
1

日本ソフトウェア科学会第 27 回大会 (2010 年度) 講演論文集

Modifying Ruby for Designing and

Implementing DSLs

Sebastian Günther

Domain-Specific Languages (DSL) are becoming an important tool for application developers. They help

developers to express the particular problems and solutions of a domain in a language which represents the

structure of the domain. A special kind of DSLs are internal DSL. They are built on top of an existing

programming language (the host language), by modifying the semantics and using syntactic modifications.

This type of DSL is especially popular with languages like Ruby, Python and Scala.

This paper shows a case study how to use Ruby to design a DSL for the domain of IT infrastructure

management. In this domain, servers and their applications are deployed to provide an infrastructure of

mail, database, and web servers for a client. The case study specifically shows how common object-oriented

expressions may be used to express the deploying of servers, and then stepwise implements a DSL for the

same purpose, thereby illustrating the used techniques. The techniques are then separately presented and

discuss to show the amount of options in DSL implementation.

1 Introduction

Domain Specific Languages are programming

languages or executable specification languages

that offer, through appropriate notations and ab-

stractions, expressive power tailored for a specific

problem domain or application area [32] [22]. At the

implementation level, two different types of DSLs

can be identified. Specially crafted external DSLs

require their own parsers, interpreter or compil-

ers, while internal DSLs are built on top of an ex-

isting programming language (called the host lan-

guage), allowing them to reuse the host language’s

infrastructure including IDEs and compilers [26].

DSL are a common practice in software engineer-

ing. Earlier DSL examples support financial prod-

ucts [1], signaling installations for rails [16], and

video device drivers [30]. Recent domains where

DSLs have been applied successfully are healthcare

Sebastian Günther, , School of Computer Science,

University of Magdeburg, Germany.

systems [27], and DSLs can also be used to sup-

port software development itself, for example to

model software product lines [18] or to ease feature-

oriented programming [21].

Modern programming languages like Ruby [31],

Python [25], and Scala [33] are used to implement

DSLs. This paper focuses on Ruby, a dynamic and

pure object-oriented programming language. Sev-

eral interpreters for Ruby exist. The two most

mature ones are the original MRI†1 written in C

and JRuby†2 written in Java. A complete language

specification is available: In the form of executable

tests†3, and as a formal specification draft†4. Ruby

supports multiparadigm programming with a mix

of imperative, functional, and object-oriented ex-

pressions. Object-orientation is the basis, as clas-

†1 http://www.ruby-lang.org/en/

†2 http://jruby.codehaus.org/

†3 http://rubyspec.org/wiki/rubyspec

†4 http://ruby-std.netlab.jp/draft spec/draft ruby spec-

20091201.pdf

2 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

ses and even methods are objects with (re)definable

properties. Ruby provides extensive runtime mod-

ification capabilities: Module and class redefini-

tion, method extension, saving code in the form

of proc objects or strings, evaluating code in any

place, and much more. A special property is open

classes: Even the core classes, like Array or String,

can be modified. This provides many opportunities

to customize the semantics of the Ruby program-

ming language. All these modifications are done by

metaprogramming.

Our research motivation is to design and imple-

ment internal DSL that are built on top of another

language. In a recent contribution we collected our

insights and practical experiences to form an en-

gineering process for internal DSL [17]. Following

this research, we present a practical case study in

this paper how common object-oriented expressions

can be changed to a more domain-specific language

look.

In this paper, the particular domain we are ad-

dressing is IT infrastructure. This domain com-

prises initialization, configuration, and mainte-

nance of several servers forming the infrastructure

of a client. Continuously increasing requirements

with regard to flexibility and extensibility put an

automatic approach to these tasks at a crucial level.

We designed a set of three DSLs that support var-

ious tasks in this domain. The Boot-DSL identi-

fies and installs machines, the Software-Deployment

Planning DSL (SDP-DSL) expresses relationships

between packages, and finally the Configuration

Management DSL (CM-DSL) configures and in-

stalls packages. The currently supported operat-

ing systems are Linux-based, and the hypervisors

(tools that govern the virtualization of operating

systems) are Amazon EC2†5 and VMware ESX†6.

