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For compiler developers, one big issue is how to describe a specification of its intermediate representation

(IR), which consists of various entities like symbol tables, syntax trees, analysis information and so on. As

IR is a central data structure of a compiler, its precise specification is always strongly desired. However, the

formalization of an actual IR is not an easy task since it tends to be large, has complex interdependency

between its entities, and depends on a specific implementation language. In this paper, as a first step to solve

this problem, we propose a new data model for IR, called IIR. The goal of IIR is to describe a specification

of IR declaratively without depending on its concrete implementation detail. The main idea is to model all

entities of IR as relations with explicit identifiers. By this, we can develop an IR model transliterally from

an actual IR, and describe its specification by using the full expressiveness of conventional logic languages.

The specification is inherently executable and can be used to check the validity of IR in compile time. As a

practical case study, we formalized an IR of our production compiler in IIR, and developed a type system

for it in Prolog. Experimental results about size and performance are shown.

1 Introduction

Developing a production compiler is a hard work.

The target architecture continues to evolve. New

language features continues to be added. To keep

up with these changes and generate efficient com-

piled codes, we should continue to implement new

features for analyses, optimizations, code genera-

tions and more. As a result, an actual implemen-

tation of a production compiler tends to be quite

large — sometimes over a million of lines.

A compiler consists of a series of modules to re-

alize its features. Most modules work on the inter-

mediate representation (IR), which is a source pro-

gram representation in the compiler. For instance,

宣言的なコンパイラ仕様記述を支援するための識別子にも
とづく中間表現.

千代英一郎, 日立製作所システム開発研究所, Hitachi

Systems Development Laboratory.

本論文は，第 9 回プログラミングおよびプログラミング
言語ワークショップ (PPL2007) の発表論文をもとに発
展させたものである．

コンピュータソフトウェア, Vol.25,No.3 (2008), pp.113–134.

[研究論文] 2007 年 4 月 30 日受付.

a module for dataflow analysis analyzes the IR and

adds dependence information to it. A module for

dead code elimination traverses the IR and removes

unnecessary statements from it. Thus the IR works

as a common interface between compiler modules,

and its specification judges the correctness of each

module.

Unfortunately, the complete specification of the

IR rarely exists in practice. The IR continually

changes in the development process, and it is often

the case that given some IR, developers disagree

with its precise meaning, or worse, whether it is

legal (well-formed).

This severely undermines the quality of a com-

piler. You are forced to develop your module based

on an obscure specification of the IR. For instance,

if you want to know all the patterns coming into

your module, you need to dive into massive source

codes and examine all possibilities. This makes the

development process slower and less reliable.

In research on the semantics of programming lan-

guages, there exist lots of systematic ways to define

the specification of a programming language [41].

Generally, we first define the syntax of program-
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ming languages in BNF, and then static/dynamic

semantics based on the syntactic structure of pro-

grams. If we could regard the IR as a programming

language, we would follow the same approach.

This approach fits very well with methods based

on declarative programming languages (here we

call these ‘declarative methods’). The specification

written in a declarative language can serve as both

human-readable document and machine-executable

checker. When writing the specification of the IR,

the latter property is very useful for relating the

specification to its implementation.

Besides specifications, there exist many declara-

tive methods for compiler features such as program

analyses [11] [18] [38], optimizations [4] [12] [26] [39]

and code generations [19]. These declarative meth-

ods are promising approaches to reducing the bur-

dens of compiler development.

Problem However, these methods cannot be

applied to the existing IR in a straightforward way.

The main difficulty lies in the difference between

the IR of an actual compiler and the program rep-

resentations used in these methods.

The IR has several aspects which are difficult to

be treated in declarative methods. First, the IR

forms a graph-structured data where entities refer

to each other (e.g., control flow graphs), or share

a common entity (e.g., symbol tables). Next, IR

entities of a production compiler tend to have a

large number (sometimes more than a hundred)

of attributes to carry miscellaneous information

such as source line numbers, analysis results, com-

piler directives and architecture-specific extensions.

Finally, the situation becomes more complicated

when the implementation types of IR entities are

optimized intricately to get better performance of

compilation.

In contrast, in most declarative methods, pro-

grams are modeled as tree-structured terms suit-

able for treatment in declarative languages. Many

attributes of programs are abstracted to focus on

the essence. Thus, to apply such method to the

IR, we first need to extract a model of the IR by

translation. As program models usually differ be-

tween methods, we have to do this for each method.

Developing such a transformation is tedious and

error-prone work, and sometimes impossible due to

the substantial difference between the IR and the

assumed program representation of the method.

Goal Our goal is to provide a way to fill these

gaps between the existing IR in practice and declar-

ative methods in research. What we want is an IR

model which

1. can faithfully represent the structures of an

actual IR, and

2. can also be a basis on which declarative meth-

ods are developed directly.

Such models enable us to write the specification of

IR in declarative languages, which has many bene-

fits. The most notable one is executability as said

above, which is invaluable and indispensable when

developing a large formal specification. We can be

confident in the correctness of a specification by

executing it on IR models of test programs. If a

model is a faithful representation of IR, the distance

between an actual implementation and its model

is sufficiently small, and the results obtained from

a model are sure to also hold on an implementa-

tion. In addition, existing declarative methods can

be built directly on an IR model, which releases

us from the tiresome work of translation for each

method.

In a sense, our motivation is similar to that of the

researchers and developers in the area of databases.

They also aim to create a universal data model

upon which any application software can be devel-

oped. One of the most successful achievements has

been the relational data model (RDM) [9]. While

using RDM as an IR model seems an attractive ap-

proach, it has some shortcomings in our situation,

particularly in the interaction with declarative lan-

guages. We will discuss this issue in Section 5.

Proposal To achieve our goal, we have devel-

oped a new IR model, which we call an identifier-

based intermediate representation (IIR). Our key

insight in developing an IR model is that major dif-

ficulties described above stem from the anonymity

of IR entities. While each entity has its identity in

an actual implementation, there is no counterpart

in conventional program models used in declara-

tive methods. This discrepancy is an impediment

to faithfully modeling an actual IR structure.

The essence of IIR is as follows:

1. all entities have an explicit identifier.

2. all entities are represented as relations.

The first condition means that we give each entity a

unique identifier and always use this when referring
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to the entity †1.
Note that the meaning of the term identifier here

is not limited to names of variables or functions in

programming languages. For instance, in an ex-

pression x + x, each operand of + has same vari-

able identifier x, but they are not the same entity

instance and each of them has its own identity. The

identifiers in IIR provide an explicit and abstract

way of representing the identity of each entity. This

solves the sharing problem discussed above as we

can always distinguished the entity itself form ref-

erences to it by identifiers. An example for this is

shown in Section 2.

The second condition means that all entities in

IIR are relations in the mathematical sense. As re-

lations can be easily treated as predicates in logic,

we can write a strict well-formedness condition for

the IR in declarative languages to prevent exces-

sive flexibility caused by the identifiers. This solves

the model-extraction problem discussed above as

we can now apply declarative methods directly on

the IR itself, not an extracted model of the IR.

There is no need for translation, and all informa-

tion of the IR is exposed to those methods. The

formal definition of IIR is given in Section 2.

Evaluations To evaluate the effectiveness of our

IIR model, we performed case studies using our

production compiler. It is a C/C++ compiler for

our embedded RISC processors based on our multi-

language/multi-platform common compiler frame-

work which supports several source languages such

as C/C++ and Fortran. It has been continually de-

veloped over ten years, and the lines of code written

in C now number over 1.5 million. We believe that

these characteristics make it a suitable candidate

for evaluating our method.

As a case study, we developed an IIR model of

a high-level IR of our compiler called MIR, and a

formal specification of MIR as a type system based

on the model (Section 3). We performed two ex-

periments on the specification. First, we ran the

specification on hundreds of test programs to con-

firm that the specification did not reject the correct

IR, i.e., that the specification was experimentally

†1 The term entity is ambiguous. To be precise,

we should distinguish an entity and an entity set,

which consists of all “similar” entities. But as it

is clear from the context in most cases, we usually

use the term entity for both meanings.

complete. The statistical results of the specification

clearly showed that the scale of the full specification

is quite large, and without such testing it would be

virtually impossible to write a correct specification

conforming to an actual implementation.

Next, we used the specification as an IR checker

(lint). We ran it on some IRs that were incorrect

because of bugs in an older version. We found that

two bugs reported on our web site [28] [29] could

be detected as type errors, although the causes of

these bugs had nothing to do with types. While

the effectiveness of an IR checker is well known in

research [21], our result can be used as a practical

example to support this claim in industry.

