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Unification algorithm based on µ equivalence

Fumihiko Yamaguchi

1 Introduction

Reasoning on programs will be theoretical funda-

mentals for automated program verification or syn-

thesis. And unification is basic operation of reason-

ing, which find substitutions equalizing two objects

such as, in this case, two programs. Thus, an uni-

fication method that apply to program expressions

is desired.

λ expression is abstract expression of function,

i.e. functional program. And since, it may be con-

venient for a reasoning system to treat an object

as a term, the target object in this paper which is

intended to denote a program, is expressed in func-

tional way. In the next section, a formula is defined

to denote the target object.

Unification and higher order unification has been

actively researched [2] [3]. Unification methods on

βη equivalence of λ formulae have also been re-

searched. Since recursive definition is essential to

computation, many recursive programs will appear

in a reasoning. Therefore, the unification method

will be applied to many of them. However, when

simply typed λ formulae are treated, the fixed point

operators cannot be expressed. Even if two recur-

sive programs expressed with fixed point operators

are unified by an unification method on βη equiv-

alence, it’s inefficient to try to unify each of many

fixed point operators. Thus, simple and special ex-

pression of fixed point is desired.

As βη conversion without type system is power-
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ful enough to be a Turing machine, equalizing two

λ formulae on βη equivalence is difficult. Though

we can represent recursive functions by fixed point

operators such as Y operator, decidability of uni-

fication algorithm is desired, when the unification

method is considered as a part or a device of reason-

ing system. To simply denote recursive function, we

employ µ formulae, such that µv.F represents the

(minimal) solution of the equation v = F . From

the point of tree automaton, and the point that

a program is a grammar of the execution tree, a

regular grammar which has finite number of rules

corresponds to a program of finite length. And it is

known that µ calculus corresponds to finite state

tree automata [4]. Even though a regular gram-

mar derives a tree of arbitrary depth, two regular

grammars are identifiable [5]. Therefore, unifiabil-

ity problem on programs will be decidable.

This paper provides an unification method,

whose domain includes fixed point expression, in

order to treat recursive functions. Thus, the fixed

points should be functions, and the domain of the

unification should include function expression. In

this paper, fixed points are expressed by µ for-

mulae, and functions are expressed by λ formulae.

And for λ formulae, this paper does not treat βη

equivalence, but α equivalence.

In most unification methods, when a variable v

and a formula F are unified, a substitution F for v

is obtained. And when v occurs freely in F , some

occur-check neglects this substitution. However,

the case that a variable v and a formula F should

be unified is the case that an equation such that

v equals to F is obtained. And the formula which

should be substituted to v is the solution of this

equation. As with µ formulae, the solution is rep-
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resented by µv.F . As a special case when v does

not occur freely in F , µv.F equals to F . Thus, it

seems natural to obtain a substitution µv.F for v

rather than a substitution F for v.

This paper is constructed as follows. The section

2 provides the definition of formulae and the no-

tation of substitution. And then the operation of

unification is defined in the section 3. Some dis-

cussion are provided in section 4, and the section 5

conclude this paper.

2 Preliminaries

Let V be a countable infinite set of atomic sym-

bols. Each element of V is called a variable. Let C

also be a countable infinite set of atomic symbols

and V ∩ C be empty. Each element of C is called a

constant.

Let F be the least set which satisfies following

conditions.

• v ∈ F when v ∈ V.

• c ∈ F when c ∈ C.

• (λv.F ) ∈ F when v ∈ V and F ∈ F . This

construction of formula is called λ abstraction.

• (µv.F ) ∈ F when F ∈ F , v ∈ FV(F ) and

F 6≡ v. This construction of formula is called

µ abstraction.

• (FG) ∈ F when F ∈ F and G ∈ F . This

construction of formula is called application.

Each element of F is called a formula. The for-

mula F in (λv.F ) or (µv.F ) is called the body of

this abstraction.

Parentheses are abbreviated unless ambiguity un-

der the strength of connectives defined as follows:

application is associative to the left, and applica-

tion is stronger than abstraction. Moreover, outer

most paretheses are abbreviated.

Let binary relation ≡∈ F × F be the least set

which satisfies that F ≡ F for all F ∈ F . In this

paper, the binary relation ≡ represents syntactical

equivalence, i.e., for example, (λx.x) ≡ λx.x and

λx.x 6≡ λy.y.