†5 http://aws.amazon.com/ec2/

†6 http://www.vmware.com/products/esx/

Detailed description of the DSLs is available in [20].

The paper is structured as follows. In Section

2 more background information for DSLs and IT

infrastructure management is given. Section 3 ex-

plains the start and result of the case study – com-

mon object-oriented expressions and a DSL that

creates a machine (part of the Boot-DSL).Then

Section 4 provides step-by-step instructions how to

first build the DSL’s syntax and then its seman-

tics. Section 5 presents the used (and further) tech-

niques, and Section 6 concludes this paper.

2 Background

2. 1 Domain Specific Languages

DSLs can be classified along three dimensions:

appearance, origin, and their implementation.

A DSL’s appearance determines its principle

physical appearance. A graphical DSL uses ab-

stract symbols and drawings to express the rela-

tionship between domain concepts. A textual DSL

uses mostly textual characters and mathematical

symbols to express its meaning [8].

The origin of a DSL determines if the language

is developed independent and free from other lan-

guages or whether it is based on another language.

External DSLs require that their interpreter or

compiler is written specifically for this language.

This requires to develop the basic syntax, the ex-

pressions and tokens, and the languages seman-

tics. In contrast, internal DSLs use an existing

host language and build its abstractions on top

of it. Thereby, the DSLs extend the semantic or

paradigmatic capabilities of its host languages, e.g.

by applying metaprogramming, and use available

syntactic modifications, by using alternative con-

structs for grouping expressions or expressions de-

limiters. Internal DSLs are also called embedded

DSLs [14].

Finally, the implementation of a DSL determines

its technical capabilities. According to [26], DSLs

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 3

External DSL Internal DSL

Compiler

Interpreter

Extensible

Compiler

Extensible

Interpreter

Meta-

programming

Templates

Syntactical

Processing

Lexical

Processing

Preprocessors

Macros

Internal

Interpreter

Abstraction

Level

Patterns

図 1 DSL-engineering mechanisms.

can be implemented by an interpreter, preproces-

sor, or exist as a hybrid. Another option is to use

an compiled language if the DSL’s runtime adapta-

tion capabilities are not of much interest or perfor-

mance considerations are of great importance. But

these techniques are coarse grained, a more care-

ful study shows that there are several ways how a

DSL can be built. Combining several existing work

on DSL design [2] [3] [7] [11] [12]citeSpinellis2001 [26]

with our own findings, we can build the following

list of mechanisms in �Figure 1. From top to bot-

tom, the mechanisms are ordered by increasing ab-

straction levels. From left to right, we show the

availability of the mechanisms for external and in-

ternal DSLs – or for both. In this paper we are

using the more abstract mechanisms of metapro-

gramming and pattern to develop the DSL.

2. 2 IT Infrastrucure Managemant

IT infrastructure management has the goal to

systematically setup, maintain, and extend a clients

capability to host several required applications.

One of the important goals is to provide a consis-

tent application landscape in order to to lower the

cost and complexity of administration [10].

But several challenges have to be considered.

First of all, the maintenance of some software and

especially security critical software components,

e.g. operating system updates or antivirus soft-

ware, must be done by experts in a timely manner

to ensure the integrity of the IT Infrastructure [4].

Second, when an infrastructure is setup for the first

time, its parts and alternative applications may not

be known to the user. And third, the increasing

volatility of application requirement changes and

the need for continuous adaptation of the infras-

tructure made system administration a quite com-

plex task in the past few years [13].

Since manual configuration often results in errors

[4], the need to install and configure software auto-

matically on different machines arises. Our anal-

ysis revealed that several applications are actively

engaging this problem. We shortly introduce a se-

lection of three tools.

• Cfengine – A configuration management tool

developed in 1993 by Burgess at the Oslo Uni-

versity College [5] [6]. It is an on-going research

project and commercial product used by sev-

eral companies. Cfengine assures valid system

states that are expressed as policies. A pol-

icy can be applied to a single system or to all

systems that are managed by Cfengine. Fur-

thermore, a system can operate autonomously

from the centralized policies. The tool uses

an external DSL to define centralized specifi-

cations.

