Programming Scalable Service in Code segment and Data segment

Shoji TAMAKI
Information Engineering
University of the Ryukyus
Nishihara-cyo 1, Okinawa, 903-01, Japan
Email: shoshi@cr.ie.u-ryukyu.ac.jp

Abstract—

To implement scalable services, not only higher software
design, low level implementation is also important to achive
performance and reliability. A combination of fine grain task
manager and continuation based language is good to make
Scalable Services on Many core architecture. Code segment is
a small part of execution code written in a lower language
of C. Data segements are fragments of memory and these are
passed amoung code segments and CPU cores. We discuss the
pro and cons of our method.

Keywords-scalable; continuation; parallel processing;

I. TOOLS FOR IMPLEMENTING DISTRIBUTED
APPLICATION

On demanding construction of scalable services such as
Twitter, FaceBook or Network based Book Publishing, we
need new stage of programming tools. Based on our expe-
riences, we designed and implemented two major tools to
build scalable services: Code segments and Data Segments.

Not necessary mentioned SEDA [1], scalable services
requires highly distributed servers and highly multi-threaded
program on a server among them. This type of implemen-
tation works fine in theory, but it heavily depends on low
level implementation, such as threads, synchronized queues
and CAS operations.

We have successfully implemented WWW services using
Classical tools such as C++, Java, or even C. Script Lan-
guages such as Perl, PHP or Python are used in front end, but
in case of heavy duty database side, careful implementation
is necessary to achive good performance.

Now some of the services have more than 10 mil-
lions users, load balancing among several WWW front-
end and many memcached[2] servers to replicate Database
accesses using classical database such as Oracle, mySQL
or Postgress, which performs so badly, Internet companies
have to create Key Value Store system by themselves, such
as BigTable [3] or Cassandra[4]. This situation is sometimes
discussed in a context of ACID vs BASE database scheme
[5].

Based on our works on Internet programming and Sony
PS3 programming, that is Cell architecture[6], now, we are
sure that we need more suitable tools to implement various

Shinji KONO
Information Engineering
University of the Ryukyus
Nishihara-cyo 1, Okinawa, 903-01, Japan
Email: kono@ie.u-ryukyu.ac.jp

components in the scalable services, such as database server,
web server or HTTP response generator even in a front end.

We separate difficulties in two point of views: Code
and Data. This sounds very basic, but since our history is
starting from a single CPU with few memories, current tools
are some how obsolete now, so we have to reconsider the
situation (Fig. I).

Scalable
Internet
Services

/ AN

Data Code

Figure 1. Data and Code in Internet Service

We are working on a combination of Continuation based
C[71, [8]

and

Cerium Engine[9]. The former one is a lower language of
C implemented in GCC[10], and the later is a Open CL[11]
like fine grain task manager on PS3 Cell architecture, which
supports data segment management on SPE (Synergistic
Processor Engine). Since SPE has only 256Kbytes local
memory, careful management is necessary, so we have to
invent our own memory manager. We can use 6 SPE with
2Tbit/s ring bus in PS3 Linux (Fig. I).

In this paper, first we analyze problems in scalable system.
Then we introduce new concepts: Code Segment and Data
Segment. Code segment is implemented in Continuation
based C here after we call CbC and Data Segment is
implemented in a memory management module in many
core task manager called Cerium Engine.

The basic idea is this. We pass the control among module
layer without function call. We cannot use conventional
language because it has built-in function call which which

PPE 256KB 256KB 256KB
Ls Ls Ls

256KB 256KB 256KB
Ls Ls Ls

Figure 2. Cell Architecture

cannot be removed. These module layer segments are called
code segments. All the data are stored in a message packed
from, which we called data segment, which is controlled uni-
formly. Instead of using direct pointer access, data segments
are copied among modules and CPU cores, which are care-
fully adopted to the cache or interconnect communication
such as DMA. All the data segments are hashed in 2" size
memory pool similar to the Unix malloc mechanism. This
pool is in 64bit address space and it makes data segment
communication far simpler.

