view prob1.agda @ 32:1e3130896834

maxA done (all 0,1,2 done)
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 31 Mar 2020 01:18:56 +0900
parents 908409975a5e
children b5e8e6be9425
line wrap: on
line source

module prob1 where

open import Relation.Binary.PropositionalEquality 
open import Relation.Binary.Core
open import Data.Nat
open import Data.Nat.Properties
open import logic
open import nat
open import Data.Empty
open import Data.Product
open import Relation.Nullary
-- open import Relation.Binary.Definitions

-- All variables are positive integer
-- A = -M*n + i +k*M  - M
-- where n is in range (0,…,k-1) and i is in range(0,…,M-1)
-- Goal: Prove that A can take all values of (0,…,k*M-1)
-- A1 = -M*n1 + i1 +k*M  M, A2 = -M*n2 + i2 +k*M  - M
-- (1) If n1!=n2 or i1!=i2 then A1!=A2
-- Or its contraposition: (2) if A1=A2 then n1=n2 and i1=i2
-- Proof by contradiction: Suppose A1=A2 and (n1!=n2 or i1!=i2) becomes
-- contradiction
-- Induction on n and i

record Cond1 (A M k : ℕ )  : Set where
   field
      n : ℕ 
      i : ℕ 
      range-n : n < k 
      range-i : i < M 
      rule1 : i + k * M  ≡ M * (suc n) + A    -- A ≡ (i + k * M ) - (M * (suc n)) 

--   k = 1 → n = 0 →  ∀ M → A = i
--   k = 2 → n = 1 →
--   i + 2 * M = M * (suc n) + A    i = suc n → A = 0 

record UCond1 (A M k : ℕ )  : Set where
   field
      c1 : Cond1 A M k
      unique-i : {j : ℕ} {m1  : ℕ} → j < M → m1 < k → j + k * M ≡ M * suc m1 + A → Cond1.i c1 ≡ j
      unique-n : {j : ℕ} {m1  : ℕ} → j < M → m1 < k → j + k * M ≡ M * suc m1 + A → Cond1.n c1 ≡ m1
      maxA : A ≤ ( k * M ) - 1

problem1-0 : (k A M : ℕ )  → (A<kM : suc A <  k * M )
    → UCond1 A M k 
problem1-0 zero A M () 
problem1-0 (suc k) A zero A<kM = ⊥-elim ( nat-<> A<kM (subst (λ x → x < suc A) (*-comm _ k ) 0<s ))
problem1-0 (suc k) A (suc m) A<kM = cc k a<sa (start-range k) where
     M = suc m
     cck :  ( n : ℕ ) →  n < suc k  → (suc A >  ((k - n) ) * M )  → A - ((k - n) * M) < M →  Cond1 A M (suc k)
     cck n n<k gt lt =  record { n = n ; i = A - (((k - n)) * M ) ; range-n = n<k   ; range-i = lt ; rule1 = lemma2 }  where
        lemma2 :   A - ((k - n) * M) + suc k * M ≡ M * suc n + A
        lemma2 = begin
           A - ((k - n) * M) + suc k * M                           ≡⟨ cong ( λ x → A - ((k - n) * M) + suc x * M ) (sym (minus+n {k} {n} n<k )) ⟩
           A - ((k - n) * M) + (suc (((k - n) ) + n )) * M         ≡⟨ cong ( λ x → A - ((k - n) * M) + suc x * M ) (+-comm _ n) ⟩
           A - ((k - n) * M) + (suc (n + ((k - n) ) )) * M         ≡⟨⟩
           A - ((k - n) * M) + (suc n + ((k - n) ) ) * M           ≡⟨ cong ( λ x → A - ((k - n) * M) + x * M ) (+-comm (suc n) _) ⟩
           A - ((k - n) * M) + (((k - n) ) + suc n ) * M           ≡⟨ cong ( λ x → A - ((k - n) * M) + x  ) (((proj₂ *-distrib-+)) M ((k - n))  _  ) ⟩