• Puppet – Puppet†7 is open an source and a

more recent approach of configuration manage-

ment implemented in Ruby. Puppet is imple-

mented following the client-server architecture:

A central server provides dynamic configura-

tions to its clients. Those configurations define

†7 http://reductivelabs.com/products/puppet/.

4 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

a valid state of a client system. Clients can ei-

ther pull from the server, or the server pushes

configurations to them.

• Chef – Chef†8 is an open source configuration

management tool written in Ruby. Opposing

to the other examples, Chef uses an internal

DSL to express configurations. Clients and

server use the OpenID standard [28] for au-

thentication, and then use a SSL-secured com-

munication to exchange configuration informa-

tion. The configuration of machines is stored

as cookbooks which contain several attributes

for an installation together with application-

specific installation scripts.

While these tools cover a fair amount of func-

tionality for the provision of software, they are re-

lying on an existing infrastructure to work with.

We think that the provision of the infrastructure

in terms of servers, their operating systems and

the particular role they play in an infrastructure

is as important as the provision of software pack-

ages. That’s our major motivation to bring both

parts together in one DSL. The next section ex-

plains how to combine these requirements in the

form of a DSL.

3 Machine Configuration – Object-

Oriented Expressions vs. a DSL

Although we developed several DSL, we will fo-

cus on the Boot-DSL, which is used to express a vir-

tual or physical machine declaration, for the follow-

ing explanations. We shortly outline the most im-

portant application entities for te configuration of

a machine, then show how common object-oriented

expressions may be used to create machines, and

finally how a DSL for the same purpose looks like.

†8 http://www.opscode.com/chef/

3. 1 Application Outline

�Figure 2 shows the most commonly used en-

tities of the application. We see the Client who is

identified with his id and who has a private key to

access its associated Machines via SSH. Each machine

is also identified by an id, and it has among several

other entities a hypervisor that is used to create the

machine as well as a public IP which can be used to

access the machine via the internet. Machines are

generic entities for which hypervisor-specific classes

exist. For example, the EC2Machine contains attributes

like the identification of an Amazon Machine Image

(AMI) id and the corresponding source file. Several

Packages, which contain a description, version, and a

set of available features (configuration options), can

be installed on a machine. While the package rep-

resent a generic entity, the concrete Installation fills

the configuration options of a package to install it

for a specific machine.

Machine

-id

-uuid

-hostname

-hypervisor

-status

-public_ip

-private_key

-os

-name

-plattform

-features

-license

-description

-version

Package

-id

-activated_features

-configuration

Installation

-login

-private_key_name

-private_key_file

-allowed_actions

-allowed_views

Client

-ami_id

-ami_source

-security_group

-size

EC2Machine

図 2 Application outline.

3. 2 Object-Oriented Expressions

�Figure 3 shows an example how machines can

be created using common object-oriented methods.

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 5�
1 app_server = EC2Machine.new(" Application Server ")

2 app_server.set_owner (" sebastian.guenther@ovgu.de")

3 app_server.set_ami ("ami -dcf615b5 ")

4 app_server.set_ami_source (" alestic/debian -5.0-len ...")

5

6 hypv = EC2Hypervisor.new(app_server)

7

8 resource_bundle = Resource.Bundle.new

(CpuResource.new(), RamResource.new())

9 app_server.set_monitored_resources(resource_bundle)� �
図 3 Common object-oriented expressions for

creating and configuring an EC2 machine.

Beginning in Line 1, we see how a new machine

object is instantiated. In the constructor, the name

of the machine is given, and in Line 2 the owner

is configured. Line 3 and 4 contain some EC2-

hypervisor specific configurations. Then, Line 5

creates a new hypervisor object that receives the

machine object and uses its’ configured resources

to create the machine. Then, Line 7 and 8 config-

ure a set of monitored resources (CPU and RAM)

which are added to the machine.

3. 3 DSL Expressions

Although these expressions are easy to read for

people experienced with the Ruby programming

language, the current form has some limitations.