It sounds like completely different from current Internet
service scheme, we overcome the difference in follow-
ing way using code transformation. First we make entire
program in a conventional way. We divide it into code
segment and explicit stack manipulation. During this stage,
communications are reformatted into data segment passing
among code segments. The program still working exactly
the same before transformation and we may use automatic
conversion here. We reorganize it using data parallel and
pipeline execution. At this stage, automatic conversion is not
suitable in many cases, so we have to make translation by
hands, but we can use possible equivalence checker for the
program correctness. In order to make pipeline execution,
destructive modification of the content of data segments such
as classical object oriented programming is not allowed. We
have to make copies.

At the last section, we give some of our achievement and
comparison with other tools, such as SEDA or Open CL.

II. PROBLEMS

Let’s think that we are going to make a network game.
Maybe PS3 (6 SPU and 2 PPU)is used in a client side and
32 CPU (16 x 2 hyper thread). We have to use highly
pipelined thread and data parallel execution in both client
side and server side, something like SEDA architecture. We
will demonstrate several problems based on our experiences.

A. Our Experiences

Our PS3 implementation is SPURS[12] like Pipeline Task
Manager which is called Cerium. (We had to write software
rendering because of SCEI did not open GPU information
BTW.) Since PS3’s SPU has only 256Kbytes memory, we

have to carefully handle memory usage both in case of code
and data.

Data segment is copied from PPU to SPU via DMA,
which overhead is hide using Task Pipeline. But we have
to avoid too much synchronization of these copies.

In case of Xeon architecture, CPU cores are shared all
the memory, but actually it has a local cache which is
interconnected using quick path. Cache size is 256Kbyte for
each core. Implicit copy is done between a cache memory
and the main memory or between a cache and another cache.
The situation is basically the same in PS3 and Xeon.

B. Module Layer

Complex systems such as Operating systems, Database
systems, Network Systems or Game libraries have several
module layer. For examples, Database system has message
packing module, query analyzing module and execution
module. Network system may have ISO standard layer such
as presentation, transport and network. Operating system
have v-node file system and device drivers.

Each module may have 1-5 nested function calls, so we
have more then 10-30 nested function calls in Complex
systems. It can be implemented in normal function calls
(Fig.II-B).

Layer Layer Layer Layer Layer
0 1 2 3 4

Figure 3. Layer by call

Using our Continuation base C, layering can be imple-
mented in a goto statement. Since it has no stack operation,
it works very fast (Fig.II-B).

If we have several tasks to do, each processing in modules
can be executed in a pipelined way. In order to imple-
ment the pipeline, we assign threads from thread pools to
each module layer . Each thread is interconnected by a
sychronized queue, which has certain overheads, but if it
is carefully implemented, parallel processing hides its costs.

Conversion from sequential execution to pipelined exe-
cution is straight forward, but if it has a race condition,
correcting the problem is very difficult.

Layer Layer Layer Layer Layer
0 1 2 3 4

Figure 4. Layer by goto

C. SEDA

This combination of pipeline staging and data parallel
execution is the heart of SEDA. But it requires very complex
programming. At first we have design communication queue
among all the pipeline stages. In case of C++, we have to
managing all the queue manually because it lacks garbage
collection. It is not so easy and requires complex memory
pools (or conservative GC), which is a bug prone (Fig.II-C).

Layer Layer Layer Layer Layer
0 1 2 3 4

Figure 5. Layer by Trhead

D. Thread Implementation

Theoretically SEDA architecture works fine, but it as-
sumes very fast thread execution with blocking queue.
Cassandra key value store system use Java to implement
this architecture. Java 6 is far better thread execution, but
sine it is a combination of user level thread and kernel level
thread, it is not so easy to optimize its execution.

If we use script language to implement this, thing become
worse. For example, Python thread implementation is very
bad concurrency[13], and ruby does not support kernel

thread. And their GC mechanism always interfere with
thread executions.

E. Blocking queue

Each threads are executed in an event driven way. A task
is put into a blocking queue and it wakes up a thread. The
thread read the queue atomically.

We can write this operation in following way.

while (Task p = waitingQueue.get()) {
p.run();

}

It looks good but p is determines just before its execution,
which is no good in terms of branch prediction. It looks like
this delay is not so important, but it has penalty around 10
clocks. If we have many small task this situation is not so
good. What we need is 10 to 20 instruction cycle before
executing the indirect call.

