
1

日本ソフトウェア科学会第 27 回大会 (2010 年度) 講演論文集

Towards JIT compilation for IO language

ザキロフ サリフ 　千葉 滋　　柴山 悦哉

IO [6] is a relatively new pure object-oriented language, providing dynamic features comparable with popular

scripting languages like Python or Ruby. IO has simple but flexible syntax, allowing for metaprogramming

at the syntax tree level. Some aspects of the syntax, such as operator and assignment reshuffling, make IO

source code feel natural. Availability of runtime code modification and simple grammar makes IO a good

choice as a dynamic programming language research vehicle.

In this work we describe our approach to dynamic compilation of programs in IO. Inline caching and spec-

ulative inlining provide high performance benefits if the program behavior is stable. We explore programs

with multiple or alternating behaviors, and propose multi-version speculative inlining with fine-grained

invalidation.

1 Introduction

Dynamic languages such as Ruby, Python and

Javascript enjoy increasing popularity. Advanced

optimization techniques, including just-in-time

compilation and trace compilation are increasingly

used in dynamic language implementation with

good results. However, the potential of dynamic

languages is not yet fully tapped. A particular

technique of our interest is dynamic delegation,

and its limited form, dynamic mixin. As other re-

searchers has shown, dynamic mixin can be used

as a basis for implementation of substantial subset

of aspect-oriented programming [10] and context-

oriented programming [14].

In our previous work [16] we proposed a caching

Salikh Zakirov, 東京工業大学, Tokyo Institute of Tech-

nology, Dept. of Mathematical and Computing

Sciences.

Shigeru Chiba, 東京工業大学, Tokyo Institute of Tech-

nology, Dept. of Mathematical and Computing

Sciences.

Etsuya Shibayama, 東京大学, University of Tokyo, In-

formation Technology Center.

optimization for dynamic method dispatch, which

takes dynamic mixin into account. We evaluated

the performance of the technique implementation it

in the mainline Ruby interpreter (version 1.9.1) by

modifying the inline cache handling code. However,

we noted that high cost of the method dispatch in

the interpreter make inline cache hit about 63%

as expensive as inline cache miss, and the benefits

of increasing inline cache hit ratio are small. We

speculated further, that the technique can be used

with much higher benefits in an environment with

dynamic compilation. In this work we set out to

experimentally verify that claim. More long-term

goals of this project include testing a hypothesis

whether it is possible and practical to use unre-

stricted dynamic language as a base system lan-

guage, and implement other languages on top of

it.

To achieve maximal flexibility and control over

code inlining optimization in the compiler, we chose

to implement a dynamic compilation system from

scratch. To expedite the development process, we

use LLVM [11] as the back-end system, which fa-

2 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

cilitates development, gives a clearly defined target

of compilation, and provides with ready-to-use low-

level code optimizer. As the source language of our

system, we chose the language IO [6]. It satisfies

requirements as a target language of our research

due to the following properties:

• IO is a purely object-oriented prototype-based

dynamically typed language with multiple in-

heritance.

• IO object model is highly unified, having

object slots and delegation as core concepts.

Global constants are stored as slots in a context

object, local variables as slots in an activation

object.

• Methods source code is available for introspec-

tion and modification in the form of abstract

syntax tree (AST).

• IO has minimal, but highly readable syntax.

The above leads us to believe that challenge of com-

piling IO includes all of the challenges applicable to

the mainstream dynamic languages. However, the

highly unified concept world of IO object model

gives hope on unified handling of issues tradition-

ally handled separately, such as namespaces, dy-

namic dispatch and code modification. The gen-

erality of IO language also gives us a hope, that

IO-specific optimization can be reused directly by

implementing other languages on top of the IO ob-

ject model.