The explicit imperative form prescribes a fixed or-

der of expressions: First the machine, then the hy-

pervisor, and then the resources are added. The

object-oriented form also explicitly ties developers

to manually create the objects and associate them

by handling object references. Although this ex-

ample is short, it is also difficult to see that all

expressions actually belong together. For example

the explicit link between the resource bundle and

the application server is “hidden” in Line 9.

These shortcomings can be encountered by

choosing a more declarative form for expressing the

same configuration, as shown in �Figure 4.

�
1 app_server = machine "Application Server" do

2 type EC2

3 owner "sebastian.guenther@ovgu.de"

4 hypervisor do

5 ami "ami -dcf615b5"

6 source "alestic/debian -5.0-lenny -base -2009..."

7 end

8 monitor :cpu , :ram

9 end� �
図 4 Several DSL expressions containing the

same set of configuration ad in �Figure 3.

These expressions are completly Ruby code.

They use the entities of the domain and their prop-

erties mainly as methods used lik keyword. Re-

lated expressions are grouped together in blocks,

and the syntax renounces parentheses or brackets

to delimit expressions. Therefore, the DSL helps

to declaratively express the common attributes of

a machine, such as the internal hostname, public

ip, the owner, and more. Attributes are checked

for completeness and errors. If executed with cor-

rect and complete values, the particular-hypervisor

provider is contacted automatically to create the

machine and initially bootstrap the operating sys-

tem for further connections, like using a SSH-based

access. The effort to initially setup (boot) a ma-

chine is thus reduced to the provision of correct

attributes.

We now want to see how to change the object-

oriented expressions to this particular DSL format.

4 Development of the DSL

This section details the DSL development. At

first we present the list of design goals stemming

from common DSL design principles. Then the

DSL is implemented by first designing the general

syntax, then refining the syntax by removing un-

needed tokens and using syntactic modifications,

and finally by providing the semantics of the lan-

guage using metaprogramming and open classes.

6 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

We close this section by a short review of the de-

sign goals and achievements.

4. 1 DSL Design Goals

Several works about DSL express important de-

sign principles like appropriate notations [32], com-

pression to form for a concise language [24] [34],

and absorption to express domain commonalities

implicitly in the DSL [29]. With respect to these

principles and forgoing object-oriented expressions,

we compile the following goals for the DSL:

1. Remove unneeded tokens, such as parentheses,

to provide the appropriate notation.

2. Absorb the explicit object creation.

3. Compress the relationships of objects with the

help of nested blocks.

4. Use declarative expressions to describe the in-

tent, not imperative expressions detailing the

algorithm.

4. 2 Syntactic Modifications

4. 2. 1 Block Expression

Ruby’s support for closures is used to provide

the syntactical grouping of expressions and the re-

lationships between the entities. Closures are com-

monly called blocks in Ruby. Through nesting

they allow to visually arrange related expressions

together, or in other words to compress the rela-

tionship declaration. Combining the machine and

the hypervisor declaration thus can take the form

shown in �Figure 5.

4. 2. 2 Keyword Methods

Inside the block, we can use methods to configure

the properties. Ruby allows to skip the explicit def-

inition of receivers. Expressions will be executed in

the context of the receiver they are specified in. Ad-

ditionally, blocks can be executed in any context,

often concretely determined at runtime. Therefore,

the properties can be defined like shown in �Figure

6, using a more declarative appearance then their

�
1 machine {

2 #...

3 hypervisor {

4 #...

5 }

6 }� �
図 5 Using block expressions to group related

expressions and object relationships together.

object-oriented counterparts, and thus describing

the intent of the expression better.

�
1 machine {

2 owner (" sebastian.guenther@ovgu.de")

3 hypervisor {

4 ami("ami -dcf615b5 ")

5 }

6 }� �
図 6 Using keyword methods for more

declarative expression of object properties.

