module whileTestPrim where open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality open import utilities record Env : Set where field varn : ℕ vari : ℕ open Env PrimComm : Set PrimComm = Env → Env Cond : Set Cond = (Env → Bool) data Comm : Set where Skip : Comm Abort : Comm PComm : PrimComm -> Comm Seq : Comm -> Comm -> Comm If : Cond -> Comm -> Comm -> Comm While : Cond -> Comm -> Comm --------------------------- program : Comm program = Seq ( PComm (λ env → record env {varn = 10})) $ Seq ( PComm (λ env → record env {vari = 0})) $ While (λ env → lt zero (varn env ) ) (Seq (PComm (λ env → record env {vari = ((vari env) + 1)} )) $ PComm (λ env → record env {varn = ((varn env) - 1)} )) simple : Comm simple = Seq ( PComm (λ env → record env {varn = 10})) $ PComm (λ env → record env {vari = 0}) {-# TERMINATING #-} interpret : Env → Comm → Env interpret env Skip = env interpret env Abort = env interpret env (PComm x) = x env interpret env (Seq comm comm1) = interpret (interpret env comm) comm1 interpret env (If x then else) with x env ... | true = interpret env then ... | false = interpret env else interpret env (While x comm) with x env ... | true = interpret (interpret env comm) (While x comm) ... | false = env test1 : Env test1 = interpret ( record { vari = 0 ; varn = 0 } ) program eval-proof : vari test1 ≡ 10 eval-proof = refl tests : Env tests = interpret ( record { vari = 0 ; varn = 0 } ) simple empty-case : (env : Env) → (( λ e → true ) env ) ≡ true empty-case _ = refl Axiom : Cond -> PrimComm -> Cond -> Set Axiom pre comm post = ∀ (env : Env) → (pre env) ⇒ ( post (comm env)) ≡ true Tautology : Cond -> Cond -> Set Tautology pre post = ∀ (env : Env) → (pre env) ⇒ (post env) ≡ true _and_ : Cond -> Cond -> Cond x and y = λ env → x env ∧ y env neg : Cond -> Cond neg x = λ env → not ( x env ) data HTProof : Cond -> Comm -> Cond -> Set where PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} -> (pr : Axiom bPre pcm bPost) -> HTProof bPre (PComm pcm) bPost SkipRule : (b : Cond) -> HTProof b Skip b AbortRule : (bPre : Cond) -> (bPost : Cond) -> HTProof bPre Abort bPost WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} -> {bPost' : Cond} -> {bPost : Cond} -> Tautology bPre bPre' -> HTProof bPre' cm bPost' -> Tautology bPost' bPost -> HTProof bPre cm bPost SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} -> {cm2 : Comm} -> {bPost : Cond} -> HTProof bPre cm1 bMid -> HTProof bMid cm2 bPost -> HTProof bPre (Seq cm1 cm2) bPost IfRule : {cmThen : Comm} -> {cmElse : Comm} -> {bPre : Cond} -> {bPost : Cond} -> {b : Cond} -> HTProof (bPre and b) cmThen bPost -> HTProof (bPre and neg b) cmElse bPost -> HTProof bPre (If b cmThen cmElse) bPost WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} -> HTProof (bInv and b) cm bInv -> HTProof bInv (While b cm) (bInv and neg b) initCond : Cond initCond env = true stmt1Cond : Cond stmt1Cond env = Equal (varn env) 10 stmt2Cond : Cond stmt2Cond env = (Equal (varn env) 10) ∧ (Equal (vari env) 0) whileInv : Cond whileInv env = Equal ((varn env) + (vari env)) 10 whileInv' : Cond whileInv' env = Equal ((varn env) + (vari env)) 11 ∧ lt zero (varn env) termCond : Cond termCond env = Equal (vari env) 10 proofs : HTProof initCond simple stmt2Cond proofs = SeqRule {initCond} ( PrimRule empty-case ) $ PrimRule {stmt1Cond} {_} {stmt2Cond} lemma where lemma : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond lemma env with stmt1Cond env lemma env | false = refl lemma env | true = refl open import Data.Empty open import Data.Nat.Properties proof1 : HTProof initCond program termCond proof1 = SeqRule {λ e → true} ( PrimRule empty-case ) $ SeqRule {λ e → Equal (varn e) 10} ( PrimRule lemma1 ) $ WeakeningRule {λ e → (Equal (varn e) 10) ∧ (Equal (vari e) 0)} lemma2 ( WhileRule {_} {λ e → Equal ((varn e) + (vari e)) 10} $ SeqRule (PrimRule {λ e → whileInv e ∧ lt zero (varn e) } lemma3 ) $ PrimRule {whileInv'} {_} {whileInv} lemma4 ) lemma5 where lemma1 : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond lemma1 env with stmt1Cond env lemma1 env | false = refl lemma1 env | true = refl lemma21 : {env : Env } → stmt2Cond env ≡ true → varn env ≡ 10 lemma21 eq = Equal→≡ (∧-pi1 eq) lemma22 : {env : Env } → stmt2Cond env ≡ true → vari env ≡ 0 lemma22 eq = Equal→≡ (∧-pi2 eq) lemma23 : {env : Env } → stmt2Cond env ≡ true → varn env + vari env ≡ 10 lemma23 {env} eq = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( \ x -> x + vari env ) (lemma21 eq ) ⟩ 10 + vari env ≡⟨ cong ( \ x -> 10 + x) (lemma22 eq ) ⟩ 10 ∎ lemma2 : Tautology stmt2Cond whileInv lemma2 env = bool-case (stmt2Cond env) ( λ eq → let open ≡-Reasoning in begin (stmt2Cond env) ⇒ (whileInv env) ≡⟨⟩ (stmt2Cond env) ⇒ ( Equal (varn env + vari env) 10 ) ≡⟨ cong ( \ x -> (stmt2Cond env) ⇒ ( Equal x 10 ) ) ( lemma23 {env} eq ) ⟩ (stmt2Cond env) ⇒ (Equal 10 10) ≡⟨⟩ (stmt2Cond env) ⇒ true ≡⟨ ⇒t ⟩ true ∎ ) ( λ ne → let open ≡-Reasoning in begin (stmt2Cond env) ⇒ (whileInv env) ≡⟨ cong ( \ x -> x ⇒ (whileInv env) ) ne ⟩ false ⇒ (whileInv env) ≡⟨ f⇒ {whileInv env} ⟩ true ∎ ) lemma3 : Axiom (λ e → whileInv e ∧ lt zero (varn e)) (λ env → record { varn = varn env ; vari = vari env + 1 }) whileInv' lemma3 env = impl⇒ ( λ cond → let open ≡-Reasoning in begin whileInv' (record { varn = varn env ; vari = vari env + 1 }) ≡⟨⟩ Equal (varn env + (vari env + 1)) 11 ∧ (lt 0 (varn env) ) ≡⟨ cong ( λ z → Equal (varn env + (vari env + 1)) 11 ∧ z ) (∧-pi2 cond ) ⟩ Equal (varn env + (vari env + 1)) 11 ∧ true ≡⟨ ∧true ⟩ Equal (varn env + (vari env + 1)) 11 ≡⟨ cong ( \ x -> Equal x 11 ) (sym (+-assoc (varn env) (vari env) 1)) ⟩ Equal ((varn env + vari env) + 1) 11 ≡⟨ cong ( \ x -> Equal x 11 ) +1≡suc ⟩ Equal (suc (varn env + vari env)) 11 ≡⟨ sym Equal+1 ⟩ Equal ((varn env + vari env) ) 10 ≡⟨ ∧-pi1 cond ⟩ true ∎ ) lemma41 : (env : Env ) → (varn env + vari env) ≡ 11 → lt 0 (varn env) ≡ true → Equal ((varn env - 1) + vari env) 10 ≡ true lemma41 env c1 c2 = let open ≡-Reasoning in begin Equal ((varn env - 1) + vari env) 10 ≡⟨ cong ( λ z → Equal ((z - 1 ) + vari env ) 10 ) (sym (suc-predℕ=n c2) ) ⟩ Equal ((suc (predℕ {varn env} c2 ) - 1) + vari env) 10 ≡⟨⟩ Equal ((predℕ {varn env} c2 ) + vari env) 10 ≡⟨ Equal+1 ⟩ Equal ((suc (predℕ {varn env} c2 )) + vari env) 11 ≡⟨ cong ( λ z → Equal (z + vari env ) 11 ) (suc-predℕ=n c2 ) ⟩ Equal (varn env + vari env) 11 ≡⟨ cong ( λ z → (Equal z 11 )) c1 ⟩ Equal 11 11 ≡⟨⟩ true ∎ lemma4 : Axiom whileInv' (λ env → record { varn = varn env - 1 ; vari = vari env }) whileInv lemma4 env = impl⇒ ( λ cond → let open ≡-Reasoning in begin whileInv (record { varn = varn env - 1 ; vari = vari env }) ≡⟨⟩ Equal ((varn env - 1) + vari env) 10 ≡⟨ lemma41 env (Equal→≡ (∧-pi1 cond)) (∧-pi2 cond) ⟩ true ∎ ) lemma51 : (z : Env ) → neg (λ z → lt zero (varn z)) z ≡ true → varn z ≡ zero lemma51 z cond with lt zero (varn z) | (suc zero) ≤? (varn z) lemma51 z () | false | yes p lemma51 z () | true | yes p lemma51 z refl | _ | no ¬p with varn z lemma51 z refl | _ | no ¬p | zero = refl lemma51 z refl | _ | no ¬p | suc x = ⊥-elim ( ¬p (s≤s z≤n ) ) lemma5 : Tautology ((λ e → Equal (varn e + vari e) 10) and (neg (λ z → lt zero (varn z)))) termCond lemma5 env = impl⇒ ( λ cond → let open ≡-Reasoning in begin termCond env ≡⟨⟩ Equal (vari env) 10 ≡⟨⟩ Equal (zero + vari env) 10 ≡⟨ cong ( λ z → Equal (z + vari env) 10 ) (sym ( lemma51 env ( ∧-pi2 cond ) )) ⟩ Equal (varn env + vari env) 10 ≡⟨ ∧-pi1 cond ⟩ true ∎ )