As another case study, we developed a reaching

definition analysis in a declarative language on an

IIR model of MIR (Section 4). The analysis was

obtained through a straightforward translation of a

classical dataflow equations [2], but worked on an

actual IR model. While the issue of aliasing is often

ignored in papers to simplify the presentation, the

ability to handle aliasing is indispensable. We show

that aliasing can be incorporated straightforwardly

in an IIR model.

Contributions Our contributions can be sum-

marized as follows:

• We developed a new IR data model, called

IIR, which allows us to faithfully model IR in

an actual implementation and describe a pre-

cise specification of it in conventional declara-

tive languages. IIR also makes it possible to

straightforwardly apply many existing declar-

ative methods of program analysis, optimiza-

tion, and code generation to a full IR, not a

simplified subset of it.

• We confirmed the practicality of our method

by applying it to our large-scale production

compiler. We developed an IIR model of a

high-level IR of our compiler and its specifi-

cation as a type system in Prolog. We tested

the specification on hundreds of test programs

and confirmed its correctness. We also found

that two publicly reported bugs could be de-

tected by using the specification as a validity

checker.

In another respect, our work in total can be seen

as a case study of applying well known declara-

tive methods to a real, large software. Our results

show that existing declarative methods can be suf-
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ficiently practical in industry with a little bit of

insight about the way to model software.

2 IIR

IIR is a data model that is designed for a com-

piler IR. It provides a means to describe precisely

the set of data which we would regard as valid IR.

The way of defining IIR is very close to that of

the relational data model (RDM) [9]. In RDM, we

use a relation schema to model data. Each relation

schema defines the set of its instances, which are

usually called relations. Similarly, in IIR, we use

an IIR schema to model an IR. Each IIR schema

defines the set of its instances, which we call IIR

schema instances. For those unfamiliar with RDM,

Appendix B contains a brief summary of RDM.

The set of valid IR is usually a subset of the set

of IIR schema instances. IIR has a strong way of

defining this subset, that is described in Section

2. 3.

2. 1 Definitions

We begin with basic definitions of IIR. The intu-

ition of the definitions will be explained later with

examples. A discussion of design decisions will be

deferred in Section 5.

Here are the definitions of an IIR schema and its

instances.

Definition 1 (IIR schema). Let I be a set of

identifiers, C be a set of class names, A be a set

of attribute names, and V be a set of values. IIR

schema R is a tuple (I , C, A, V , class, attr, dom)

such that class : I → C, attr : C → ℘(A),

dom : A → ℘(V ), I ∩ C = C ∩ A = φ and I ⊆ V .

We refer to each component of R as IR, CR, AR,

V R, classR, attrR and domR. For convenience, we

usually omit a component class in an IIR schema

definition. We also omit some components such as

A and V in an IIR schema if these omitted compo-

nents are clearly implied from the context.

Definition 2 (IIR schema instance). Let R be

an IIR schema (I , C, A, V , class, attr, dom). IIR

schema instance r of R is a set of tuples such that

r = ∪i∈I′r(i), where I ′ ⊆ I and r(i) satisfies the

following:

1. r(i) ⊆
{(i, a, v) | a ∈ attr(class(i)), v ∈ dom(a)}.

2. ∀i, a, v1, v2.

(i, a, v1) ∈ r(i) ∧ (i, a, v2) ∈ r(i) ⇒ v1 = v2.

We call an IIR schema instance an IIR instance

where this is not ambiguous.

Condition 2 means that each v in (i, a, v) is func-

tionally dependent on i and a. Note that in defini-

tion 2, we do not require that an identifier i of class

c must have all attributes of c, i.e., all attributes are

optional. We will show later how we can specify a

valid set of attributes for each i.

Example 1 (ExpL). Consider a simple expression

language ExpL, whose abstract syntax is given be-

low.

n ∈ IntegerLiterals

x ∈ Variables

e ::= n | x | e+e

A straightforward definition of an IIR schema E for

ExpL is as follows (A, V and class are omitted as

mentioned above.):

IE = Integer

CE = {con, var, add}
attrE(con) = {kind, value}
attrE(var) = {kind, name}
attrE(add) = {kind, child1, child2}
domE(kind) = CE

domE(name) = String

domE(value) = Integer

domE(child1) = domE(child2) = IE

For example, consider an expression (x + x) + 100.

This is represented as an IIR instance re of ExpL.

re = {(1, kind, add), (1, child1, 2), (1, child2, 3),

(2, kind, add), (2, child1, 4), (2, child2, 5),

(3, kind, con), (3, value, 100),

(4, kind, var), (4, name, “x”),

(5, kind, var), (5, name, “x”) }
Entity 1 represents the root of the expression (the

second +). Entity 2 and 3 represent the root of its

subexpressions (the first + and 100). Entity 4 and

5 represent leaf expressions (x) of x + x (entity 2).

In the above example, each occurrence of x has all

the attributes of the variables: that is, all attributes
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of x are repeated twice (In this case, a string lit-

eral “x” is duplicated). In general, a variable has

lots of attributes, and it is well known this kind of

redundancy is likely to violate data consistency.

In the usual IR, information regarding the same

variable is shared by all of its occurrences in the

form of ‘symbol tables’. A variable occurring in

expressions does not hold information itself, but

refers to its symbol table entry. Constant literals

which denote the same value are also shared.

In IIR, thanks to the property that all entities

have explicit identifiers, such sharing structure can

be represented straightforwardly.

Example 2 (ExpL with sharing). We first in-

troduce an IIR schema S for symbol tables as fol-

lows:

IS = Integer

CS = {con, var}
attrS(con) = {kind, value}
attrS(var) = {kind, name}
domS(kind) = CS

domS(name) = String

domS(value) = Integer

Accordingly, we change an IIR schema E to refer

to S:

IE = Integer

CE = {con, var, add}
attrE(con) = {kind, sym}
attrE(var) = {kind, sym}
attrE(add) = {kind, child1, child2}
domE(kind) = CE

domE(sym) = IS

The expression (x + x) + 100 of example 1 is now

represented as IIR instances re of E and rs of S.

re = { (1, kind, add), (1, child1, 2), (1, child2, 3),

(2, kind, add), (2, child1, 4), (2, child2, 5),

(3, kind, con), (3, sym, 1),

(4, kind, var), (4, sym, 2),

(5, kind, var), (5, sym, 2) }
rs = { (1, kind, con), (1, value, 100),

(2, kind, var), (2, name, “x”) }

Adding extra information, e.g., analysis results,

to ExpL takes little effort. For example, if we want

to express dependence information between vari-

ables (here we assume that an assignment state-

ment is also added to ExpL), we just define an

IIR schema F of attributes defpoint and usepoint

whose domains are IE.

IF = Integer

CF = {flowdep}
attrF (flowdep) = {defpoint, usepoint}
domF (defpoint) = IE

domF (usepoint) = IE

By analogy with the relational data model, we

can define IIR database.

Definition 3 (IIR database). Let R1, R2, ...,

Rn be IIR schemas. IIR database D of these is a

tuple of IIR schemas ΠiRi = (R1, . . . , Rn).

Definition 4 (IIR database instance). Let D

be an IIR database D = ΠiRi. IIR database in-

stance of d is a tuple Πiri such that each ri is an

instance of Ri.

An IR can be modeled as an IIR database D.

For Example 2, we can model the IR as database

schema D = (E, S) and its instance as a database

instance (re, rs) of D.

2. 2 IIR Representation of Various Data

Structure

In this section, we show how major data struc-

tures of IR can be represented in IIR.

2. 2. 1 Record

A record is one of the most basic data structures

of IR, and is implemented by a structure type in C,

a class in C++ or Java, or a record type in ML.

Since a record is essentially a labelled product

type, we can straightforwardly represent a record

structure as a class in IIR. Let τ be a record with

fields
∏n

i=1 li : τi where each li is a field of type

τi. The corresponding IIR class c can be defined as

follows:

attr(c) = {l1, ..., ln}
dom(li) = dom(τi) for all i

where dom(τi) on the right-hand side is a domain

corresponding to τi.

2. 2. 2 Variant

A variant type is also a basic data structure of

IR. This is a labelled sum type, and in IR, it is used

to represent the is-a relation between entities. For

example, a syntactic category “Exp” of an interme-

diate code usually has several kinds of entity like

“add”, “sub”, and so on. A variant type can be
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implemented as a union type in C, subclasses of a

class “Exp” in C++ or Java, or an algebraic data

type in ML.

