# HG changeset patch # User Shinji KONO # Date 1544860792 -32400 # Node ID bc819bdda3746dd3b015d4e97b68392a2e00890f # Parent 46b301ad447892b2669d8172e2121a4837f96907 proof completed diff -r 46b301ad4478 -r bc819bdda374 whileTestGears.agda --- a/whileTestGears.agda Sat Dec 15 11:57:18 2018 +0900 +++ b/whileTestGears.agda Sat Dec 15 16:59:52 2018 +0900 @@ -2,70 +2,13 @@ open import Function open import Data.Nat -open import Data.Bool hiding ( _≟_ ; _∧_) +open import Data.Bool hiding ( _≟_ ) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality - -record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where - field - pi1 : a - pi2 : b - -open _∧_ - -_-_ : ℕ -> ℕ -> ℕ -x - zero = x -zero - _ = zero -(suc x) - (suc y) = x - y - -sym1 : { y : ℕ } -> y + zero ≡ y -sym1 {zero} = refl -sym1 {suc y} = cong ( λ x → suc x ) ( sym1 {y} ) - -+-sym : { x y : ℕ } -> x + y ≡ y + x -+-sym {zero} {zero} = refl -+-sym {zero} {suc y} = let open ≡-Reasoning in - begin - zero + suc y - ≡⟨⟩ - suc y - ≡⟨ sym sym1 ⟩ - suc y + zero - ∎ -+-sym {suc x} {zero} = let open ≡-Reasoning in - begin - suc x + zero - ≡⟨ sym1 ⟩ - suc x - ≡⟨⟩ - zero + suc x - ∎ -+-sym {suc x} {suc y} = cong ( λ z → suc z ) ( let open ≡-Reasoning in - begin - x + suc y - ≡⟨ +-sym {x} {suc y} ⟩ - suc (y + x) - ≡⟨ cong ( λ z → suc z ) (+-sym {y} {x}) ⟩ - suc (x + y) - ≡⟨ sym ( +-sym {y} {suc x}) ⟩ - y + suc x - ∎ ) - -minus-plus : { x y : ℕ } -> (suc x - 1) + (y + 1) ≡ suc x + y -minus-plus {zero} {y} = +-sym {y} {1} -minus-plus {suc x} {y} = cong ( λ z → suc z ) (minus-plus {x} {y}) - -lt : ℕ -> ℕ -> Bool -lt x y with (suc x ) ≤? y -lt x y | yes p = true -lt x y | no ¬p = false - -Equal : ℕ -> ℕ -> Bool -Equal x y with x ≟ y -Equal x y | yes p = true -Equal x y | no ¬p = false +open import utilities +open _/\_ record Env : Set where field @@ -90,12 +33,12 @@ proof1 : whileTest (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) proof1 = refl -whileTest' : {l : Level} {t : Set l} -> (Code : (env : Env) -> ((vari env) ≡ 0) ∧ ((varn env) ≡ 10) -> t) -> t +whileTest' : {l : Level} {t : Set l} -> (Code : (env : Env) -> ((vari env) ≡ 0) /\ ((varn env) ≡ 10) -> t) -> t whileTest' next = next env proof2 where env : Env env = record {vari = 0 ; varn = 10} - proof2 : ((vari env) ≡ 0) ∧ ((varn env) ≡ 10) + proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ 10) proof2 = record {pi1 = refl ; pi2 = refl} {-# TERMINATING #-} @@ -111,7 +54,7 @@ proof3 (s≤s lt) | suc n = {!!