           A - ((k - n) * M) + (((k - n) * M) + (suc n) * M)       ≡⟨ sym (+-assoc (A - ((k - n) * M)) _ ((suc n) * M)) ⟩
           A - ((k - n) * M) + ((k - n) * M) + (suc n) * M         ≡⟨ cong ( λ x → x + (suc n) * M ) ( minus+n {A} {(k - n) * M}  gt ) ⟩
           A + (suc n) * M                                         ≡⟨ cong ( λ k → A + k ) (*-comm (suc n)  _ )  ⟩
           A + M * (suc n)                                         ≡⟨ +-comm A _ ⟩
           M * (suc n) + A
          ∎  where open ≡-Reasoning
     cck-u :  ( n : ℕ ) →  n < suc k  → (suc A >  ((k - n) ) * M )  → A - ((k - n) * M) < M → UCond1 A M (suc k)
     cck-u n n<k k<A i<M = c0 where
        c1 : Cond1 A M (suc k) 
        c1 = cck n n<k k<A i<M 
        lemma4 : {i j x y z : ℕ} → j + x ≡ y → i + x ≡ z → j < i → y < z
        lemma4 {i} {j} {x} refl refl (s≤s z≤n) = s≤s (subst (λ k → x ≤ k ) (+-comm x _) x≤x+y)
        lemma4 refl refl (s≤s (s≤s lt)) = s≤s (lemma4 refl refl (s≤s lt) )
        lemma5 : {m1 n : ℕ} →      M * suc m1 + A  < M * suc n + A
                           → M + (M * suc m1 + A) ≤ M * suc n + A  
        lemma5 {m1} {n} lt with <-cmp m1 n
        lemma5 {m1} {n} lt | tri< a ¬b ¬c = begin
                   M + (M * suc m1 + A)
               ≡⟨ sym (+-assoc M _ _ ) ⟩
                   (M + M * suc m1) + A
               ≡⟨ sym ( cong (λ k → (k + M * suc m1) + A) ((proj₂ *-identity) M )) ⟩
                   (M * suc zero + M * suc m1) + A
               ≡⟨  sym ( cong (λ k → k + A) (( proj₁ *-distrib-+  )  M (suc zero) _ )) ⟩
                   M * suc (suc m1) + A
               ≤⟨ ≤-plus {_} {_} {A} (subst₂ (λ x y → x ≤ y ) (*-comm _ M ) (*-comm _ M )  (*≤ (s≤s a))) ⟩
                   M * suc n + A
               ∎ where open ≤-Reasoning
        lemma5 {m1} {n} lt | tri≈ ¬a refl ¬c = ⊥-elim ( nat-<≡ lt )
        lemma5 {m1} {n} lt | tri> ¬a ¬b c = ⊥-elim ( nat-<> lt (<-plus {_} {_} {A} (<≤+ (s≤s c)
                (subst₂ (λ x y → x ≤ y ) (*-comm _ m ) (*-comm _ m ) (*≤ (s≤s (≤to< c)))))))
        lemma6 : {i j x : ℕ} → M + (j + x ) ≤ i + x → M ≤ i
        lemma6 {i} {j} {x} lt = ≤-minus {M} {i} {x} (x+y≤z→x≤z ( begin 
                 M + x + j 
               ≡⟨ +-assoc M _ _ ⟩
                 M + (x + j )
               ≡⟨ cong (λ k → M + k  ) (+-comm x _ ) ⟩
                 M + (j + x)
               ≤⟨ lt  ⟩
                 i + x 
               ∎ )) where open ≤-Reasoning
        i : ℕ
        i = A - ((k - n) * M)
        lemma-u1 : {j : ℕ} {m1 : ℕ} → j < i → m1 < suc k → ¬ j + suc k * M ≡ M * suc m1 + A
        lemma-u1 {j} {m1} j<akM m1<k eq with <-cmp j M
        lemma-u1 {j} {m1} j<akM m1<k eq | tri< a ¬b ¬c =
            ⊥-elim (nat-≤> (lemma6 (subst₂ (λ x y → M + x ≤ y) (sym eq) (sym (Cond1.rule1 c1 )) lemma3) ) i<M ) where