Besides blocking queue’s CAS costs, queue operations
include allocation / deallocation cost. In case of Java, to
avoid GC penalty, link node is not reused and it simply
delete old one and create new one. If the new operation is
shared among threads (unlikely), it requires another CAS,
otherwise it requires separate memory pool for each therad,
which consumes a lot of memory.

F. Scheduling

If cost of blocking queue operation is negligible, simple
FIFO scheduling is OK in SEDA from the through put point
of view. But blocking queue requires 10 to 20 instruction
cycle under no race condition. Thread pool size is heavyly
depends on the architecture, that is number of CPU, number
of requests, execution time of tasks.

Sometimes it is better to reduce concurrency and skip
these synchronization costs. In this case, synchronization of
theads becomes just a cost.

G. Garbage Collection

Basically communication between layers makes no
garbage, because it is generated and destroyed in fix amount
size. But in case of programming language with GC, if we
use memory pool like technique, it makes many references
which GC have to take care of. It makes GC very slow. So
it is better to simply generate and destroy.

Apache Web server features memory pool approach dras-
tically, but it is an convention, some module use malloc
library call directly.

H. Programming Correctness

SEDA architecture or SPURS architecture is very complex
to implement and the program working on it is very difficult
also. It is very difficult to test.

For example, message packet between pipeline stages is
created and destroyed in exact moment. If we lost the correct

timing, a bug will occur or not if we are unlucky. This is odd,
because even if program itself is deterministic, it behaves
non deterministic dew to pipeline execution timing.

1. Many Core Awareness

Open CL [11] is a standard library to use Many Core
architecture, but it has very complex interfaces. We have to
write a program on a core in a string, which is compiled in
LLVM [14]. Data transfer API is vary and complex, which
requires large amount of code.

In case of Java or Scripting language, we cannot directly
control the copy between cores, which means we cannot
hide copy cost explicitly. We have to care about SPU’s local
memory size or cache memory size which is 256Kbytes in
this time.

The same careful management is necessary for executing
code which is a data on a core also. We have to transfer
code segment using copying cost hiding technique such as
pipeline execution.

These higher level pipeline optimization is very difficult
and is not handle well in compiles. Since compiler technique
is working well on streaming instructions, it is some how
contradict. It should be designed by hands.

III. NEW TOOLS

We introduce two main tools, one is Continuation based
C and the other one is Data segment management based on
Cerium Task Manager.

IV. CODE SEGMENT

Continuation based C is a C language which all the func-
tion is forced to do tail call elimination. It is implemented
using GCC 4.x. Modification is not so large. We also force
FASTCALL option which assign arguments on registers.
This makes it faster.

CbC Syntax is very simple.

struct interfacel { DataSegment<Data> *i;};
struct interface2 { DataSegment<Data> *0;};

_ code f(struct interfacel =xa,
struct interface2 xb) {
b->o0=a->1i;
goto g(b);

In this example, a code segment £ has input a and
sends output b to a code segment g. There is no return
from code segment b, b should call another continuation
using goto. Any control structure in C is allowed in
CbC language, but we may restrict ourselves to use if
statement only, because it is sufficient to implement C to
CbC translation. In this case, code segment has one input
interface and several output interfaces (fig.??).

___code and parameterized global goto statement is an
extension of Continuation based C. Unlike C—-- [15]’s

parameterized goto, we cannot goto into normal C function
because of forced FASTCALL option.

A. Continuation

Since code segment has no stack, continuation of code
segment is mere entry address to the code segment. We can
call it a light weight continuation.