2 Delegation and dynamic mixin

Prototype object model, on which IO language is

based, is highly expressive and capable of support-

ing wide range of programming paradigms: popular

static class hierarchy-based object models, aspect-

oriented programming, and context-oriented pro-

gramming. This power is based on the ability to

modify delegation pointer of an object during pro-

gram run time. In Fig. 1 the example of the con-

text switching is shown. In IO every syntactic con-

foo := method(bar println)

contextA := Object clone do(

bar := method("in context A"))

contextB := Object clone do(

bar := method("in context B"))

thisLocalContext setProto(contextA); foo

> in context A

thisLocalContext setProto(contextB); foo

> in context B

図 1 Context-oriented programming in IO

struction is a message send, messages are separated

by spaces, and arguments are optionally specified in

parentheses. The result of one message send is the

receiver for the next message, and for the first mes-

sage the implicit receiver is an activation object.

method() is a message to define a new method, var

:= expr is implicitly translated to setSlot("var",

expr) before execution. The message setSlot() sets

a slot in a receiver object, do() temporarily switches

the context to define slots in objects other than top-

level context object. setProto() dynamically mod-

ifies delegation pointer of a receiver. Arguments

to methods are passed in unevaluated AST from,

and can be evaluated on demand, arbitrary number

of times and in arbitrary context, which allows ex-

pressing of control flow constructs and new method

definitions as regular method calls.

Dynamic mixin is a technique to temporarily

modify object hierarchy by inserting a mixed-in

object (Fig. 2). Dynamic mixin insertion can be

done in a straightforward way by assigning the del-

egation pointer to insert a new object into delega-

tion chain, so it is a special case of dynamic dele-

gate pointer modification. While being less general

than arbitrary delegation pointer assignment, dy-

namic mixin can be used to represent useful tech-

niques, such as aspect-oriented programming [10]

and context-oriented programming [14]. In these

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 3

Dog := Object clone do(

bark := method(

"woof-woof /Hey!/" println))

Pochi := Dog clone do(

beg := method(

bark

"wooo /I want that/" println))

GoodManners := Dog clone do(

bark := method("....." println))

Pochi beg

> woof-woof! wooo

Pochi setProto(GoodManners) //insert a mixin

Pochi beg

> wooo

Pochi setProto(Pochi proto proto) //remove

図 2 Dynamic mixin example

uses dynamic mixin operations (insertion or re-

moval) are performed at high frequency, for exam-

ple, at every invocation of a particular method.

Many current implementations of dynamic lan-

guages make an assumption that object hierarchy is

not changing frequently, and leave it as an expen-

sive operation, so programs using dynamic mixin

exhibit low performance [16]. We believe that dy-

namic mixin is a useful operation and that its po-

tential uses have enough regularity so as to enable

efficient optimization.

Dynamic dispatch has been attracting attention

of researchers for a long time, so a number of

optimization techniques has been proposed: in-

line caching, guarded devirtualization, speculative

method inlining. Application of any of these tech-

niques to optimize method calls brings an impor-

tant issue of invalidation: in the case when sub-

sequent dynamic code redefinition occurs or object

hierarchy changes it may be necessary to reconsider

the optimized block of code, invalidate cached value

or recompile binary code. In our previous work [16]

we proposed the invalidation state tracking mecha-

nism based on method lookup. Dependency of in-

line caches on object changes is organized through

state objects, which are implemented as integer

counters. When the result of method lookup is

cached, it also stores a snapshot of counter, and

checks it on each use. Related objects also receive

a pointer to the state object, and increment counter

in a state object on each modification that can af-

fect the outcome of the method dispatch. State ob-

jects are allocated dynamically and associated with

sets of polymorphic methods that are called from

the same call site, and a pointer to the state object

is installed in method table in each object that is

being traversed during method lookup. In this way

we can maintain an invariant: whenever a target of

dynamic dispatch changes, so does the associated

state object.

The invariant on state objects allows to cache

the state on mixin insertion and rewind system to

the prior state on mixin removal. On mixin inser-

tion, we record old and updated value of state ob-

jects in the cache associated with object, to which

mixin is installed. On mixin removal we can check

if there were any other invalidations, by comparing

the ”updated” state value in the cache with current

value. If there were no interfering invalidations, we

can be sure that removal of the mixin brings the

system to exactly the same state that it was in be-

fore mixin installation, and so we can restore the

”old” values of state objects. Call sites that see

several alternating targets of the dispatch can use

cache with multiple entries (similar to polymorphic

inline caching), so that all of the dispatch targets

are served from cache. This techniques is applicable

to dynamic mixin, and can be generalized to cover

arbitrary delegation pointer changes. In this work

we set out to explore if we can benefit from this

4 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

caching scheme in the dynamic compilation system,

by compiling several versions of the code according

to the alternating states of the system.