4. 2. 3 Clean Method Calls

Although the current form better groups related

expressions and is more declarative then the ex-

plicit object-oriented notation, it is still compli-

cated to read. Persons familiar with the domain

will probably have a hard time to read the state-

ments in �Figure 6, because the parentheses have

no meaning in the domain. To strengthen the us-

age of appropriate notation, Ruby facilitates to use

words instead of the curly brackets in block expres-

sions, allows to remove parentheses, and provides

(by default) “invisible” line delimiters in the form

of the newline character instead of explicit tokens

such like semicolons in Java. Using these facilities,

expressions as shown in �Figure 7 can be used.

4. 3 Semantic Modifications

The usage of these expressions requires some se-

mantic modifications on top of the existing applica-

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 7�
1 machine do

2 owner "sebastian.guenther@ovgu.de"

3 hypervisor do

4 ami "ami -dcf615b5"

5 end

6 end� �
図 7 Clean method calls helps to eliminate

parentheses and similar non-domain related

symbols.

tions as well. Please note that in normal develop-

ment these changes would go hand-in-hand with the

syntactic changes as well, but for better explaining

them, we have moved them to this place.

For the specific example we choose, the changes

are moderate since the expressions are mostly used

to cover object instantiation, property definition,

and building relationships between the objects.

The first part is to implement the methods that

are used to introduce the blocks. For example the

machine method receives an argument (as used in the

original DSL-expression in �Figure 4, but left out

in the past examples) and a surrounding block.

Here is an implementation stub (cf. �Figure 8)

�
1 def machine(name , &block)

2 m = Machine.new

3 m.set_name(name)

4 m.instance_eval &block

5 retunrn m

6 end� �
図 8 Implementing the machine method that

creates a Machine instance and executes all

methods of the block in the context of the

instance.

Block expressions, stemming from the functional

programming paradigm, are an example of Ruby’s

support for multiparadigm-programming: Instead

of imperatively describing a set of commands, the

declarative expression of a desired object state suf-

fices. The block is actually executed in Line 5 with

the instance_eval method. It will execute the keyword

methods in the context of the implicitly created

machine instance. Note that the order of expres-

sions inside the block is not relevant as ling as all

required attributes are provided. The DSL users

can structure the expressions according to their in-

dividual preferences.

The last change we discuss is proving the key-

word methods. Back in �Section 3, we see that

the methods defined in the application are called

for example set_owner instead of owner. We could im-

plement these methods by hand – or just combine

Ruby’s metaprogramming support with its reflex-

ive capabilities. We implement a method that iter-

ates over the methods defined by Machine and if they

start with the string set_, then we provide an alias.

�Figure 9 shows the implementation.�
1 def set_alias_method(clazz)

2 methods = Object.instance_methods -

clazz.instance_methods

3 methods.each do |method_name|

4 if method_name.match /^set_ (.+)/ then

5 clazz.define_method #...

6 end

7 end� �
図 9 Defining the DSL methods on top of the

objects already implemented methods.

4. 4 Design Goals Review

Considering the design goals, we can see to have

achieved them like follows.

• Remove unneeded tokens, such as parentheses,

to provide the appropriate notation – This goals

was achieved by using clean method calls.

• Absorb the explicit object creation – Using the

Keyword Arguments method machine absorbs the

object creation in the method body.

8 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

• Compress the relationships of objects with the

help of nested blocks – The hypervisor method

is implemented similarly to machine, and it is

included in the middle of the machine block,

thereby providing the nesting.

• Use declarative expressions to describe the in-

tent, not imperative expressions detailing the

algorithm – Inside the blocks, keyword meth-

ods are used that just declaratively determine

an attribute property.

Thus the DSL’s design goals are fulfilled.

5 Techniques for Implementing Inter-

nal DSLs

This section lists both the used techniques from

the example and related techniques. Although

shown in the context of Ruby, they are not ger-

mane to this language. Our experiences and ongo-

ing experiments with Python and Scala show that

the techniques can be used in several languages.

5. 1 Syntactic Changes

The syntax plays a vital role for a DSL. The task

of syntactic changes is to provide the DSL with lay-

out that is suitable for the domain, but it still needs

to be compatible with the interpreter. Among the

goals of such changes are the removal of all tokens

that have no meaning in the domain (such as brack-

ets or other delimiters) by using syntactic alterna-

tives for existing expressions, and to combine mod-

ules, classes, and methods to represent the domain

concepts. Here are the detailed techniques.

