 = λ {a} {f} → extensionality Sets ( λ x → e20 {a} {f} x ) ; e3a = refl ; e3b = refl ; e3c = refl ; - π-cong = {!!} ; + π-cong = π-cong ; e4a = refl ; e4b = refl ; - *-cong = {!!} + *-cong = *-cong } - } - + } where + e20 : {a : Obj CSC} {f : Hom CSC a ⊤} (x : fobj a ) → f x ≡ OneObj + e20 {a} {f} x with f x + e20 x | OneObj = refl + π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → + Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ] + π-cong refl refl = refl + *-cong : {a b c : Obj CSC } {f f' : Hom CSC (a ∧ b) c} → + Sets [ f ≈ f' ] → Sets [ (λ x y → f (x , y)) ≈ (λ x y → f' (x , y)) ] + *-cong refl = refl ------------------------------------------------------ -- Cart Category of CCC and CCC preserving Functor @@ -394,17 +413,9 @@ lemma refl (refl eqv) = mrefl ( ≈-to-≡ (cat b) eqv ) ---- ---- open ccc-from-graph ---- ---- sm : {v : Level } → Graph {v} → SM {v} ---- SM.graph (sm g) = g ---- SM.sobj (sm g) = {!!} ---- SM.smap (sm g) = {!!} ---- ---- HX : {v : Level } ( x : Obj (Grph {v}) ) → Obj (Grph {v}) ---- HX {v} x = {!!} -- FObj UX ( record { cat = Sets {v} ; ccc = sets } ) ---- ---- ---- ---- + +open ccc-from-graph + +--- HX : {c₁ c₂ ℓ : Level} → ( ≈-to-≡ : (A : Category c₁ c₂ ℓ ) → {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → f ≡ g ) +--- → Functor (Grph {c₁} {c₂}) (Cart {c₁} {c₂} {ℓ} ) +--- HX = {!!}