3 Approach to compilation

We implemented a minimal interpreter of IO lan-

guage in Objective-C, and then proceeded to write

a dynamic compiler, using mix of interpreted IO

code and native Objective-C++ code for interfac-

ing with LLVM infrastructure.

Since everything in an IO program is a message

send, using method-based compilation would pro-

duce very small units of compilation consisting en-

tirely of method calls, with overhead of method call

dominating the execution time. For this reason

it is essential to use inlining to increase the size

of a compilation unit. Inlining a method requires

knowledge of the target method, we resolve that

by using the value cached during interpreted exe-

cution of the method. The cached method targets

are likely to be the ones called during subsequent

execution, but for the correctness it is necessary to

insert a guard with a check of whether the type of

the receiver and state matches the cached values. In

case of guard failure, the execution falls back to in-

terpreter. When inline cache has multiple dispatch

targets recorded, we generate code for each of the

cached values separately, effectively producing an

inlined version of polymorphic inline cache. Code

for control flow constructs such as while() and if(),

and arithmetic operations is generated by compiler

intrinsics.

Limitations

Our implementation is in its early stage of de-

velopment, and has many limitations. Only the

small subset of the IO standard library has been

implemented: few methods necessary for compiler

construction. Compiler itself has even more lim-

itations. Currently it is limited to compiling in-

teger arithmetic (without overflow checking) and

guarded method inlining. When dynamic type

guard fails, execution of the the whole method is

restarted from the top under interpreter, so this re-

stricts compilation to methods without side effects.

Using the language under development for de-

velopment itself has some benefits and drawbacks.

Main benefit is the flexibility of the chosen imple-

mentation language. The drawbacks include absent

error reporting, missing standard functionality and

difficulties in error localizing, because any misbe-

havior may be caused either by the bug in the de-

veloped code itself, or in the underlying interpreter.

4 Evaluation

Due to the incomplete compiler implementation,

our current evaluation options are limited to mi-

crobenchmarks. A microbenchmark is structured

as a tight loop with a object method call in it, and a

target method does integer arithmetic. By varying

the number of target methods and compilation op-

tions we intend to evaluate the costs of type guard,

state check, multi-version inlined code. Performing

the experiments and measurements remains a task

to complete in near future.

5 Related work

The problem of compilation of dynamic lan-

guages has been thoroughly researched to date.

Smalltalk [7] was first to use just-in-time compila-

tion for a dynamic language. Self [4] is the project

that pioneered many of the commonly used tech-

niques, including polymorphic inline caches and

type-split compilation. Psyco [12] implemented

a specific form of compilation named just-in-time

specialization, which generates code as the program

executes, and generates new branches of code on

type guard failures. Trace-based compilation [8]

[17] similarly compiles along a particular program

execution path (trace), but it does compilation in

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 5

a bulk after the trace collection is complete. A

number of dynamic languages have tracing com-

piler implementations: Python [3], Javascript [5]

[9]. PyPy [13] is notable for its use of a stat-

ically typable language RPython [1], which is a

proper subset of full dynamic Python language. In-

teresting feature of RPython is the bootstrapping

phase, that allows use of advanced dynamic fea-

tures, like extensible classes and generative pro-

gramming. Portable approach to compilation by

using compilation to C source code has been pro-

posed for Lua [15] and PHP [2].

6 Conclusion

We devised and started implementation of a dy-

namic compiler for IO language, intended as a

research vehicle for optimization of dynamic lan-

guages, in particular inlining and inline caching.

Our first target for evaluation is guarded multi-

version compilation based on the method call pro-

file collected in polymorphic inline cache. Due to

the limitations of current compiler, we are bench-

marking a small integer numeric benchmark code in

interpreted and compiled modes, with and without

using dynamic mixin. Completing of the compiler

to cover the IO language completely remains our

major future task.

Acknowledgments

We thank Sebastian Günther for helpful com-

ments on a draft of this paper.

参 考 文 献

[1] Ancona, D., Ancona, M., Cuni, A., and Mat-

sakis, N.: RPython: a step towards reconciling dy-

namically and statically typed OO languages, Pro-

ceedings of the 2007 symposium on Dynamic lan-

guages, ACM, 2007, pp. 64.