             lemma3 : M + (M * suc m1 + A) ≤ M * suc n + A   -- M + j ≤ i
             lemma3 = lemma5 (lemma4  eq (Cond1.rule1 c1) j<akM)
        lemma-u1 {j} {m1} j<akM m1<k eq | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< b ( (≤-trans j<akM (≤-trans refl-≤s i<M )))) 
        lemma-u1 {j} {m1} j<akM m1<k eq | tri> ¬a ¬b c = ⊥-elim (nat-<> (≤-trans i<M (less-1 c)) j<akM ) 
        lemma-u2 : {j : ℕ} {m1  : ℕ} → (A - ((k - n) * M)) < j →
            j < M → m1 < suc k → ¬ j + suc k * M ≡ M * suc m1 + A
        lemma-u2 {j} {m1} i<j j<M m1<k eq = ⊥-elim ( nat-≤> (lemma6 (subst₂ (λ x y → M + x ≤ y) (sym (Cond1.rule1 c1)) (sym eq) lemma3-2)) j<M ) where
             lemma3-2 : M + (M * suc n + A) ≤ M * suc m1 + A -- M + i ≤ j
             lemma3-2 = lemma5 (lemma4 (Cond1.rule1 c1) eq i<j)
        unique-i : {j : ℕ} {m1  : ℕ} → j < M → m1 < suc k → j + suc k * M ≡ M * suc m1 + A → i ≡ j
        unique-i {j} {m1} j<M m1<k eq with <-cmp i j
        unique-i {j} {m1} j<M m1<k eq | tri< a ¬b ¬c = ⊥-elim ( lemma-u2 a j<M m1<k eq  )
        unique-i {j} {m1} j<M m1<k eq | tri≈ ¬a b ¬c = b
        unique-i {j} {m1} j<M m1<k eq | tri> ¬a ¬b c = ⊥-elim ( lemma-u1 c m1<k eq  )
        lemma7 : {n m1 m A  : ℕ} → n < m1   → suc (n + m * suc n + A) < suc (m1 + m * suc m1 + A)
        lemma7 {n} {m1} {m} {A} n<m1 = begin
                  suc (suc (n + m * suc n + A))
               ≡⟨ +-assoc _ (m * suc n)  A ⟩
                  suc (suc n + (m * suc n + A))
               ≤⟨ s≤s (<-plus n<m1) ⟩
                  suc (m1 + (m * suc n + A))
               ≡⟨ sym ( +-assoc _ (m * suc n)  A) ⟩
                  suc (m1 + m * suc n + A)
               ≤⟨ ≤-plus {_} {_} {A} (≤-plus-0 {_} {_} {suc m1} (≤* {suc n} {suc m1} {m} (s≤s (≤to< n<m1 )))) ⟩ 
                  suc (m1 + m * suc m1 + A)
               ∎ where open ≤-Reasoning
        unique-m : {i j : ℕ} {n m1  : ℕ}  → i ≡ j → i + suc k * M ≡ M * suc n + A → j + suc k * M ≡ M * suc m1 + A → n ≡ m1
        unique-m {i} {_} {n} {m1} refl eqn eqm with <-cmp n m1
        unique-m {i} {_} {n} {m1} refl eqn eqm | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (sym (trans (sym eqm) eqn )) (lemma7 {n} {m1} {m} {A} a ))
        unique-m {i} {_} {n} {m1} refl eqn eqm | tri≈ ¬a b ¬c = b
        unique-m {i} {_} {n} {m1} refl eqn eqm | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (trans (sym eqm) eqn ) (lemma7 {m1} {n} {m} {A} c ))
        unique-n :  {j m1 : ℕ} → j < M → m1 < suc k → j + suc k * M ≡ M * suc m1 + A → n ≡ m1
        unique-n {j} {m1} j<M m1<k eq = unique-m (unique-i j<M m1<k eq ) (Cond1.rule1 c1) eq 
        lemmab : {x m : ℕ } → x <  suc (m + x)
        lemmab {x} {zero} =  a<sa
        lemmab {zero} {suc m} =  <to<s (lemmab {zero} {m})
        lemmab {suc x} {suc m} =  ( s≤s (subst (λ k → suc x ≤ k) (+-comm _ (suc m)) x≤x+y ))