In IIR, we can represent a variant type by adding

an arbitrary but distinct attribute name to rep-

resent the label of each entity. Let τ be a sum
∑n

i=1 li : τi where each li is a content type τi. The

corresponding IIR class c can be defined as follows:

attr(c) = {kind} ∪⋃i attr(ci)

dom(kind) = {l1, ..., ln}
where kind is an attribute name not occurring in

attr(ci)
†2 and ci is a corresponding IIR class of

τi. The attribute set of each entity i of class c in

IIR instance r depends on the value v of kind: i.e.,

(i, kind, v) ∈ r.

Note that in contrast with the algebraic data type

in ML, the variant type of IIR enables flat embed-

ding. The subclass relation can be treated similarly.

2. 2. 3 Array

A single-dimensional array (e.g., of index range

0, . . . , n) can be represented as a record type with

numeric labels 0, . . . n, corresponding to each index

values.

For a multi-dimensional array type (e.g., m-

dimensional), there are two ways to represent it.

One is to regard it as a single-dimensional array

of (m − 1)-dimensional array type. By doing this

process recursively, we just need to treat a single-

dimensional array. The other is to introduce at-

tributes dimi for each dimensions i (1 ≤ i ≤ m),

and identify each elements of an array by a combi-

nation of index values of all dimensions.

For the latter, the corresponding IIR class c can

be defined as follows:

attr(c) = {dimi|1 ≤ i ≤ m} ∪ attr(ce)

dom(dimi) = {li, ..., ui}
where dimi is an attribute name not occurring in

attr(ce), ce is a corresponding IIR class of τe, and

li (ui) is an upper (lower) bound index of the ith-

dimension.

For example, an array type int[2][3] in C is

†2 In case study (Section 3), we maintained a name

table by hand for all IIR schema to avoid attribute

name-clash. It is desirable to develop a formal lan-

guage of specifying IIR schemas, and check them

automatically.

represented as follows:

attr(c) = {dim1, dim2} ∪ attr(int)

dom(dim1) = {0, 1}
dom(dim2) = {0, 1, 2}

2. 2. 4 List

A linked list is a basic data structure which has

references between entities. In most languages,

references are explicitly or implicitly implemented

by memory addresses. In IIR, we can realize this

straightforwardly by using identifiers as symbolic

addresses. This is the key property of IIR, provid-

ing a foundation for most of our method.

For example, the integer list of class c can be

realized as follows:

attr(c) = {value, next}
dom(value) = Integer

dom(next) = I

where I is a set of identifiers. Each element ex-

cept the last one of a list has a tuple of the form

(i, next, i′) where i′ is the identifier of the next el-

ement. The last element of a list does not have a

tuple ( , next, ), which implies the absence of its

successor.

Example 3 (Tree). A tree data structure can be

seen as a variant type which has references of one

to many. If the arities of all nodes are fixed, we

can represent a tree by using attributes such as

child1, ..., childn where n is the max arity of all

nodes. If this is not the case, we can represent a

tree as follows:

attr(c) = {parent, ith}
dom(ith) = Integer

dom(parent) = I

where ith represents that the entity is a i-th child

of a parent. This is a common way of treating 1-n

relations in RDM.

Example 4 (Graph). We can represent a graph

data structure (n-n relation) in almost the same

way as RDM. That is, we introduce a new class

which represents each relationship between graph

nodes:

attr(c) = {from, to}
dom(from) = dom(to) = I

where c′ is a class of graph nodes, and c is a class of

graph edges. We can add various kinds of attribute
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to edges such as execution probabilities.

2. 3 Validity of IIR

As mentioned in Section 1, precise specification

of an IR helps us develop a compiler in an efficient

and reliable way. When we develop a module of

a compiler, it is necessary and sufficient to take

care of all possible input IR patterns to the module

which are valid with respect to the specification.

Thus, it is desirable that the IR specification con-

tains all patterns which we want to regard as valid

and also does not contain other patterns which we

do not want to regard as valid.

While a pervasive approach is to describe the IR

validity conditions based on types or some kinds

of data schema, this is often insufficient and gives

only a coarse specification. For example, the syn-

tax of expressions is often given as a BNF, which

is a data schema for describing well-formed expres-

sions. In most cases a BNF only gives coarse condi-

tions for valid expressions, and we need more elab-

orate frameworks: e.g., type systems to describe

the validity condition more precisely. To represent

complex conditions, we often need to extend such

frameworks by, for example, incorporating depen-

dent types or refinement types into type systems.

However, this is a highly theoretical task, requiring

much effort and often impossible in practice.

In IIR, we describe complex validity conditions

in conventional logic programming languages since

all IIR instances are just tuples of values and can

be regarded as predicates. We can define an IIR

predicate of an IIR instance in the usual way.

Definition 5 (IIR predicate). Let r be an IIR

instance of IIR schema R. IIR predicate rp of r is a

ternary predicate such that rp(i, a, v) ⇔ (i, a, v) ∈
r. We usually omit the subscript of rp and write r.

These can be distinguished by the context.

By using this predicative view, we can describe

the validity conditions of IIR in a predicate logic.

In this work we use a Prolog-style Horn clause form

to specify conditions. Other logics are also possible,

but this is sufficient for our cases.

As an example of this approach, we show the

well-formedness condition of ExpL in Prolog, which

is the most basic validity condition of IIR.

The well-formedness of the previous expression

language ExpL can be defined as follows:

wf_exp(E) :-

wf_exp_CON(E) ;

wf_exp_VAR(E) ;

wf_exp_ADD(E).

wf_exp_CON(E) :-

exp(E,kind,con),

exp(E,sym,S),

wf_sym_CON(S).

wf_exp_VAR(E) :-

exp(E,kind,var),

exp(E,sym,S).

wf_sym_VAR(S).

wf_exp_ADD(E) :-

exp(E,kind,add),

exp(E,child1,E1),

exp(E,child2,E2),

wf_exp(E1),

wf_exp(E2),

disjoint(E,E1),

disjoint(E,E2),

disjoint(E1,E2).

wf_sym_CON(S) :-

sym(S,kind,con),

sym(S,value,V),

integer(V).

wf_sym_VAR(S) :-

sym(S,kind,var),

sym(S,name,V),

string(V).

where disjoint is a predicate which holds if two

operands do not share any entities and can be eas-

ily defined in Prolog. See appendix A for informal

syntax and semantics of Prolog rules.

By this condition, IIR instances which contain

the following tuples are regarded as ill-formed.

• A tuple which represents an add expression

but is not linked to two valid children via

child1 and child2.

• A tuple which represents an add expression

but its children shares some tuples represent-

ing their distinct but syntactically-equivalent

subexpression.

• A tuple which represents a constant expres-

sion but is not linked to a constant symbol via

sym.

• A tuple which represents a variable expression

but is not linked to a variable symbol via sym.
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As for typed IR, we can specify well-typedness

conditions in a similar way. Suppose that all en-

tities of ExpL have an additional attribute type,

where dom(type) = {int8, int16, ...}. A well-

typed condition of a constant symbol can be de-

scribed as follows:

wt_sym_CON(E,T) :-

sym(S, kind, con),

sym(S,value,V),

sym(S,type,T),

valid_integer(V,T).

valid_integer(V,T) :-

integer(V),

(T == int8, -129 < V, V < 128; ...).

Note that a valid range of a constant value de-

pends on its type. We can define such conditions

easily without introducing elaborate type systems.

3 Case Study

In this section, as a practical case study of IIR,

we show the result of applying our method to a

large-scale production compiler.

It is a C/C++ compiler for our embedded

RISC processors, written in C. Recent versions are

based on our multi-language/multi-platform com-

mon compiler framework which supports several

source languages such as C/C++ and Fortran,

and target processors. Since this framework was

first developed, it has been continuously evolved

through the efforts of many people so that it can

support new language features, analyses, optimiza-

tions, and target architectures. IR has also been

extended to accommodate these functionalities.

Unfortunately, as it is often the case, this devel-

opment process was done without defining a pre-

cise specification. As a result, the latest imple-

mentation instead forms a de facto specification,

and developing any new functionality necessitates

an in-depth scrutiny of massive source codes (over

1.5 million lines) to know implicitly-assumed rules

for analyzing or transforming IR.