We also supports full continuation of normal C function
using GCC nested function and statement expression. It is
implemented some like this in GCC compiler in a pseudo
code with GCC extensions.

void (x__return) (int retval_, void x_envp);

__return = ({
nee_label_ _cbc_exit0;
void __return_func(int retval_, void *_envp) {
retval = retval_;

goto exitO;

if (0) |
_cbc_exitO:
return retval;

}

return_func; // return value

1)

void *__ _environment =
__builtin_frame_pointer();

We have a environment pointer which is usually the frame
pointer, but it is not used here, because this is a closure
with a hidden environment. Since this closure is usually
implemented using trampoline, that is executable code on
stack, if execution code on stack is prohibited, it will not
work, but it works on Linux and Mac OS X. In case
of Windows case, we cannot use closure, so we have to
assign frame pointer explicitly. If we don’t have to handle
frame pointer directly, generation of continuation is done in
parsing phase. This is important to make GCC modification
minimum.

Anyway this can be used like this.

int main () {
goto f£(1, __environment, __return);
}

__code f(int, wvoid =xenv,

__code (xcontinuation) (int retval_,void xfp))

goto (continuation) (-1, env);

In this example, main will return -1. When you want to
return to the middle of the normal function or code segment,
put an extra function call over it.

V. DATA SEGMENT

We have Open CL like task manager with data segement.

{

Data segment is a set of doubly linked fix size block which
also hashed by the 64bit address. It has 2™ size, so it is
allocated efficiently.

Each site, CPU or cores expected to have separated data
segment pool. Data segment address is unique in all CPUs.
In case of PS3, SPU has local storage that is 256Kbytes
separate addressing space, which local address is different
from data segment global address.

Code segment will not use global address directly but
it will use offset in data segments in its input interface.
So we can use same code segment both for 64 bit Xeon
and SPU 256Kbytes memory. This means data segment size
is normally limited by its hardware, Typically 16Kbytes
(fig.V).

DS | before
execution

DMA transfer

| | after
execution

| executing

DMA transfer

Figure 6. Pipeline buffered data segment

Each Core have to have two input segements and two
output segments to make pipeline correctly. With two extra
segements are necessary for task array itselves, so we have
6 segments total.

A. Data Segment operations
Data segment has several operations,

get with no global address
get with copy

get with no copy

get with copy with write back
get with no copy with write

Allocation/deallocation is not directly handled from its
code segment, because it is handled by the Task Manager
in a pipelined way.

API can be called from a Task like this,

Datasegment tile =
smanager—>get_segment (addr) ;

but usually it not visible from the task, because its reading
operations were done before its execution and its writing
execution will be done after the task execution.

Data segment may contains other data segments’ global
address, but it may invalid. It is a kind of key in a key

value store. Consistency of data segment global address is
maintained by the Cerium task manager.

VI. TYPICAL USAGE

A code segment is provided input interface, which con-
tains array of data segment in local address space or cache.
Usually availability of data segment is assured by the task
manager. If it is not ready, the code segment waits and other
ready-to-run code segments are executed.

Loading necessary data segments in the input interfaces
are done prior to the execution, may be in a back ground of
other code segments execution.

In following example, t_exec is created, and it has one
input data segement and one output data segment. It can be
executed in any SPU (PS3’s CPU core), and t_print task
have to wait for its completion. Finally it is spawned.

HTask *t_exec =

manager—>create_task (TASK_EXEC) ;
t_exec—->add_input_datasegment (i_data);
t_exec—->add_output_datasegment (o_data) ;
t_exec—->set_cpu (SPE_ANY) ;
t_print->wait_for (t_exec);
t_exec—->spawn () ;

When all data segments are ready, the cod segment is
executed. During its execution, next input interfaces may be
loading.

After the execution, output interfaces are written into the
global address if necessary. This is also done in a pipelined
way.

A. Task dependency and Task array

Cerium task manager has very simple FIFO scheduler. It
is sufficient if only through put is matter, which is a usual
case.

All the task is stored in data segments, and connected
wait-for link.

After a task is finished, the task manager solve these
dependencies, which is a rather heavy task. If tasks are
grouped in terms of dependencies, we can reduce this phase.
This is called task array.

All the data is stored in data segments and it is managed
in data segment pool in each separate CPU, that is we need
no lock in its allocation.

B. Task execution

After the loading of input interface, if we have a next
task, we know where to execute it. It can be passed to the
current task.

_code task_a(next_task, interface input,
interface output) {
Task processing
goto next_task->code (next_task,
next_task->input, next_task->output);

If we have not task to execute more, we can put mail
waiting task in the next_task. In this way, next_task
call address is determined well before the call.