        lemmaa : {x y : ℕ} → suc x > y → (suc x - y) + y ≡ suc ( (x - y) + y )
        lemmaa {x} {y} lt = begin
                  (suc x - y) + y
               ≡⟨ minus+n (<-trans lt a<sa ) ⟩
                  suc x
               ≡⟨ sym ( cong (λ k → suc k) ( minus+n {x} {y} lt ) ) ⟩
                  suc (x - y) + y
               ≡⟨⟩
                  suc ( (x - y) + y )
               ∎ where open ≡-Reasoning
        --   A < M + ((k - n) * M)
        --   A < suc k * M - n * M  < suc k * M - n * M
        lemma8 : A - ((k - n) * M) < M  → A < M + ((k - n) * M) 
        lemma8 i<M with <-cmp (suc A) ( (k - n) * M )
        lemma8 i<M | tri< a ¬b ¬c = <-minus-0 {A} {_} {suc zero} ( <-trans a (<to<s lemmab) ) 
        lemma8 i<M | tri≈ ¬a b ¬c = <-minus-0 {A} {_} {suc zero} (subst (λ h → h < 1 + suc (m + minus k n * suc m)) (sym b) (<to<s lemmab)) where
        lemma8 i<M | tri> ¬a ¬b c = begin
                  suc A
               ≡⟨ sym ( minus+n {suc A} {(k - n) * M} (<-trans c a<sa) )  ⟩
                  (suc A - ((k - n) * M)) + ((k - n) * M )
               ≡⟨ lemmaa {A} {(k - n) * M} c ⟩
                  suc ( (A - ((k - n) * M)) + ((k - n) * M) )
               ≤⟨  ≤-plus i<M  ⟩ 
                   M + ((k - n) * M)
               ∎ where open ≤-Reasoning
        lemma9 : {x y : ℕ } → suc x ≤ y → x ≤ y - 1
        lemma9 {zero} {zero} ()
        lemma9 {suc x} {zero} ()
        lemma9 {x} {suc y} (s≤s lt) = lt
        lemmad : {n k m : ℕ} → n < suc k → n * suc m < suc ( k * suc m )
        lemmad {n} {k} {m} n<k with <-cmp n k
        lemmad {n} {k} {m} n<k | tri< a ¬b ¬c = <-trans ( *< a ) a<sa
        lemmad {n} {k} {m} n<k | tri≈ ¬a refl ¬c = ≤-refl
        lemmad {n} {k} {m} n<k | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n<k (s≤s c) )
        maxA : A - ((k - n) * M) < M  → A ≤ (suc k * M ) - 1
        maxA i<M = begin
                  A
               ≤⟨ lemma9 (lemma8 i<M ) ⟩ 
                  (M + ((k - n) * M)) - 1
               ≡⟨ cong (λ k → (M + k ) - 1 ) (distr-minus-* {k} {n} {M} ) ⟩ 
                  (M + ((k * M) - ( n * M))) - 1
               ≡⟨ cong (λ k → k - 1 ) ( minus+assoc {M} {k * M} {n * M} (lemmad n<k)) ⟩  
                  ((M + (k * M) )- ( n * M)) - 1
               ≡⟨⟩ 
                  ((suc k * M )- ( n * M)) - 1
               ≡⟨ minus-assoc {suc k * M} {n * M} {1} ⟩ 
                  (suc k * M) - ((n * M) + 1)
               ≡⟨ cong (λ h → (suc k * M) - h ) (+-comm (n * M) _) ⟩ 
                  (suc k * M) - (1 + (n * M) )
               ≤⟨ minus+< {suc k * M} {1} {n * M} ⟩ 
                  (suc k * M ) - 1
               ∎ where open ≤-Reasoning
        c0  =  record { c1 = record { n = n ; i = A - (((k - n)) * M ) ; range-n = n<k   ; range-i = i<M; rule1 = Cond1.rule1 c1 }