As a first step to remedy this, by using IIR, we

have developed a type system for a high-level IR

of our compiler, which provides more precise va-

lidity conditions of IR than implementation types

or coarse BNF syntax rules. To do this, we first

Table 1 IIR schemas of MIR.

IIR schema descriptions |C| |A|
CODE code tree nodes 79 159

BB basic blocks 11 26

EDGE basic block edges 1 5

FUN functions 2 119

SYM symbols 9 123

CON constant literals 4 41

ARR arrays 1 10

DIM array dimensions 1 11

NAME names 1 5

SRC source information 1 7

defined the IIR model of our IR, and base on it,

developed a type system in Prolog.

In the reminder of this section, we show the detail

of each steps.

3. 1 IIR Model

The first task is to define an IIR schema for each

IR entity based on the existing implementation. In

our compiler, a compilation mainly consists of two

stages, one for source-level optimizations and the

other for instruction-level optimizations. Each has

its own IR: respectively, a high-level IR called MIR

and a low-level IR called LIR. We chose MIR as

the subject of this case study because it is more

complex and difficult to formalize.

MIR consists of two parts: intermediate codes

and several kinds of symbol tables. Table 1 shows

the list of IIR schemas of MIR we developed. The

|C| column is the cardinality of a set C, i.e., the

number of classes. Similarly, the |A| column is the

cardinality of a set A, i.e., the number of attributes.

Most of the schemas are self-explanatory. NAME

is for the names of variables and functions. SRC is

for debugging information such as source line num-

bers. CODE , FUN , and SYM have over one hun-

dred attributes, that support our claim that the

number of attributes tends to be large in a produc-

tion compiler and thus must be administered in a

systematic way.

Due to space limitations, here we discuss only one

issue regarding this model extraction phase: the

importance of modeling the implementation faith-

fully, not the essence of it.

Consider the type of nodes of intermediate codes

in C. In a naive design, the node is implemented
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as a structure type with a tag field and a union of

types for specific node kinds:

struct N {

Kind kind;

union { Add add; Sub sub; ... } attr;

};

where a type Kind represents the kind of node, a

type Add represents specific attributes for add, and

the others are similar. This is the usual way of

implementing variant types in C.

In a real implementation, though, several tech-

niques are used for reasons of efficiency, and the

design intention may be obscure. In MIR, since

the number of kinds is less than 1024, a type Kind

is implemented as a bitfield of 10 bits. This causes

a padding of 22 bits if the next field is not a bit-

field as in naive design. To avoid wasting memory,

all node specific attributes like Add are divided into

two groups, one that can be filled in bitfields of 22

bits and the others. This and other implementation

issues complicate the model extraction and make it

a non-trivial task.

We first tried to capture the intended essence of

the design behind the complex implementation as

described above and develop a clear model with

informal transformation rules from the implemen-

tation to the model. However, this required us

to perform the two different and complex tasks at

the same time without any formal basis. As there

are many attributes shown in Table 1, many de-

sign decisions must be made, which should not be

done when exploring complex implementations as

described above. Therefore, we finally decided to

make the model reflect the structure of the exist-

ing implementation as it was, i.e. not considering

semantic meanings.

IIR greatly helped us perform such a transliter-

ation with little thought. We simply followed the

encoding method described in Section 2 and de-

veloped an IIR model of MIR in a straightforward

way. Each attribute could be treated individually

and modeling could be done in parallel. Complex

data like mutual referencing or recursive structures

also cause no trouble in IIR, although such data ne-

cessitate extra effort in conventional algebraic data

models.

We believe that the model extraction phase

should be done as mechanically and uniformly as

possible, which we can achieve in IIR for most

cases.

3. 2 CType

To specify the validity conditions of MIR, we take

a conventional type-based approach. That is, we

define the type system of MIR and represent va-

lidity conditions as well-typedness conditions. As

MIR is a high-level IR of C, it is natural to define

a type system of MIR based on a type system of C.

However, this is not so simple in practice since

MIR is a common IR of multi-languages (C/C++

and Fortran) and its syntax and types do not com-

pletely match those of C. For example, an array

type is represented in MIR as an untyped multi-

dimensional array while an array type of C is a

one-dimensional array of any data type, including

an array type. All partially subscripted array ex-

pressions in C programs are represented by a fully

subscripted one in MIR by supplementing [0] sub-

scriptions.

Another example is the representation of member

expressions. In MIR all contiguous member refer-

ences for a nested structure are merged into one

member (the innermost one). This is a naive form

of scalar replacement [6] and enables us to simi-

larly apply optimizations for scalar expressions to

member expressions while it makes the MIR spec-

ification very complex, particularly by interacting

with array subscriptions and indirections.

Since an IIR model of MIR faithfully reflects the

actual structure of the existing implementation, as

discussed in the previous sections, these gaps still

exist between C and an IIR model of MIR.

To remedy this, we introduced one intermediate

layer: that is, we developed an IIR model of types

of C called CType. We also defined translation

rules from the types of MIR to CType and a type

system of MIR based on CType.

Tables 2 and 3 show the attr and dom of an

IIR schema CT of CType. Compared to con-

ventional models of the types of C found in the

formal semantics of C, CT contains attributes

of implementation-defined or nonstandard features

such as the physical layouts of struct. Since the

standard does not specify these, these are usually

abstracted away and left unspecified. Of course,

while this is rational for the purpose of defining the
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Table 2 IIR schema CT of CType: attr.

class attributes

var kind, varOf

obj kind, objectOf, qual

arr kind, elementType, elementNum

int kind, bitSize, sign

real kind, bitSize, realKind

ptr kind, bitSize, pointTo

rec kind, bitSize, recordKind

member kind, byteOffset, parentM, childM,

memName

bitfield kind, bitSize, bitOffset,

declaredType

fun kind, isVarArg

ret kind, parentR, childR

arg kind, parentA, childA, ith

noinfo kind

Table 3 IIR schema CT of CType: dom.

attribute domain

recordKind { struct, union }
realKind { float, double }
sign { signed, unsigned }
qual { volatile, const, restrict }
isVarArg Bool

bitSize Nat

bitOffset Nat

byteSize Nat

byteOffset Nat

elementNum Nat

ith Nat

objectOf ICT

pointTo ICT

elementType ICT

varOf ICT

declaredType ICT

parent* ICT

child* ICT

kind CCT

static semantics of C, in the context of our work

we need a more specific and concrete type system

which can express all the MIR information. For in-

stance, all integral types are defined by attributes

of bitsize, signedness, and alignment information.

The bitfield type has attributes of bit offset, bit

size, byte offset, and declared type.

One benefit of IIR is that we can treat naturally

incomplete types of C. As incomplete types lack

some attributes, they can be treated as a super-

type of the complete ones. In algebraic data types

represented as a term tree, incomplete types are

not allowed and must be defined as new types since

the number of arguments for each constructor must

match its arity. In contrast, as each entity is rep-

resented as a set of tuples, rather than as one data

element, all incomplete types can be represented

naturally as a subset of the complete types.

Another characteristic of CType is that it is de-

signed to express implicit information in C as ex-

plicitly as possible. For instance, whereas lvalue

and rvalue have semantically different meanings,

this is not expressed in the types of C.

Let us consider the C code below.

int x;

x = x;

In C, both x in the assignment x = x have the same

type int, though x in lhs is lvalue and x in rhs is

rvalue.

This distinction is made explicit in CType. Let

the identifier of CType of x in lhs be i and that in

rhs be j. These CTypes i and j differ as follows

(here we assume the bit size of int is 32):

{ ctype(i,kind,obj),

ctype(i,objectof,j)

ctype(j,kind,int)

ctype(j,bitSize,32)

ctype(j,sign,signed) }

where the kind of i is obj (lvalue) and that of j is

int (rvalue).

This approach may remind you of the phrase type

of Reynolds [30]. CType also resembles C types of

Papaspyrou who also took a similar approach [25].

As this work has shown, this enables us to define

typing rules in a clear and succinct way.

3. 3 Type System of IIR Model

Given the above mentioned, we can define a type

system of MIR in Prolog. Since MIR and CType

are both IIR models, translation rules from MIR

types to CType and typing rules can be defined in
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Table 4 The size of a type system.

categories #rules #conditions

type environment generation (symbols) 26 218

type environment generation (constants) 7 39

typing rule for code tree nodes 86 543

ctype definitions 24 137

utilities 11 15

the same way as described in Section 2.

The whole system consists of two parts.

1. Construction rules of a type environment

which assigns a CType to each symbol and con-

stant.