• Block Expressions – Are used for several pur-

poses. The most important one is to visually

group related expressions in one block. Nested

blocks can also be used to represent the natu-

ral hierarchy or relationships of objects. And

finally, because the block can be executed in

any context, method calls don’t need to spec-

ify the receiver.

• Keyword Methods – Ruby is a language with a

low number of reserved keywords. Many meth-

ods that look like part of the language are actu-

ally method calls. This property can be used

to add DSL keywords to the language which

are actually methods.

• Clean Method Calls – The importance of meth-

ods has been explained before. In order to

make them look like real language keywords,

using them without brackets is crucial.

• Method Alias – In order to customize an exist-

ing library or even the Ruby programming lan-

guage itself, provided methods can be aliased

to a name better suiting the domain. Ruby

even has a method for this purpose: alias_method.

• Operator Expression – Using mathematical

symbols like *, <, &&, or % are very important for

some domains. In Ruby, these are just method

calls defined on the left-hand receiver. Defin-

ing them for the domain entities improves the

domain-specific appearence for them.

5. 2 Semantic Modifications

Of course the objects and methods added by the

syntactical extensions of a DSL need to be imple-

mented. But not all changes are trivial or they

would require an enormous manual effort (like pro-

viding the alias methods for the Machine entity earlier

on). Deep changes can be done with one or more

of the following methods.

• Metaprogramming – Metaprogramming refers

to “programs that write [other] programs” [15].

A metaprogram uses explicit or implicit knowl-

edge about the structure of a program to

change it. Once a program has been loaded

initially, changing it by adding new entities or

methods is a metaprogrammatic approaches.

Such changes are very common in dynamically

typed languages like Ruby, providing runtime-

adaptation to the execution environment.

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 9

• Metaobject Protocol – The origin of the term

metaobject protocol is the implementation of

object oriented programming in the functional

language Lisp [23]. According to this refer-

ence, the protocol is defined as all the meth-

ods that govern the allocation and instantia-

tion of objects, including the semantics such

as variable declaration, visibility, method asso-

ciation, or namespace. Ruby implements the

metaclasses Class and Method that govern the cre-

ations of these objects. They can be changed

using metaprogramming and thus define a dif-

ferent behavior, like the replacement of object

instantiation by object cloning.

• Open Classes – Defines the ability to change

the behavior of language given classes. A good

example is to add new operators and methods

to built-in data structures that play a role in

DSL, like Hashes or arrays. Furthermore, if a

metaprotocol for the language entities has to

be provided and changes can be inferred, open

classes are a prerequisite.

• Multi-Paradigm Support – In essence multi-

paradigm programming is the capability of ap-

plication developers to use those paradigms for

writing programs that best fits the specific pur-

pose [9]. Object-oriented programming is the

dominant form of today’s programming lan-

guage and is a natural way to express the com-

plex hierarchy of objects. But other paradigms

are important too, like the provision of small

anonymous functions for custom sorting of col-

lections or the sideffect-free computation of re-

sults – this is the domain of functional pro-

gramming. Finally to better modularize the

application, aspect-oriented programming and

feature-oriented programming can be invoked

too. In [19], we showed an example how these

paradigms can be used together effectively.

6 Conclusion

This paper showed how to transform object-

oriented expressions to a DSL. It showed how to use

the facilities of the Ruby programming language to

gradually change the syntax to use blocks for vi-

sually structuring or expressions and object rela-

tionships, how to use keywords for setting prop-

erties, and how syntactic alternatives and remov-

ing parentheses leads to better readable expres-

sions. These changes were accompanied by seman-

tic modifications too. Constructors were added to

serve as constructors, blocks stemming from func-

tional programming used to free the order of ex-

pressions but grouping them visually, and Ruby’s

reflective and metaprogramming capabilities were

rendered to form aliases for existing methods in the

objects, greatly reducing the overall manual effort

to change the implementation. Ultimately the DSL

overcomes much of the weaknesses of the more com-

mon object-oriented expressions: (i) No explicit ob-

ject creation must occur, (ii) the relationships of ob-

jects are expressed by the nesting of blocks, (iiI) in-

stead of providing imperative commands, declara-

tive expressions using functional-programming con-

cepts clearly express the intent, and (iv) the decla-

rations can be extended or compressed to any de-

gree. The overall results are more readable and

more maintainable expressions.