[2] Biggar, P., de Vries, E., and Gregg, D.: A prac-

tical solution for scripting language compilers, SAC

’09: Proceedings of the 2009 ACM symposium on

Applied Computing, New York, NY, USA, ACM,

2009, pp. 1916–1923.

[3] Bolz, C., Cuni, A., Fijalkowski, M., and Rigo,

A.: Tracing the meta-level: PyPy’s tracing JIT

compiler, Proceedings of the 4th workshop on

the Implementation, Compilation, Optimization of

Object-Oriented Languages and Programming Sys-

tems, ACM, 2009, pp. 18–25.

[4] Chambers, C., Ungar, D., and Lee, E.: An effi-

cient implementation of SELF, a dynamically-typed

object-oriented language based on prototypes, LISP

and Symbolic Computation, Vol. 4, No. 3(1991),

pp. 243–281.

[5] Chang, M., Smith, E., Reitmaier, R., Bebenita,

M., Gal, A., Wimmer, C., Eich, B., and Franz, M.:

Tracing for web 3.0: trace compilation for the next

generation web applications, VEE ’09: Proceedings

of the 2009 ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, New

York, NY, USA, ACM, 2009, pp. 71–80.

[6] Dekorte, S.: Io: a small programming lan-

guage, Companion to the 20th annual ACM SIG-

PLAN conference on Object-oriented programming,

systems, languages, and applications, ACM, 2005,

pp. 167.

[7] Deutsch, L. P. and Schiffman, A. M.: Effi-

cient implementation of the smalltalk-80 system,

POPL ’84: Proceedings of the 11th ACM SIGACT-

SIGPLAN symposium on Principles of program-

ming languages, New York, NY, USA, ACM, 1984,

pp. 297–302.

[8] Gal, A. and Franz, M.: Incremental dynamic

code generation with trace trees, Technical Report

ICS-TR-06-16, Donald Bren School of Information

and Computer Science, University of California,

Irvine, 2006.

[9] Gal, A., Eich, B., Shaver, M., Anderson, D.,

Mandelin, D., Haghighat, M. R., Kaplan, B., Hoare,

G., Zbarsky, B., Orendorff, J., Ruderman, J., Smith,

E. W., Reitmaier, R., Bebenita, M., Chang, M.,

and Franz, M.: Trace-based just-in-time type spe-

cialization for dynamic languages, PLDI ’09: Pro-

ceedings of the 2009 ACM SIGPLAN conference on

Programming language design and implementation,

New York, NY, USA, ACM, 2009, pp. 465–478.

[10] Haupt, M. and Schippers, H.: A Machine

Model for Aspect-Oriented Programming, Proceed-

ings ECOOP ’09, LNCS 4609, Springer Berlin /

Heidelberg, 2007, pp. 501–524.

[11] Lattner, C. and Adve, V.: LLVM: A compilation

framework for lifelong program analysis & transfor-

mation, Proc. of the 2004 International Symposium

on Code Generation and Optimization (CGO’04),

2004.

[12] Rigo, A.: Representation-based just-in-time spe-

cialization and the psyco prototype for python, Pro-

ceedings of the 2004 ACM SIGPLAN symposium

on Partial evaluation and semantics-based program

manipulation, ACM, 2004, pp. 15–26.

[13] Rigo, A. and Pedroni, S.: PyPy’s approach

6 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

to virtual machine construction, Companion to

the 21st ACM SIGPLAN symposium on Object-

oriented programming systems, languages, and ap-

plications, ACM, 2006, pp. 953.

[14] Schippers, H., Haupt, M., and Hirschfeld, R.:

An implementation substrate for languages compos-

ing modularized crosscutting concerns, Proceedings

of the 2009 ACM symposium on Applied Comput-

ing, ACM New York, NY, USA, 2009, pp. 1944–

1951.

[15] Williams, K., McCandless, J., and Gregg, D.:

Portable Just-in-time Specialization of Dynamically

Typed Scripting Languages, (2010), pp. 391–398.

[16] Zakirov, S., Chiba, S., and Shibayama, E.: Op-

timizing dynamic dispatch with fine-grained state

tracking, Proceedings DLS’10, 2010. to appear.

[17] Zaleski, M., Brown, A., and Stoodley, K.: Yeti:

a gradually extensible trace interpreter, Proceedings

of the 3rd international conference on Virtual exe-

cution environments, ACM, 2007, pp. 93.