2. Typing rules of assigning CTypes to MIR

code tree nodes under the type environment

constructed above.

One notable point of our approach, compared to

the conventional term-based way of representing IR

entities as compound terms, is the modification fea-

sibility it enables. Suppose we add some attributes

to an IR entity after our type system has been de-

veloped. In a term-based approach, this change

may alter the arity of the term corresponding to the

IR entity to which new attributes are added. This

means that if we refer to subterms of the term in a

type system, we should modify all these points to

conform to the new arity. In contrast, with our IIR-

based formalization, adding new attributes causes

no modification to the existing system as it does

not alter the arity of the term nor the type.

We can also utilize this feature to incrementally

develop and refine a type system. That is, we can

execute our system from the very initial phase of

development, where only some of the attributes are

treated. This is very convenient, particularly when

the exact specification is not known a priori.

Ideally, this incremental refinement process must

continue until the type system becomes fine enough

to express all implicit assumptions we have on the

IR. Of course, there is no way of checking this con-

dition automatically, and we need to do coding re-

views and/or tests (e.g., checking on the set of IR

which we consider invalid) to be perfectly confident.

Note that, for the purpose of using the type system

as an IR checker, a partial specification is still use-

ful to find some bugs, and as it becomes finer, we

can find more bugs.

Table 4 shows the size of our type system. In

a type system of MIR, there are 33 rules for part

1 (first and second rows), and 86 rules for part 2

(third and forth rows). In addition, there are 35

rules for both (fifth and sixth rows), in which 24

are for CType (equality, creation, etc).

For all the rules, the average number of predi-

cates per a rule is 6.2. The largest, a rule for typing

array symbols (in the first row of Table 4), consists

of 29 predicates. This number informally suggests

that an ad-hoc approach will be hard to scale to IR

of a production compiler. When developing rules

for each entity, we followed its IIR schemas and de-

veloped conditions in an attribute-wise way. The

set of attributes in IIR schemas served as a check

list, and prevented us from missing conditions for

some attributes.

One interesting byproduct of this work is that we

have found some entities in MIR which are syntac-

tically different but have almost equivalent condi-

tions of well-typedness. This suggests that there

may be some redundancy in the MIR design. Con-

versely, we also have found that there are some enti-

ties which had several mostly-disjoint conditions of

well-typedness. One example is an entity for indi-

rect array expressions, which represents three pat-

terns of C expressions, p[i], p->a[i] and p->q[i]

where p, q are pointers and a is an array. Though

these have some commonality, the mostly-disjoint

conditions of well-typedness suggest that it may be

better to divide this kind of expression into three

kinds of expressions.

3. 4 Experimental Results

To confirm our specification does not reject cor-

rect IRs, we executed the specification of MIR on

hundreds of test programs, including SPEC CInt95

benchmarks [31], EEMBC benchmarks [13] and

Dhrystone 2.1.
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Table 5 The size of IIR instances.

programs lines #tuples CODE BB EDGE FUN SYM CON ARR DIM NAME SRC

dhrystone 755 16,172 51.0 6.8 3.3 3.6 24.3 5.2 0.4 0.5 1.8 3.1

aifftr01 23,932 413,772 51.2 5.8 3.0 2.8 27.6 5.8 0.2 0.3 1.6 1.7

126.gcc 205,604 8,556,758 63.4 9.1 5.5 1.9 14.9 1.8 0.1 0.2 0.9 2.1
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Fig. 1 The size of IIR instances in 126.gcc.

Of course, such sampling tests cannot prove the

completeness of the specification, but they provide

some level of confidence. Actually, as many peo-

ple have experienced, we have found many subtle

specification bugs through the tests. And we now

totally agree with the claim by Gordon et al. that

“testing remains the only viable way of relating a

specification to software of the complexity we were

considering” [16].

Here, we only show some statistical results. To

execute our specification on test programs, we im-

plemented a type system of MIR in Prolog as de-

scribed earlier. Each test program was compiled

and its MIR was externalized into a file of IIR in-

stances. Type checking was done by loading these

two files in a SWI-Prolog 5.4.3 interpreter [34] and

querying the predicate of well-typedness. The exe-

cution environment was Windows XP on a Pentium

4 (3 GHz) with 2GB memory.

Table 5 shows the size of the IIR instances with

Dhrystone 2.1, aifftr01 from EEMBC and 126.gcc

from SPEC CInt95 respectively representing small,

medium, and large programs. The ‘lines’ column

shows the number of lines of source files. The ‘#tu-

ples’ column shows the number of tuples of the

IIR instances. Each number in the columns from

‘CODE ’ to ‘SRC ’ is a percentage representing the

number of tuples of the corresponding IIR instance

divided by the ‘#tuples’ value. The distribution
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Fig. 2 Performance of type-checking.

was clearly independent of the scale of the programs

for the most part. The percentages of pure code

part (CODE) are less than 70%, which indicates

that we should not disregard non-code part in IR.

Figure 1 shows the size of the IIR instances in

126.gcc. Each point corresponds to a C source file

in 126.gcc. The horizontal axis shows the num-

ber of lines of a source file; the vertical axis shows

the number of all tuples of IIR instances of the file

where K is 103. As we expected, the number of

tuples was linearly proportional to the number of

source file lines.

Figure 2 shows the elapsed time for type-checking

126.gcc. Each point corresponds to a C source file

in 126.gcc. The horizontal axis shows the number

of all tuples of IIR instances of a file; the verti-

cal axis shows the elapsed time (seconds) of type-

checking the file. The type-checking time is approx-

imately quadratically related to the size of the IIR

instances. We have not done any optimizations yet

since performance is not of our primary concern.

The largest (573,736 tuples) and most time-

consuming (1735.84s) file was combine.c, which

was an instruction-level optimizer. As global.c,

stmt.c, and toplev.c contained function calls in

which argument types were not compatible with

parameter types, we added a special rule for them

in this evaluation. The effect of this modification
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on performance is ignorable.

Soundness The above experiments concern the

completeness of the specification. Regarding the

soundness, we did an additional experiment. Be-

sides simple testing using an artificially created

ill-typed IIR, we checked two programs for which

our previous compiler had generated incorrect ex-

ecutable code (the current compiler does not suf-

fer from these problems, of course) [28] [29]. These

were not bugs regarding types, but resulted from

incorrect operations of the IRs; they emerged as ill-

typed IRs, and our type system successfully iden-

tified the two bugs as type-errors. In functional

languages community, it is well known that inter-

nal type-checking can detect many incorrect opti-

mizations [35] [23]. Although our cases are trivial,

this shows the importance of IR type-checking in a

practical setting.

4 Other Applications

While our main purpose in developing a new IR

model, IIR, has been to describe the precise specifi-

cation of an IR, we can also use the realized model

for other applications. Here we describe two of

them.

4. 1 Declarative Dataflow Analysis

Classical dataflow analysis can be straight-

forwardly described in declarative languages.

Dataflow analysis generally consists of two phases:

1. Some dataflow facts are extracted from pro-

grams and reformulated for a specific analysis.

For example, in a reaching definition analysis,

all definition/use points are uniquely named

by some naming schema and put into a predi-

cate form. Name clashes are resolved by alpha-

conversion.

2. These facts are iteratively propagated along

control flows of a program until they reach the

fixpoint.

Many researchers have proposed ways of specifying

the second phase of analysis in declarative frame-

works. In most cases they assume that dataflow

facts and control flows are given in an appropri-

ate form for their analyses, and concentrate on an

efficient way of calculating the fixpoint for these.

For example, Ullman presents a simple reaching

definition analysis in datalog [36] as follows:

clear(D,B) :-

dvar(D,X), not(kill(X,B)).

out(D,B) :-

gen(D,B).

out(D,B) :-

in(D,B), clear(D,B).

in(D,B) :-

out(D,C), succ(C,B).

reach(D,U) :-

in(D,B), exposed(U,B),

dvar(D,X), uvar(U,X).

where dvar, uvar, kill, gen, exposed, and succ are

given as a result of the second phase of extracting

dataflow facts.

While the first phase is regarded as a trivial task

and rarely considered, this phase often needs a large

amount of work when implementing an analysis,

particularly in a production compiler. In fact, al-

most all of the bugs of dataflow analysis in our

compiler stems from this first phase. These include

failures to decide the reference kinds (e.g., use/def)

for expressions, failures to consider all possible side

effects of function calls, failures to correctly update

dataflow facts after a program is modified, etc.