Acknowledgements

We thank Salikh Zakirov for helpful comments

on an earlier draft of this paper. The original work

on the DSL has been done with Maximilian Haupt

and Matthias Splieth as indicated in [20].

参 考 文 献

[1] Arnold, B. R. T., Deursen, A. V., and Res, M.:

Algebraic Specification of a Language for describ-

ing Financial Products, ICSE-17 Workshop on For-

mal Methods Application in Software Engineering,

10 日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集

IEEE, 1995, pp. 6–13.

[2] Bahlke, R. and Snelting, G.: The PSG System:

From Formal Language Definitions to Interactive

Programming Environments, ACM Transactions on

Programming Languages and Systems (TOPLAS),

Vol. 8, No. 4(1986), pp. 547–576.

[3] Ballance, R. A., Graham, S. L., and De Vanter,

M. L. V.: The Pan Language-Based Editing System

For Integrated Development Environments, ACM

SIGSOFT Software Engineering Notes, Vol. 15,

No. 6(1990), pp. 77–93.

[4] Brown, A. B.: Oops! Coping with Human Error

in IT Systems, Queue, Vol. 2, No. 8(2004), pp. 34–

41.

[5] Burgess, M.: Cfengine: a Site Configura-

tion Engine, USENIX Computing systems, Vol. 8,

No. 3(1995), pp. 309–402.

[6] Burgess, M.: A tiny Overview of Cfengine:

Convergent Maintenance Agent, Proceedings of the

1st International Workshop on Multi-Agent and

Robotic Systems, MARS/ICINCO, Citeseer, 2005.

[7] Consel, C. and Marlet, R.: Architecturing Soft-

ware Using A Methodology for Language Develop-

ment, Proceedings of the 10th International Sym-

posium on Programming Language Implementation

and Logic Programming (PLILP), Lecture Notes in

Computer Science, Vol. 1490, Berlin, Heidelberg,

New York, Springer, 1998, pp. 170–194.

[8] Cook, S., Jones, G., Kent, S., and Wills, A. C.:

Domain Specific Development with Visual Studio

DSL Tools, Addison-Wesley Professional, Amster-

dam, Netherlands, 2007.

[9] Coplien, J. O.: Multi-paradigm design for C++,

Addison-Wesley, Boston, San Francisco, et al., 1999.

[10] Couch, A., Wu, N., and Susanto, H.: Toward a

Cost Model for System Administration, Proceedings

of LISA ’05: Nineteenth Systems Administration

Conference, 2005, pp. 125–141.

[11] Cunningham, H. C.: A Little Language for

Surveys: Constructing an Internal DSL in Ruby,

Proceedings of the 46th Annual Southeast Regional

Conference (ACM-SE), New York, ACM, 2008,

pp. 282–287.

[12] Czarnecki, K. and Eisenecker, U. W.: Gener-

ative Programming: Methods, Tools, and Applica-

tions, Addison-Wesley, Boston, San Franciso et al.,

2000.

[13] Delaet, T. and Joosen, W.: PoDIM: A language

for high-level configuration management, Proceed-

ings of the Large Installations Systems Administra-

tion (LISA) Conference, Berkeley, CA, 2007.

[14] Elliott, C., Finne, S., and De Moor, O.: Com-

piling embedded languages, Journal of Functional

Programming, Vol. 13, No. 03(2003), pp. 455–481.

[15] Flanagan, D. and Matsumoto, Y.: The

Ruby Programming Language, O-Reilly Media, Se-

bastopol, 2008.