} -conversion1 : {l : Level} {t : Set l } → (env : Env) -> ((vari env) ≡ 0) ∧ ((varn env) ≡ 10) +conversion1 : {l : Level} {t : Set l } → (env : Env) -> ((vari env) ≡ 0) /\ ((varn env) ≡ 10) -> (Code : (env1 : Env) -> (varn env1 + vari env1 ≡ 10) -> t) -> t conversion1 env p1 next = next env proof4 where diff -r 46b301ad4478 -r bc819bdda374 whileTestPrim.agda --- a/whileTestPrim.agda Sat Dec 15 11:57:18 2018 +0900 +++ b/whileTestPrim.agda Sat Dec 15 16:59:52 2018 +0900 @@ -7,6 +7,7 @@ open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality +open import utilities record Env : Set where field @@ -28,86 +29,6 @@ If : Cond -> Comm -> Comm -> Comm While : Cond -> Comm -> Comm -_-_ : ℕ -> ℕ -> ℕ -x - zero = x -zero - _ = zero -(suc x) - (suc y) = x - y - -lt : ℕ -> ℕ -> Bool -lt x y with suc x ≤? y -lt x y | yes p = true -lt x y | no ¬p = false - -Equal : ℕ -> ℕ -> Bool -Equal x y with x ≟ y -Equal x y | yes p = true -Equal x y | no ¬p = false - ---------------------------- - -implies : Bool → Bool → Bool -implies false _ = true -implies true true = true -implies true false = false - -impl-1 : {x : Bool} → implies x true ≡ true -impl-1 {x} with x -impl-1 {x} | false = refl -impl-1 {x} | true = refl - -impl-2 : {x : Bool} → implies false x ≡ true -impl-2 {x} with x -impl-2 {x} | false = refl -impl-2 {x} | true = refl - -and-lemma-1 : { x y : Bool } → x ∧ y ≡ true → x ≡ true -and-lemma-1 {x} {y} eq with x | y | eq -and-lemma-1 {x} {y} eq | false | b | () -and-lemma-1 {x} {y} eq | true | false | () -and-lemma-1 {x} {y} eq | true | true | refl = refl - -and-lemma-2 : { x y : Bool } → x ∧ y ≡ true → y ≡ true -and-lemma-2 {x} {y} eq with x | y | eq -and-lemma-2 {x} {y} eq | false | b | () -and-lemma-2 {x} {y} eq | true | false | () -and-lemma-2 {x} {y} eq | true | true | refl = refl - -bool-case : ( x : Bool ) { p : Set } → ( x ≡ true → p ) → ( x ≡ false → p ) → p -bool-case x T F with x -bool-case x T F | false = F refl -bool-case x T F | true = T refl - -impl : {x y : Bool} → (x ≡ true → y ≡ true ) → implies x y ≡ true -impl {x} {y} p = bool-case x (λ x=t → let open ≡-Reasoning in - begin - implies x y - ≡⟨ cong ( \ z -> implies x z ) (p x=t ) ⟩ - implies x true - ≡⟨ impl-1 ⟩ - true - ∎ - ) ( λ x=f → let open ≡-Reasoning in - begin - implies x y - ≡⟨ cong ( \ z -> implies z y ) x=f ⟩ - true - ∎ - ) - -eqlemma : { x y : ℕ } → Equal x y ≡ true → x ≡ y -eqlemma {x} {y} eq with x ≟ y -eqlemma {x} {y} refl | yes refl = refl -eqlemma {x} {y} () | no ¬p - -eqlemma1 : { x y : ℕ } → Equal x y ≡ Equal (suc x) (suc y) -eqlemma1 {x} {y} with x ≟ y -eqlemma1 {x} {.x} | yes refl = refl -eqlemma1 {x} {y} | no ¬p = refl - -add-lemma1 : { x : ℕ } → x + 1 ≡ suc x -add-lemma1 {zero} = refl -add-lemma1 {suc x} = cong ( \ z -> suc z ) ( add-lemma1 {x} ) - --------------------------- program : Comm @@ -151,13 +72,13 @@ Axiom : Cond -> PrimComm -> Cond -> Set -Axiom pre comm post = ∀ (env : Env) → implies (pre env) ( post (comm env)) ≡ true +Axiom pre comm post = ∀ (env : Env) → (pre env) ⇒ ( post (comm env)) ≡ true Tautology : Cond -> Cond -> Set -Tautology pre post = ∀ (env : Env) → implies (pre env) (post env) ≡ true +Tautology pre post = ∀ (env : Env) → (pre env) ⇒ (post env) ≡ true -_/\_ : Cond -> Cond -> Cond -x /\ y = λ env → x env ∧ y env +_and_ : Cond -> Cond -> Cond +x and y = λ env → x env ∧ y env neg : Cond -> Cond neg x = λ env → not ( x env ) @@ -183,12 +104,12 @@ IfRule : {cmThen : Comm} -> {cmElse : Comm} -> {bPre : Cond} -> {bPost : Cond} -> {b : Cond} -> - HTProof (bPre /\ b) cmThen bPost -> - HTProof (bPre /\ neg b) cmElse bPost -> + HTProof (bPre and b) cmThen bPost -> + HTProof (bPre and neg b) cmElse bPost -> HTProof bPre (If b cmThen cmElse) bPost WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} -> - HTProof (bInv /\ b) cm bInv -> - HTProof bInv (While b cm) (bInv /\ neg b) + HTProof (bInv and b) cm bInv -> + HTProof bInv (While b cm) (bInv and neg b) initCond : Cond initCond env = true @@ -203,7 +124,7 @@ whileInv env = Equal ((varn env) + (vari env)) 10 whileInv' : Cond -whileInv' env = Equal ((varn env) + (vari env)) 11 +whileInv' env = Equal ((varn env) + (vari env)) 11 ∧ lt zero (varn env) termCond : Cond termCond env = Equal (vari env) 10 @@ -236,9 +157,9 @@ lemma1 env | false = refl lemma1 env | true = refl lemma21 : {env : Env } → stmt2Cond env ≡ true → varn env ≡ 10 - lemma21 eq = eqlemma (and-lemma-1 eq) + lemma21 eq = Equal→≡ (∧-pi1 eq) lemma22 : {env : Env } → stmt2Cond env ≡ true → vari env ≡ 0 - lemma22 eq = eqlemma (and-lemma-2 eq) + lemma22 eq = Equal→≡ (∧-pi2 eq) lemma23 : {env : Env } → stmt2Cond env ≡ true → varn env + vari env ≡ 10 lemma23 {env} eq = let open ≡-Reasoning in begin @@ -252,44 +173,93 @@ lemma2 env = bool-case (stmt2Cond env) ( λ eq → let open ≡-Reasoning in begin - implies (stmt2Cond env) (whileInv env) + (stmt2Cond env) ⇒ (whileInv env) ≡⟨⟩ - implies (stmt2Cond env) ( Equal (varn env + vari env) 10 ) - ≡⟨ cong ( \ x -> implies (stmt2Cond env) ( Equal x 10 ) ) ( lemma23 {env} eq ) ⟩ - implies (stmt2Cond env) (Equal 10 10) + (stmt2Cond env) ⇒ ( Equal (varn env + vari env) 10 ) + ≡⟨ cong ( \ x -> (stmt2Cond env) ⇒ ( Equal x 10 ) ) ( lemma23 {env} eq ) ⟩ + (stmt2Cond env) ⇒ (Equal 10 10) ≡⟨⟩ - implies (stmt2Cond env) true - ≡⟨ impl-1 ⟩ + (stmt2Cond env) ⇒ true + ≡⟨ ⇒t ⟩ true ∎ ) ( λ ne → let open ≡-Reasoning in begin - implies (stmt2Cond env) (whileInv env) - ≡⟨ cong ( \ x -> implies x (whileInv env) ) ne ⟩ - implies false (whileInv env) - ≡⟨ impl-2 {whileInv env} ⟩ + (stmt2Cond env) ⇒ (whileInv env) + ≡⟨ cong ( \ x -> x ⇒ (whileInv env) ) ne ⟩ + false ⇒ (whileInv env) + ≡⟨ f⇒ {whileInv env} ⟩ true ∎ ) lemma3 : Axiom (λ e → whileInv e ∧ lt