With IIR, we can describe dataflow analysis di-

rectly on an IR. Since we already have all IR en-

tities uniquely named, we do not need to prepare

a naming schema for each analysis. In addition,

since all IR entities are already in a predicate form,

we can dispense with the second (extraction) phase

in many cases. This is a highly desirable feature,

particularly in production compilers where each IR

entity has many attributes that need to be handled.

For instance, when we describe an alias analysis, we

need a way to treat some implementation-specific

attributes related to memory accesses such as type

qualifiers, compiler directives, and options desig-

nating physical data layouts. Translating such at-

tributes to an appropriate form for each analysis

is tedious and error-prone work, and updating the

translation to reflect the modification of IR speci-

fications is often neglected.

As a preliminary case study, we have described a

full reaching definition analysis on MIR. Compared

to that of Ullman above, our analysis needs no ex-

ternally given facts. All facts are either IIR enti-

ties or generated by analysis. Furthermore, while
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Ullman’s analysis only treats scalar variables with-

out aliases, our analysis can treat all kinds of ex-

pressions including pointer indirections, arrays and

their aliases in a similar way.

Here for simplicity we show a statement-wise

reaching definition analysis, not a basic block-wise

one. The dataflow equation of the analysis is com-

pletely standard.

RDin(S) =
⋃

S′∈pred(S) RDout(S
′)

RDout(S) = RDgen(S) ∪ (RDin(S) − RDkill(S))

RDgen(S) = {(S, X)|X is defined in S}
RDkill(S) = {(?, X)|X is defined in S}
For the above equation, we can write our analysis

on MIR as follows:

rd_in(S,X) :-

flow(S1,S), rd_out(S1,X).

rd_out(S,X) :-

rd_gen(S,X) ;

rd_in(S,X), not(rd_kill(S,X)).

rd_gen(S,X) :-

def_in_stmt(S,X), scalar(X).

rd_kill(S,X) :-

def_in_stmt(S,Y), must_alias(X,Y).

where rd in(S,X) means that a definition of a

variable having an identifier X may reach to a

statement having an identifier S. rd out(S,X),

rd gen(S,X) and rd kill(S,X) have similar mean-

ings. scalar(X) means that an expression X is a

scalar variable. def in stmt(S,X) means that an

expression X is in a defining position in a statement

S, described as follows:

def_in_stmt(S,X) :-

mircode(S,kind,assign),

ith_child(S, 1, X); ...

Finally, must alias(X,Y) means that an expression

X is definitely aliased with Y, which is calculated by

an alias analysis whose details we omit here.

These two analyses clearly have the very similar

structures, except that the meaning of the reaching

definition is more refined in its details in the latter.

That is,

• What kinds of expression are regarded as def-

initions? (by scalar(X))

• In what contexts can expressions become def-

initions? (by def in stmt(S,X))

• What definitions are killed by a defining ex-

pression? (by must alias(X,Y))

All of them can be defined directly based on IIR,

where we can retrieve all information available from

a specific IR; this is not the case for an analysis

based on abstract analysis models.

The total number of lines of the full analysis is

under 50. In our implementation, the number of

lines of C code for the reaching definition analysis

is 2,639. While direct comparison is meaningless,

of course, we can say that this declarative descrip-

tion of the analysis is a concise specification of an

actual implementation.

We can run the above analysis on an actual MIR

generated from C/C++ programs. To ensure ter-

mination, we need to use languages with a bottom-

up or memoized evaluation strategy such as XSB

[33]. Evaluation of the analysis efficiency, however,

is beyond the scope of this paper.

4. 2 IR Externalization

In a sense, we can view IIR as a means of IR

externalization. Although an IR is originally an in-

ternal data structure in a compiler, externalization

of an IR — that is, outputting an IR outside of a

compiler — is often very useful.

IR externalization provides various benefits. The

simplest is that it facilitates the debugging of com-

piler modules. If there is something wrong with a

code generated from a compiler, we usually dump

IRs into files at several points of a compilation se-

quence and try to find the module causing the bug

by comparing the externalized IRs.

The implementation-independence property of

IIR leads to a straightforward and complete IR

externalization. The dump format is usually a

tree representation of an IR. Such representations

are readable but informal, non-uniform and incom-

plete. In contrast, we can externalize a full IR in

an IIR model completely and uniformly.

This completeness and uniformity enable many

applications regarding an externalized IR. For ex-

ample, we can analyze and optimize an externalized

IR through auxiliary tools and then put it back into

a compiler. We can develop each tool in a different

language. This interoperatability makes an IIR a

good IR format candidate for a compiler framework

such as SUIF.
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Another possible application is a differential com-

piling. By storing a previously compiled IR and a

code generated from it in a database, we can save

the time needed to recompile the same source pro-

gram. Developing such a system is not a trivial task

in a typical compiler, but with an IIR we can im-

plement this in an obvious way. As an IIR schema

instance naturally fits a three-attribute relation of

RDB, we can use standard RDBMS to store and

load an IR.

5 Discussion

In this section, we discuss design decisions we

have made for IIR and compare IIR with a well-

known relational data model, which has strong in-

fluence on our design.

5. 1 IIR Design Decisions

In Section 1, we characterized IIR by two essen-

tial conditions:

1. all entities have an explicit identifier.

2. all entities are represented as relations.

Here we discuss these conditions and compare them

with other possible definitions.

Condition 1 Condition 1 is the heart of IIR.

With explicit identifiers in IIR, we can model vir-

tually all kinds of data structure — such as list,

array, tree and graph — used in compiler imple-

mentations. One important implication of this con-

dition is that we can now clearly distinguish enti-

ties themselves with references to them. This dis-

tinction is obvious at a low-implementation level

(memory cells and their addresses), but less clear

at an abstract (data model) level.

However, at the cost of this expressiveness, IIR

loses some desirable properties which a conven-

tional algebraic data model has. For instance, we

cannot use structural induction directly on expres-

sions, which are represented as a set of tuples in an

IIR model. That is because the entities of IIR are

not constructed inductively.

To compensate for this deficiency, we could make

an alternative design decision to only use identi-

fiers when they are indispensable (e.g., to represent

control flow graphs). This ad hoc approach is com-

monly used when treating references in an algebraic

data model.

Instead of resorting to such an ad hoc approach,

though, we decided to compensate for this problem

by specifying well-formedness conditions explicitly.

Thanks to condition 2 of IIR, we can use conven-

tional logic programming languages to specify well-

formedness conditions in a succinct way. We believe

that the merits of expressiveness and uniformity

pay for this additional work.

Condition 2 Even after we decided to adopt

condition 1, there was still room for alternative de-

sign decisions. For example, we could formalize an

IR based on functions instead of relations such as

IIR. In this approach, an IR is defined as a set of

functions of Identifiers to Values, each representing

one attribute. This approach provides us with a

simpler model than IIR in the following sense:

1. The definition of a function ensures that an

attribute a of an identifier i has at most one

value a(i). In IIR schema, we need a condition

to establish this property.

2. We do not need to inject attributes of dif-

ferent types into one union value. We can use

well known rich type systems in studies of func-

tional languages to define the well-typedness of

an IR.

Though these properties seem attractive, we de-

cided not to take this approach because of the fol-

lowing drawbacks:

1. The functional model limits the direction of

access. In IIR, we can select a set of tuples

(i, a, v) based on arbitrary conditions while the

only access direction in the functional model is

from an identifier and an attribute to a value.

2. As functions are not first-order concepts, we

cannot treat an IIR straightforwardly in con-

ventional first-order logic programming lan-

guages.

Which is preferable may depend on conditions

and applications, but it is fair to say that IIR

is a more general data model than the functional

one. Similar arguments have been discussed in the

database area: e.g., when comparing a network

data model and a relational data model.

For our purpose at least, the feasibility of using

declarative logic programming languages to write

several validity conditions, such as well-typedness,

with IIR is a crucial factor. Of course, we can also

write a type system in functional languages, but the

description may be more operational, unnecessarily
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specific, and less readable.

5. 2 Comparison with the Relational Data

Model

As mentioned, there is a very close connection

between IIR and the relational data model (RDM)

[9]. Here we discuss and compare these models.

A relation schema R consists of a set of attribute

names A, a set of values V and a mapping dom

which assigns each attribute a in A to its domain

dom(a) ⊆ V .