[16] Groote, J. F., Van Vlijmen, S. F. M., and Koorn,

J. W. C.: The Safety Guaranteeing System at

Station Hoorn-Kersenboogerd, Proceedings of the

Tenth Annual Conference on Computer Assurance

Systems Integrity, Software Safety and Process Se-

curity (COMPASS ’95), IEEE, 1995, pp. 57–68.

[17] Günther, S.: Agile DSL-Engineering and Pat-

terns in Ruby, Technical report (Internet) FIN-018-

2009, Otto-von-Guericke-Universität Magdeburg,

2009.

[18] Günther, S.: Engineering Domain-Specific Lan-

guages with Ruby, 3. Workshop des Centers

for Very Large Business Applications (CVLBA),

Arndt, H.-K. and Krcmar, H.(eds.), Aachen,

Shaker, 2009, pp. 11–21.

[19] Günther, S.: Multi-DSL Applications with

Ruby, IEEE Software, (2010), pp. available

as preprint http://doi.ieeecomputersociety.org/-

10.1109/MS.2010.91, to appear in Oct. 2010.

[20] Günther, S., Haupt, M., and Splieth, M.: Uti-

lizing Internal Domain-Specific Languages for De-

ployment and Maintenance of IT Infrastructures,

Technical report (Internet) FIN-004-2010, Otto-

von-Guericke-Universität Magdeburg, 2010.

[21] Günther, S. and Sunkle, S.: Feature-Oriented

Programming with Ruby, Proceedings of the First

International Workshop on Feature-Oriented Soft-

ware Development (FOSD), New York, ACM, 2009,

pp. 11–18.

[22] Hudak, P.: Modular Domain Specific Languages

and Tools, Proceedings of the 5th International

Conference on Software Reuse (ICSR), Devanbu,

P. and Poulin, J.(eds.), 1998, pp. 134–142.

[23] Kiczales, G., Rivières, J. d., and Bobrow, D. G.:

The Art of the Metaobject Protocol, The MIT Press,

Cambridge, London, 4th edition, 1995.

[24] Ladd, D. A. and Ramming, J. C.: Two Ap-

plication languages in software production, VH-

LLS’94: Proceedings of the USENIX 1994 Very

High Level Languages Symposium Proceedings on

USENIX 1994 Very High Level Languages Sympo-

sium Proceedings, Berkeley, CA, USA, USENIX As-

sociation, 1994, pp. 10–10.

[25] Lutz, M.: Learning Python, O’Reilly Media, Se-

bastopol, 4th edition, 2009.

[26] Mernik, M., Heering, J., and Sloane, A. M.:

When and How to Develop Domain-Specific

Languages, ACM Computing Survey, Vol. 37,

No. 4(2005), pp. 316–344.

[27] Munnelly, J. and Clarke, S.: ALPH: A

Domain-Specific Language for Crosscutting Perva-

sive Healthcare Concerns, Proceedings of the 2nd

Workshop on Domain Specific Aspect Languages

(DSAL), New York, ACM, 2007.

[28] Recordon, D. and Reed, D.: OpenID 2.0: A

Platform for User-Centric Identity Management,

(2006), pp. 11–16.

[29] Tanter, É.: Contextual Values, Proceedings

of the 2008 Symposium on Dynamic Languages

日本ソフトウェア科学会第 27回大会 (2010年度)講演論文集 11

(DLS), ACM, 2008.

[30] Thibault, S., Marlet, R., and Consel, C.:

A Domain-Specific Language for Video Device

Drivers: from Design to Implementation, (1997),

pp. 11–26.

[31] Thomas, D., Fowler, C., and Hunt, A.: Pro-

gramming Ruby 1.9 - The Pragmatic Programmers’

Guide, The Pragmatic Bookshelf, Raleigh, 2009.

[32] Van Deursen, A., Klint, P., and Visser, J.:

Domain-Specific Languages: An Annotated Bibli-

ography, ACM SIGPLAN Notices, Vol. 35(2000),

pp. 26–36.

[33] Wampler, D. and Payne, A.: Programming

Scala, O’Reilly Media, Sebastopol, 2009.

[34] Weinberg, G. M.: The Philosophy of Program-

ming Languages, John Wiley & Sons, New York,

1971.

