# HG changeset patch # User Shinji KONO # Date 1556424156 -32400 # Node ID bc244fc604c8a1791167dc5294cb7eb3fdb3a23b # Parent 17716299087918fdeceb7503148017e1aaf3a109 ... diff -r 177162990879 -r bc244fc604c8 CCCGraph.agda --- a/CCCGraph.agda Sun Apr 28 12:37:34 2019 +0900 +++ b/CCCGraph.agda Sun Apr 28 13:02:36 2019 +0900 @@ -172,17 +172,27 @@ IsFunctor.≈-cong isf refl = refl IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) ---- record CCCObj { c₁ c₂ ℓ : Level} : Set (suc (c₁ ⊔ c₂ ⊔ ℓ)) where ---- field ---- cat : Category c₁ c₂ ℓ ---- ccc : CCC cat ---- ---- open CCCObj ---- ---- record CCCMap {c₁ c₂ ℓ : Level} (A B : CCCObj {c₁} {c₂} {ℓ} ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where ---- field ---- cmap : Functor (cat A ) (cat B ) ---- ccf : {A B : CCCObj {c₁} {c₂} {ℓ} } → CCC (cat A) → CCC (cat B) +--- +--- SubCategoy SC F A is a category with Obj = FObj F, Hom = FMap +--- +--- CCC ( SC (CS G)) Sets have to be proved +--- SM can be eliminated if we have +--- sobj (a : vertex g ) → {a} a set have only a +--- smap (a b : vertex g ) → {a} → {b} + + +record CCCObj { c₁ c₂ ℓ : Level} : Set (suc (c₁ ⊔ c₂ ⊔ ℓ)) where + field + cat : Category c₁ c₂ ℓ + ccc : CCC cat + +open CCCObj + +record CCCMap {c₁ c₂ ℓ : Level} (A B : CCCObj {c₁} {c₂} {ℓ} ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + field + cmap : Functor (cat A ) (cat B ) + ccf : {A B : CCCObj {c₁} {c₂} {ℓ} } → CCC (cat A) → CCC (cat B) + --- --- Cart : {c₁ c₂ ℓ : Level} → Category (suc (c₁ ⊔ c₂ ⊔ ℓ)) (suc (c₁ ⊔ c₂ ⊔ ℓ))(suc (c₁ ⊔ c₂ ⊔ ℓ)) --- Cart {c₁} {c₂} {ℓ} = record { @@ -197,14 +207,14 @@ --- ; o-resp-≈ = {!!} --- ; associative = {!!} --- }} ---- ---- open import discrete ---- open Graph ---- ---- record Gmap {v : Level} (x y : Graph {v} ) : Set (suc v) where ---- vmap : vertex x → vertex y ---- emap : {a b : vertex x} → edge x a b → edge y (vmap a) (vmap b) ---- + +open import discrete +open Graph + +record Gmap {v : Level} (x y : Graph {v} ) : Set (suc v) where + vmap : vertex x → vertex y + emap : {a b : vertex x} → edge x a b → edge y (vmap a) (vmap b) + --- Grp : {v : Level} → Category (suc v) v v --- Grp {v} = record { --- Obj = Graph {v}