FV is a map from a formula to a set of variables

defined as follows:

• FV(v) is {v}, where v ∈ V

• FV(c) is empty set, where c ∈ C

• FV(λv.F ) is FV(F ) − {v}, where F ∈ F and

v ∈ V

• FV(µv.F ) is FV(F ) − {v}, where F ∈ F and

v ∈ V

• FV(FG) is FV(F ) ∪ FV(G), where F, G ∈ F

For a given formula F , each element of FV(F ) is

called a free variable of F . And BV is also a map

from a formula to a set of variables defined as fol-

lows:

• BV(v) is empty set, where v ∈ V

• BV(c) is empty set, where c ∈ C

• BV(λv.F ) is BV(F ) ∪ {v}, where F ∈ F and

v ∈ V

• BV(µv.F ) is BV(F ) ∪ {v}, where F ∈ F and

v ∈ V

• BV(FG) is BV(F ) ∪ BV(G), where F, G ∈ F

For a given formula F , each element of BV(F ) is

called a bound variable of F .

SF is a map from a formula to a set of formulae

which is the least set that satisfies following condi-

tions:

• F ∈ SF(F ), where F ∈ F

• SF(F ) ⊂ SF(λx.F ), where F ∈ F and v ∈ V

• SF(F ) ⊂ SF(µx.F ), where F ∈ F and v ∈ V

• SF(F ) ∪ SF(G) ⊂ SF(FG), where F, G ∈ F

For a given formula F , each element of SF(F ) is

called a sub formula of F . And SF(F ) − {F} is

called the set of proper sub formulae of F .

For a given formula F , |F | is a natural number

called the size of F , which is defined as follows:

• |a| is 1 where a ∈ V ∪ C

• |λv.F | is |F | + 1 where v ∈ V and F ∈ F

• |µv.F | is |F | + 1 where v ∈ V and F ∈ F

• |FG| is |F | + |G| where F, G ∈ F

A substitution is an operation which replace

free variables in a formula into certain formu-

lae. Let v1, v2, · · · , vn ∈ V and F1, F2, · · · , Fn ∈

F , a substitution which replace each vi into Fi

for 1 ≤ i ≤ n respectively is represented by

[F1/v1, F2/v2, · · · , Fn/vn]. Especially, in the case

that n = 0, i.e. a substitution includes no pair

of formula and variable, the substitution is called

empty and represented by [ ]. A substitution is

represented by a lower case greek letter such as

θ, ρ, · · ·, when there is no need to describe the de-

tail. The formula obtained by applying a substi-

tution θ to a formula F is represented in substi-

tution suffixed formula such as (Fθ). To abbrevi-

ate parentheses, substitution is associative to the

left and the connectivity strength of substitution

is defined as the strongest. Thus, for example,

λx.FGθρ ≡ (λx.(F ((Gθ)ρ))).
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Let θ be a substitution [F1/v1, F2/v2, · · · , Fn/vn],

the set of free variables of substitution is defined

such that FV(θ) is
⋃

1≤i≤n
FV(Fi).

3 unification

The basic notion of equivalence for µ formulae is

that µv.F is equivalent to F [µv.F/v].

Equivalence between formulae is returned into

the equivalences of their sub formulae: for exam-

ple, FG and F ′G′ are equivalent when F and F ′ are

equivalent and G and G′ are equivalent. Dividing a

formula into its proper sub formulae is decreasing

the complexity of the problem. However, returning

µv.F into F [µv.F/v] seems increasing the complex-

ity. The main idea is that two formulae, which are

tried to be identified, is memorized, and when the

identifying process goes to the same equation, the

formulae are identified because there is no witness

of difference.

When a variable v and a formula F should be

identified, a substitution, i.e. an unification, is ob-

tained. Here, what should be replaced for v is the

solution of equation such that v equals to F . Thus,

what is replaced for v is µv.F .

α equivalence of µ formulae is denoted by return-

ing µv.F into F [µv.F/v] because the variable v in

F is replaced to the formula which has no free oc-

curence of v. However, there need some rules for α

equivalence of λ formulae. When λx.F and λy.G

should be identified, a fresh variable z is required

and the problem is returned into identification of

F [z/x] and G[z/y]. It seems that the variable z oc-

curs freely in F [z/x] and G[z/y], however no sub-

stitution which replace this z is allowed because the

process is in the context in which z is bound. Thus,

the set of bound variables needs to be memorized as

a context. Each variable in this set is called locked.