In a rough way, we can view an IIR schema R as

a relation schema as follows:

A = {identifier, attribute, value}

dom(identifier) = IR

dom(attribute) = AR

dom(value) = V R

An IIR schema instance can also be viewed as a

relation (or a mapping from attributes to values)

in an obvious way.

Of course, this simple relational view is too coarse

since it cannot exclude ill-formed relations, such as

those violating condition 2 of the definition of an

IIR instance. This view only enables us to define a

proper superset of an IIR instance in RDM.

In the early stages of this work, we used RDM to

model an IR. However, the attributes of the rela-

tion schema for IR entities were not like the simple

ones described above. We followed the conventional

means of data modeling in RDM, and modeled each

attribute of an IR entity as an attribute of a rela-

tion schema for that IR entity. For instance, for the

expressions in example 1 in Section 2, we defined

three relation schemas — con, var and add — one

for each expression class. The attributes of each re-

lation schema are attributes defined in the example,

plus one distinguished attribute identifier.

Acon = {identifier, kind, value}
Avar = {identifier, kind, name}
Aadd = {identifier, kind,

child1, child2}
dom(identifier) = IE

dom(child1) = IE

dom(child2) = IE

dom(kind) = CE

dom(value) = Integer

dom(name) = String

In these relation schemas, an expression (x + x)

+ 100 can be represented as the following relation

instances.

rcon = {(3, con, 100)}
rvar = {(4, var, “x”), (5, var, “x”)}
radd = {(1, add, 2, 3), (2, add, 4, 5)}

Comparing to IIR, the main differences of this

RDB-based approach are as follows:

1. Each expression is modeled as one tuple in a

relation.

2. The number of attributes of each relation

varies.

The first point allows more compact representation

than IIR. In an IIR instance, each entity is repre-

sented as a set of tuples, each tuple representing a

value of one attribute. For example, entity 2 in rvar

is represented as three tuples in IIR (see example

1). This entity-as-a-set-of-tuples representation ne-

cessitates checking of an extra condition (condition

2 of definition 2) to ensure the functional depen-

dence: i.e., the condition that for each pair of iden-

tifiers and attributes there can exist at most one

value.

However, the RDM-based approach has draw-

backs which eventually led us to abandon it.

• First, as mentioned, IR entities in production

compilers usually have many attributes. As a

result, in this RDM-based approach, the arity

of tuples tends to be larger (over a hundred in

our case). Such lengthy tuples are very incon-

venient when treating IR instances in conven-

tional logic programming languages like Pro-

log.

• Second, when we add new attributes to an en-

tity (this is often the case with compilers), we

need to change the arity of the relation schema
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of that entity. If we refer to tuples of that re-

lation explicitly in the specification, we must

change the specification accordingly.

• Third, some IR entities, such as code tree

nodes, are classified into many classes (again,

over a hundred in our case). To define relation

schemas for so many classes is a tedious task.

• Fourth, each value in tuples is anonymous in

a relation instance, while in an IIR instance

each value is always paired with an attribute

name. This makes it much easier to read spe-

cific instances, for example when debugging the

specifications of test programs. (This point is

similar to XML documents.)

To sum up, while RDM is a generic data model

which can be applied in a variety of areas, we be-

lieve that IIR is more suitable form of modeling

in the area of compiler IR, particularly when used

with declarative languages.

6 Related Work

In this section, we compare our work with previ-

ous works classified into four important aspects of

IIR, that is, IR models, identifiers, logic program-

ming languages, and executable specification.

6. 1 IR models

Since IIR is an IR data model, direct comparison

to each specific IR is impossible. Instead we discuss

two IR models (not specific IRs), one based on an

object-oriented model and the other on XML.

Object-Oriented IR Modeling IR entities as

objects in an object-oriented model is a natural

and pervasive concept. Here we take SUIF [22] as

a typical example of an object-oriented IR. SUIF

is a compiler infrastructure designed to support re-

search in optimizing compilers, and is widely used,

particularly in parallel computing.

In SUIF, all IR entities are represented as C++

classes. A whole IR is defined as a class hierar-

chy starting from a root class called Object. For

example, all IR statements are defined as sub-

classes of the Statement class. The Statement

class is a descendant of the Object class, inher-

iting it through the ExecutionObject class, the

ScopedObject class, the AnnotatableObject class,

and the SuifObject class to the Object class. As

each IR entity is represented as a C++ class, its

attributes are defined as members of its class. For

instance, expression trees are constructed using

(physical) pointer members to designate each tree’s

children or parent.

Compared to SUIF, an IR based on an IIR model

can be defined completely in an implementation-

independent way as discussed in Section 5. The

syntax and semantics are based on mathematics

more succinct and simpler than for C++. IIR

can also support inheritance, which is one of the

most notable merits of an object-oriented approach,

through the usual set inclusion relation on at-

tributes. Furthermore, as entities in SUIF are de-

fined at a class level, not an instance level, the valid-

ity condition of IR cannot be specified as precisely

as that of IIR.

To help users of SUIF develop their own IR, SUIF

provides a high-level specification language called

Hoof. The SUIF Macro Generator (smgn) trans-

lates Hoof representations to C++ class definition

files (.h and .cpp). The Hoof representation hides

some implementation details. Constructors, get-

ter/setter methods, and so on are automatically

generated by smgn from simpler class definition in

Hoof. However, as the name Macro Generator sug-

gests, this is essentially syntax-sugared C++ and

inseparably dependent on the syntax and seman-

tics of C++.

XML IR Recent work has been done on defin-

ing an IR in XML [15]. This is also a natural idea

as major IR entities such as expressions are tree-

structured data with attributes, which fit in well

with an XML format. The merits of an XML-based

approach are as follows:

1. XML IR is completely implementation inde-

pendent. We can use any language to imple-

ment our compiler.

2. We can define a specific IR based on a well-

defined, well known XML data model. This

lessens the burden of developing the formal def-

inition of an IR from scratch. We can define

the well-formedness of our IR by defining DTD

(Document Type Definition) or XML schemas.

Compared to IIR, an XML-based approach also has

drawbacks. While an XML-based approach over-

comes the problem of dependence on a specific im-

plementation languages, XML does not fit in well

with graph-structured data like control flow graphs.

In addition, the validity conditions are also defined
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at a schema level rather than an instance level, and

so they are inevitably imprecise.

6. 2 Identifiers

The concept of explicit identifiers of entities in

IIR is closely related to the issue of object identifi-

cation in the area of database.

Wieringa and de Jonge discuss this issue com-

prehensively [40]. They give a precise definition of

object identifiers and distinguish it from keys and

internal identifiers (designating surrogates).

The major conditions of object identifiers are as

follows:

1. non-updatable

2. unique across all possible states of the world

3. visible to the user (i.e. explicitly represented)

Condition 2 is needed since Wieringa and de Jonge

discuss a general data modeling issue, in which

state changes (i.e., database updates) must be con-

sidered. Keys differ from object identifiers in that

they are updatable and are unique only in each sin-

gle state of a database (or a relation). In addition,

internal identifiers differ from object identifiers in

that they are not visible to the user (i.e. they are

implicitly represented).

Identifiers in IIR must satisfy condition 3 by the

definition of IIR. Conditions 1 and 2 are not neces-

sary, but if they are satisfied, we can trace each IR

entity through all of the transformation processes

done by compilers. This property may be beneficial

when verifying the correctness of transformation:

for example, to resolve the branch path matching

problem discussed regarding a certified compiler by

Necula [24]. Further discussion of this, however, is

beyond the scope of this paper.

Condition 2 is also beneficial when we merge IR

entities in different translation units (files). For ex-

ample, suppose we do a function-inlining optimiza-

tion over files. If condition 2 is satisfied, we do not

need to rename identifiers to avoid name clash. A

simple way to satisfy condition 2 is to add a scope-

wide unique prefix to identifiers, though this will

mean we have to give up an efficient integer repre-

sentation of identifiers. Evaluation to find the most

suitable way for various optimizations remains as

future work.

6. 3 Using logic languages for compilers

A large amount of effort has gone into the use of

logic programming languages to develop code gen-

erations, optimizations and analyses in a compiler.

Here we only show three works based on Prolog or

its relatives, which are used in our work.

The ProCos project directed by Hoare, Jifeng

and Bowen tackled the issue of developing provably

correct systems [19]. As part of the project, they

developed a prototype compiler in Prolog which is

quite close to its formal specification. The source

language is a simple structured imperative lan-

guage and the target is a RISC-like assembly lan-

guage. Statements and expressions are represented

as conventional tree-structured terms. Dawson et

al. showed a groundness analysis of logic programs

and a strictness analysis of functional programs us-

ing a Prolog-like language, XSB [11]. Pop et al.

have developed a method to write some loop op-

timizations of GCC4 in a declarative way using

Prolog [26]. Their IR is a three-address SSA rep-

resentation called GIMPLE.