C. Data segment deallocation timing

There are two types of data segment.

The one is staying in a main memory indefinitely, possibly
replicated in more reliable storage hierarchy such as SSD or
Hard Disks. It’s global address is persistent. It is basically
write only and remain forever in the life of the Internet
service. In other words, it will never be deallocated. We can
call this a persistent data segment.

The other data segment is stayed in local cores. This is
limited and temporally. It is copied from the persistent data
segment. After the code segment execution, temporal data
segment may be copied into persistent data segment.

Task itself don’t care about reading and writing race
conditions. It have be controlled in terms of task dependency
or be controlled by the task manager (fig.VI-C).

Core

Core

DS Core

DS
local bs DS DS

data segment oS

DS DS

DS

DS

DS

DS

DS
Ds

DS
global data segment space

E
kvs KvS
P Kvs KVS

Figure 7. Global and local data segments

D. Where is the synchronization?

In Cerium Task Manager, a core has a single threaded
scheduler. It accept an array of task as a data segment as
a mail. There is a main task manager, which waits mails
from schedulers in cores. Synchronization only happens in
mail transfer among main scheduler and sub schedulers in
cores. This means synchronization itself can be delayed
significantly in this scheme.

If some service needs very fast response, dominating
special task is necessary. For example, it wait some events
using spin locks or hardware interrupts.

E. Hardware support

This architecture requires explicit cache control. But now
a day, most architecture has this kind of cache control such

as memory barrier. Unfortunately these are not standardized.
Using Cerium task manager, we can hide these differences.

F. With Conventional Operating System

Task Manager itself is running in a user space. Since tasks
are in data segments and it can be transferred to other user
spaces, for example in other clusters. Actually we build our
task manager in user space.

There are possible operating system supports for this task
manager or we can provide memory space management for
code segments and data segments.

G. Object Orientation

There are many object oriented programming style since
Smalltalk-80[16]. C++ or Java has an object in fixed memory
address. When a field of an object is updated, fixed memory
contents is updated. In case of highly pipelined execution,
updating memory contents requires synchronization when
the object is shared.

In our scheme, usually input interface and output interface
point different data segment to avoid synchronization.

In ACT3[17], actor has a become operator. An object is
replaced by newly created object. This means object has
multiple memory address according to its update history. In
Smalltalk-80, it has object table and become operator is a
replacement of pointer in the list. The list should be kept in
a data segment and update by a single threaded task.

We can build actor like object oriented system on top of
data segment pools.

H. Verification

Basically pipelined tasks are in fact, series of application
of tasks on requests. We can simply writes this using iterator.
In case of word count in a file,

foreach data segment d
in (file),
out in (partial_result) {
task_work_count (d, out) ;

}

task_sum_up (partial_result);

If pipeline execution is correct, we don’t have to verify
the pipeline execution, but check the correctness of this
sequential execution, which is much easier.

Once we get verified sequential execution, we can put
checking stage on each pipeline stage.

VII. COMPARISON

Our architecture is a variant of SEDA, but it can reduce
synchronization cost. Using data segment copying, shared
data are reduced. Copying costs are hide using DMA or
cache management instruction.

Open CL is recently introduced but it has very complex
data transfer operation. It is an assembler level description
to achieve best performance. Data segment handling makes

it simple both in syntactically and in memory management
efficiency.

Tasks in Open CL is stored in C strings. In our scheme
tasks are all written in code segments, which can run on
any architecture. Actually we can run Cerium both on Mac
OS X and PS3 Linux using the same code. If it contains an
optimized code for SPU, we can run a code has the same
behavior with non optimized code.

Script language is easy to describe, but it works sequen-
tially from the beginning. Python cannot achieve parallel
processing advantage because of interpreter restriction. Our
approach is that divide problem into code segments and data
segments and execute it in an iterator.

This is something like FP[18], but using data segments,
its execution becomes suitable for Many core architecture.

KVS, key value store is a distributed database which
is separated from main service program, In our scheme,
management of global data segment can be done in a KVS.
We can also use our architecture to implement a KVS.