zero (varn e)) (λ env → record { varn = varn env ; vari = vari env + 1 }) whileInv' - lemma3 env = impl ( λ cond → let open ≡-Reasoning in + lemma3 env = impl⇒ ( λ cond → let open ≡-Reasoning in begin whileInv' (record { varn = varn env ; vari = vari env + 1 }) ≡⟨⟩ + Equal (varn env + (vari env + 1)) 11 ∧ (lt 0 (varn env) ) + ≡⟨ cong ( λ z → Equal (varn env + (vari env + 1)) 11 ∧ z ) (∧-pi2 cond ) ⟩ + Equal (varn env + (vari env + 1)) 11 ∧ true + ≡⟨ ∧true ⟩ Equal (varn env + (vari env + 1)) 11 ≡⟨ cong ( \ x -> Equal x 11 ) (sym (+-assoc (varn env) (vari env) 1)) ⟩ Equal ((varn env + vari env) + 1) 11 - ≡⟨ cong ( \ x -> Equal x 11 ) add-lemma1 ⟩ + ≡⟨ cong ( \ x -> Equal x 11 ) +1≡suc ⟩ Equal (suc (varn env + vari env)) 11 - ≡⟨ sym eqlemma1 ⟩ + ≡⟨ sym Equal+1 ⟩ Equal ((varn env + vari env) ) 10 - ≡⟨ and-lemma-1 cond ⟩ + ≡⟨ ∧-pi1 cond ⟩ true ∎ ) + lemma41 : (env : Env ) → (varn env + vari env) ≡ 11 → lt 0 (varn env) ≡ true → Equal ((varn env - 1) + vari env) 10 ≡ true + lemma41 env c1 c2 = let open ≡-Reasoning in + begin + Equal ((varn env - 1) + vari env) 10 + ≡⟨ cong ( λ z → Equal ((z - 1 ) + vari env ) 10 ) (sym (suc-predℕ=n c2) ) ⟩ + Equal ((suc (predℕ {varn env} c2 ) - 1) + vari env) 10 + ≡⟨⟩ + Equal ((predℕ {varn env} c2 ) + vari env) 10 + ≡⟨ Equal+1 ⟩ + Equal ((suc (predℕ {varn env} c2 )) + vari env) 11 + ≡⟨ cong ( λ z → Equal (z + vari env ) 11 ) (suc-predℕ=n c2 ) ⟩ + Equal (varn env + vari env) 11 + ≡⟨ cong ( λ z → (Equal z 11 )) c1 ⟩ + Equal 11 11 + ≡⟨⟩ + true + ∎ lemma4 : Axiom whileInv' (λ env → record { varn = varn env - 1 ; vari = vari env }) whileInv - lemma4 env = {!!} - lemma5 : Tautology ((λ e → Equal (varn e + vari e) 10) /\ neg (λ z → lt zero (varn z))) termCond - lemma5 env = {!!} + lemma4 env = impl⇒ ( λ cond → let open ≡-Reasoning in + begin + whileInv (record { varn = varn env - 1 ; vari = vari env }) + ≡⟨⟩ + Equal ((varn env - 1) + vari env) 10 + ≡⟨ lemma41 env (Equal→≡ (∧-pi1 cond)) (∧-pi2 cond) ⟩ + true + ∎ + ) + lemma51 : (z : Env ) → neg (λ z → lt zero (varn z)) z ≡ true → varn z ≡ zero + lemma51 z cond with lt zero (varn z) | (suc zero) ≤? (varn z) + lemma51 z () | false | yes p + lemma51 z () | true | yes p + lemma51 z refl | _ | no ¬p with varn z + lemma51 z refl | _ | no ¬p | zero = refl + lemma51 z refl | _ | no ¬p | suc x = ⊥-elim ( ¬p (s≤s z≤n ) ) + lemma5 : Tautology ((λ e → Equal (varn e + vari e) 10) and (neg (λ z → lt zero (varn z)))) termCond + lemma5 env = impl⇒ ( λ cond → let open ≡-Reasoning in + begin + termCond env + ≡⟨⟩ + Equal (vari env) 10 + ≡⟨⟩ + Equal (zero + vari env) 10 + ≡⟨ cong ( λ z → Equal (z + vari env) 10 ) (sym ( lemma51 env ( ∧-pi2 cond ) )) ⟩ + Equal (varn env + vari env) 10 + ≡⟨ ∧-pi1 cond ⟩ + true + ∎ + ) +