While these methods vary, as for IR, all are based

on IR where each entity is simplified or abstracted

and ordinarily anonymous. Complex data struc-

tures like trees or lists are represented as similar-

structured terms in their languages. For example,

in [26] each GIMPLE statement is represented as a

Prolog term: e.g., an assignment statement x = y

+ z is represented as assign(x, y + z).

As discussed in Section 5, applying methods

based on such IR models to a large-scale IR of a

production compiler is not a trivial task. It is hard

to describe the large number of attributes for each

entity (e.g., a type of x). Annotating an entity

with its attributes may change the arity of the en-

tity, which requires that existing codes be modi-

fied accordingly. An interesting research direction,

though, would be to develop these methods based

on IIR and evaluate the outcome regarding aspects

such as efficiency.

6. 4 Executable specification

Since writing a formal specification is an error-

prone job, specification executability is highly de-

sirable. We can test an executable specification on

actual data and confirm that it actually captures

the intended meaning by executing a specification

and comparing the result with that of an implemen-
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tation. This also allows incremental development of

a specification, where we begin with a coarse spec-

ification and obtain an exact one through a refine-

ment process of checking and modifying. In Section

3, we took this approach to develop a specification

of our compiler IR from an existing implementa-

tion.

Much work has been done on executable specifi-

cation. Here we discuss two efforts that are closely

related to our work.

Gordon et al. developed a formal semantics of

a typed IL (called Baby IL) which is a subset of

Microsoft .NET CIL [16]. They use a conventional

tree-structured, but slightly tricky, applicative syn-

tax to represent their IL and formalize static and

dynamic semantics of it based on HOL [17]. They

also provide mechanized proofs of some properties

of their IL such as type soundness. While their

results are stronger than ours, their work is sub-

ject to a limitation in that there is a substantial

gap between Baby IL (their model) and CIL (the

actual IL), thus their results are inevitably incom-

plete. As they state, extending their model to full

CIL is not a trivial task. An interesting open ques-

tion is whether the IIR model can straightforwardly

represent full CIL and also allow their proof strat-

egy to prove similar results mechanically.

Bishop et al. have developed an executable spec-

ification of the TCP/IP protocol and socket API in

HOL [5]. They experimentally confirmed the cor-

rectness of their specification by sampling behavior

traces from several de facto standard implementa-

tions and checking that these were contained in the

set of traces allowed by the specification. Note that

their intention was not to verify implementations

against the specification, but to verify the speci-

fication against implementations. In other words,

they extracted the specification from implementa-

tions through a refinement process as in our work

described in Section 3. Their work is not aimed at

IR, but we share their conclusion regarding the ef-

fectiveness of an executable specification in reverse-

engineering a specification from an existing imple-

mentation.

7 Conclusion

In this paper, we have presented a new IR data

model called IIR. The essence of IIR is that

1. All entities have explicit identifiers.

2. All entities are represented as relations.

Condition 1 ensures that every IR entity can be re-

ferred to by its identifier. By using identifiers as

symbolic pointers we can model actual structures

of IR faithfully in IIR. Condition 2 makes it possi-

ble to treat IR within declarative frameworks such

as logic programming languages. Based on these,

we could develop a sufficiently precise specification

of the IR of our production compiler.

As shown in Section 4, IIR enables broader appli-

cations. One example is IR externalization. By us-

ing IIR as an implementation-independent IR for-

mat, we can use any implementation language to

develop each module of a compiler. While XML

has been used in some studies to partially real-

ize this interoperatability, IIR is more general and

expressive, and fits well with logic programming

languages, which we believe are more suitable for

treating IR compared to, for example, XSLT.

As another example, we have shown that

dataflow analysis of reaching definitions can be eas-

ily written with IIR. Many ways of developing pro-

gram analyses, optimizations and code generations

in declarative frameworks have been proposed, and

these techniques are also applicable to IIR in a

straightforward way.

Future Works Many areas remain to be ex-

plored. One direction is to seek more effective

ways of developing a specification by exploiting sev-

eral properties of IIR. For example, while attribute

names are first-class values in IIR, we did not fully

exploit this property in our work. This property

allows us to quantify over attribute names in first-

order logic, which may provide several benefits like

the row-types in ML [27].

Another direction is to develop a variety of com-

mon formal systems of IR on IIR. In this paper, we

concentrated on the static semantics (syntax and

types) of IR and showed that we could easily de-

fine the well-typedness of the IR of our production

compiler based on IIR. We have not yet defined the

dynamic semantics, but we anticipate no serious

difficulty in this. By using identifiers of code tree

nodes as control points, we can straightforwardly

define the operational semantics of code trees. The

ASM-based approach taken by Stark et al. [32],

where they use path indices to identify each syntac-

tic element in expressions, is probably also appli-
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cable in this regard. Denotational semantics based

approach for IR used in e.g., [20] [1] should also be

applicable.

The property of IIR that all expressions (not

restricted to variables) have unique identifiers re-

minds us of some well-known style/form such as

CPS (Continuation Passing Style) [3], ANF (A Nor-

mal Form) [14], or SSA (Static Single Assignment)

form [10]. Although we have not yet appreciated

how to relate IIR with these forms, it may be pos-

sible to exploit identifiers of IIR when converting a

source program to these forms.

We also plan to implement several dataflow anal-

yses based on IIR. For example, we believe our pre-

vious work of pointer analysis [7] [8] can be easily

reformalized based on IIR. This will make it possi-

ble to prove the correctness of the analysis imple-

mentation itself, rather than the abstracted speci-

fication.

Throughout this work, we have sought to find a

way of specifying all concerns about IR in a declar-

ative way, which we believe is the best approach to

taming the chaotic situations that arise in actual

software developments. We hope that our work will

help bridge the gap between research and practice,

and reduce the burden of developing modern pro-

duction compilers, which are complex, large, and

thus error-prone.
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A Rules In Prolog

In this section, we explain informally the syntax

and semantics of rules used in this paper. See e.g.,

[37] for detail about logic programming.

The general form of rules is as follows:

p :- q11, q12, ...

; q21, q22, ...

...

; qn1, qn2, ....

where p and qij are atomic formulas. You can read

this as a formula in first order logic by translating

• , to ∧,

• ; to ∨,

• :- to ⇐
and universally quantifying all variables in p and

qij. In atomic formulas, all variables begin with a

capital letter and can be distinguished from con-

stants.

For example,

p(X) :- q(X,Y)

; r(X).

is interpreted as

∀X, Y.p(X) ⇐ (q(X, Y ) ∨ r(X))
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or equivalently,

∀X.((∃Y.q(X, Y )) ∨ r(X)) ⇒ p(X)

When validity conditions of IR are described as

a set of rules, these rules are interpreted as a con-

junction of formulas for each rules.

B The Relational Data Model

In this section, we briefly explain the definitions

of relational data model used in this paper. See

e.g., [37] for detail.

We call the set of all attributes of entities the

universe U . An attribute A is a name, related with

a set of values (called a domain of A). A relation

schema R is a tuple (an ordered subset) †3 of U .

We call |R| as an arity of R. A database schema D

over U is a set of relation schemas.

For each schema, we can define its instance. Let

Ri = (Ai1, ..., Ai|Ri|) be a relation schema, and

D = {R1, ..., Rm} be a database schema. A relation

instance ri (or short, relation) over Ri is a set of

tuples (v1, ..., v|Ri|) where each vj is in the domain

of Aij . A database instance (or short, database)

over D is a set of relations {r1, ..., rm} where each

ri is a relation over Ri.

Based on these definitions, we can define well-

known primitive operations over relations such as

projection, join, union, difference and selection,

though we omit details here.

For example, we can model a directed graph of

integers as following schemas:

Dgraph = {Rnode, Redge}
Rnode = (number)

Redge = (from, to)

where domains of number, from and to are integers.

The below is a possible instance of Dgraph :

dgraph = {rnode, redge}
rnode = {(1), (2), (3), (4)}
redge = {(1, 2), (1, 3), (2, 4), (3, 4)}

†3 It is more general to define a relation schema as a

subset of U , and a relation instance as a function

from attributes to values accordingly, though the

above definition is suffice for this paper.