In Persistent programming, records and transactions are
introduced in Programming Languages, but at that time,
parallel execution is not well considered. In our scheme, data
segments behave as records, which has several versions.

This architecture uses a new language CbC. It is a lower
level language of C, but still programmers have to learn it.
It is very different programming style also. We think it is
not so easyly accepted by every one.

In structured programming and data flow diagrams [19],
everything has record like structure, which is called con-
tainer. In this architecture, containers has common oper-
ations and managed in many core architecture. It is also
executed in CbC.

There is a conversion algorithm from C to CbC, so we
hope some kind of half automatic conversion of sequential
implementation of the Internet service is possible.

VIII. CONCLUSIONS

We are developing SEDA like architecture for software
service architecture. It has code segment system based on
Continuation based C and data segment system based on
Cerium Engine.

Combination of data segment and code segment provides
a better many core programming than Open CL. It is
executed in multi stage pipeline. Code segment provides
good implementation technique of pipeline scheduler.

Data segment copying makes garbage collection unneces-
sary in computation pipeline which cannot avoid in case of
GC based language such as Java.

Cerium task engine and Continuation based C compiler
is developed openly and working. The combination of code
segment and data segment is under construction.

REFERENCES

[1] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for
well-conditioned, scalable internet services,” SIGOPS Oper.
Syst. Rev., vol. 35, no. 5, pp. 230-243, 2001.

[2] L. Phillips and B. Fitzpatrick, “Inside livejournal’s backend,”
in LISA 04, 2004.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A distributed storage system for structured data,”
in IN PROCEEDINGS OF THE 7TH CONFERENCE ON
USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN
AND IMPLEMENTATION - VOLUME 7, 2006, pp. 205-218.

[4] A. Lakshman and P. Malik, “Cassandra: structured storage
system on a p2p network,” in PODC ’09: Proceedings of the
28th ACM symposium on Principles of distributed computing.
New York, NY, USA: ACM, 2009, pp. 5-5.

[5] E. A. Brewer, “Towards robust distributed systems (abstract),”
in Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, ser. PODC *00. New
York, NY, USA: ACM, 2000, pp. 7—. [Online]. Available:
http://doi.acm.org/10.1145/343477.343502

[6] S. Corporation, “Cell broadband engine architecture,” 2005.

[7] Shinji Kono , “Implementing Continuation based language in
GCC ,” in Continuation Festa 2008, April 2008.

[8] Shinji KONO, “CbC,” March 2008. [Online]. Available:
https://sourceforge.jp/projects/cbc/

[9] ——, “Cerium,” March 2008. [Online]. Available:
https://sourceforge.jp/projects/cerium/
[10] Free Software Foundation, Inc., “GCC, the GNU

Compiler Collection,” March 2008. [Online]. Available:
http://gcc.gnu.org/

[11] A. Munshi, The OpenCL Specification Version: 1.0. Khronos
OpenCL Working Group, 2009.

[12] K. Inoue, “Spu centric execution model,” 2006.

[13] D. Beazley, “Inside the python gil,” in Python Concurrency
Workshop, 2009. [Online]. Available: http://www.dabeaz.com

[14] C. Lattner and V. Adve, “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation,” in Pro-
ceedings of the 2004 International Symposium on Code Gen-
eration and Optimization (CGO’04), Palo Alto, California,
Mar 2004.

[15] N. Ramsey and S. P. Jones, “A single intermediate language
that supports multiple implementations of exceptions,” in
ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation, June 2000.

[16] Xerox, “The smalltalk-80 system,” Byte, vol. 6, no. 8, Aug.
1981.

[17] G. Agha and C. Hewitt, “Concurrent programming using
actors,” in Object-Oriented Concurrent Programming. MIT
Press, 1987.

[18] J. Backus, “Can programming be liberated from the von neu-
mann style? a functiional sytel and its algebra of programs,”
C. ACM, vol. 21, no. 8, pp. 613-640, 1978.

[19] P. D. Bruza and T. van der Weide, “The semantics of data flow
diagrams,” in In Proceedings of the International Conference
on Management of Data. McGraw-Hill Publishing Company,
1993, pp. 66-78.