            ; unique-i = unique-i 
            ; unique-n = unique-n
            ; maxA = maxA i<M
            }
     --  loop on  range  of A : ((k - n) ) * M ≤ A < ((k - n) ) * M + M
     nextc : (n : ℕ ) → (suc n < suc k) → M < suc ((k - n) * M) 
     nextc n n<k with k - n | inspect (_-_ k) n
     nextc n n<k | 0 | record { eq = e } = ⊥-elim ( nat-≡< (sym e) (minus>0 n<k) )
     nextc n n<k | suc n0 | _ = s≤s (s≤s lemma) where
        lemma : m ≤ m + n0 * suc m
        lemma = x≤x+y
     cc : (n : ℕ) → n < suc k → suc A > (k - n) * M → UCond1 A M (suc k)
     cc zero n<k k<A = cck-u 0 n<k k<A lemma where
        a<m : suc A < M + k * M 
        a<m = A<kM
        lemma : A - ((k - 0) * M) < M
        lemma = <-minus {_} {_} {k * M} (subst (λ x → x < M + k * M) (sym (minus+n {A} {k * M} k<A )) (less-1 a<m) )
     cc (suc n) n<k k<A with <-cmp (A - ((k - (suc n)) * M))  M
     cc (suc n) n<k k<A | tri< a ¬b ¬c = cck-u (suc n) n<k k<A a
     cc (suc n) n<k k<A | tri≈ ¬a b ¬c = 
        cc n (less-1 n<k) (lemma1 b)  where
        a=mk0 :  (A - ((k - (suc n)) * M)) ≡  M → A ≡ (k - n) * M
        a=mk0 a=mk = sym ( begin
           (k - n) * M 
         ≡⟨ sym ( minus+n {(k - n) * M} {M} (nextc n n<k )) ⟩
           ((k - n) * M ) - M + M
         ≡⟨ +-comm _ M ⟩
           M + (((k - n) * M ) - M)
         ≡⟨ cong (λ x → M + x ) (sym (minus-* {M} {k} (<-minus-0 n<k ))) ⟩
           M + (k - (suc n) * M) 
         ≡⟨ cong (λ x → x + (k - (suc n)) * M) (sym a=mk) ⟩
           A - ((k - (suc n)) * M) + ((k - (suc n)) * M) 
         ≡⟨ minus+n {A} {(k - (suc n)) * M} k<A ⟩
           A
         ∎ ) where open ≡-Reasoning
        lemma1 : (A - ((k - (suc n)) * M)) ≡  M → suc A > (k - n) * M
        lemma1 a=mk = subst (λ x → (k - n) * M < suc x ) (sym (a=mk0 a=mk )) a<sa
     cc (suc n) n<k k<A | tri> ¬a ¬b c = 
        cc n (less-1 n<k) (lemma3 c) where
        lemma3 : (A - ((k - (suc n)) * M)) > M  → suc A > (k - n) * M
        lemma3 mk<a = <-trans lemma5 a<sa where
            lemma6 :  M + (k - (suc n)) * M ≡ (k - n) * M
            lemma6 = begin
                  M + (k - (suc n)) * M 
               ≡⟨ cong (λ x → M + x) (minus-* {M} {k} (<-minus-0 n<k))  ⟩
                  M + (((k - n) * M ) - M )
               ≡⟨ +-comm M _ ⟩
                  ((k - n) * M ) - M + M
               ≡⟨ minus+n {_} {M} (nextc n n<k ) ⟩
                  (k - n) * M
               ∎  where open ≡-Reasoning
            lemma4 : (M + (k - (suc n)) * M) < A
            lemma4 = subst (λ x → (M + (k - (suc n)) * M)  < x ) (minus+n {A}{(k - (suc n)) * M} k<A ) ( <-plus mk<a )
            lemma5 : (k - n) * M < A
            lemma5 = subst (λ x → x < A ) lemma6 lemma4
     start-range : (k : ℕ ) → suc A > (k - k) * M
     start-range zero = s≤s z≤n
     start-range (suc k) = start-range k