The binary relation on F , equivalence with sub-

stitution denoted by = is defined in Fig. 1 in terms

of sequent calculus. The left hand side of a sequent

consists of three elements: a substitution, a set of

pairs of formulae and a set of locked variables. The

set of pairs of formulae is for memorizing the two

formulae to be identified without further proof. At

least one formula of the pair is µ abstraction. And

the set of pairs is denoted by Γ. The set of locked

variables is denoted by ∆. When and only when a

proof tree whose root is θ; ;`F = G exists, i.e. Γ

and ∆ are empty, F and G are called unifiable with

θ. Here the unifier θ is obtained. Especially, when

θ is empty, i.e. [ ]; ;`F = G has a proof tree, F and

G are called equivalent.

The construction of formulae forbid the existence

of µx.x. Since µv.F is considered as the solution

of an equation such that v equals to F , µx.x de-

notes the solution of a trivial equation such that x

equals to x. This means that the variable x can be

assinged to any formula. Indeed, µx.x equals to any

other formula under the definition of equivalence,

shown as follows.

[ ]; 〈µx.x, F 〉;`µx.x =F

[ ]; ;`µx.x =F

Moreover, µ abstaction requires that the bound

variable occurs freely in its body. Suppose that

µ formulae with no free occurrence of the bound

variable in its body is allowed, i.e. in the case that

v 6∈ FV(F ), because F [µv.F/v] equals to F , µv.F

is equivalent to F ; especially, µx.µy.x is equiva-

lent to the forbidden formula µx.x and there may

be many forbidden formulae. On the contrary, as

in the definition of formulae, when the body of µ

abstraction includes at least one free occurence of

the bound variable in its body, and the body is not

the variable itself, then the body have to be some

other construction. Therefore, a formula which can

be identified with the µ formula should have the

same construction. This means that not any for-

mula equals to the µ formula.

The operation of above unification is terminat-

ing. Though the rule for µ abstraction seems to

break the sub formula property, the set of formu-

lae in a proof is finite because µv.F into F [µv.F/v]

is applied only when the target formula is µ ab-

straction. The rules of unification traverse the con-

struction of the formulae to be identified. When

F is deconstructed into F itself in n steps, and G

in m steps, F = G returns into F = G in at most

nm steps with memorizing the pair 〈F, G〉. And

n ≤ |F | and m ≤ |G|. Therefore, unification is

decidable.

The definition of unification identifies two for-

mulae when there is no witness of difference

for equivalence, especially when both formulae

are µ abstraction. For example, the proof

tree of θ; ;`µx.Fx= µx.Gx include the proof of
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θ; Γ; ∆`F = F where F ∈ F

θ; 〈F ′, G′〉, Γ; ∆`F = G where F =α F ′ and G =α G′

[µv.G/v] ◦ θ; Γ; ∆` v = G where v ∈ FV(G) − ∆, FV(G) ∩ ∆ is empty and G 6≡ v

[G/v] ◦ θ; Γ; ∆` v =G where v ∈ V − ∆ −FV(G) and FV(G) ∩ ∆ is empty

[µv.F/v] ◦ θ; Γ; ∆`F = v where v ∈ FV(F ) − ∆, FV(F ) ∩ ∆ is empty and F 6≡ v

[F/v] ◦ θ; Γ; ∆`F = v where v ∈ V − ∆ −FV(F ) and FV(F ) ∩ ∆ is empty

θ; Γ; z, ∆`F [z/x] =G[z/y]
where z ∈ V and z 6∈ FV(F ) ∪ FV(G)

θ; Γ; ∆`λx.F = λy.G

θ; 〈µx.F, G〉, Γ; ∆`F [µx.F/x] = G

θ; Γ; ∆`µx.F = G

θ; 〈F, µy.G〉, Γ; ∆`F =G[µy.G/y]

θ; Γ; ∆`F = µy.G

θ1; Γ; ∆`F1 =G1 θ2; Γ; ∆`F2θ1 =G2θ1

θ1 ◦ θ2; Γ; ∆`F1F2 =G1G2

Fig. 1 unification

µx.Fx =µx.Gx in its sub tree as follows, where

x 6∈ FV(F ) ∪ FV(G) :

...

θ; P1, P2;`F = G θ; P1, P2;`µx.Fx= µx.Gx

θ; P1, P2;`F (µx.Fx)=G(µx.Gx)

θ; P1;`F (µx.Fx)=µx.Gx

θ; ;`µx.Fx= µx.Gx

where P1 ≡ 〈µx.Fx, µx.Gx〉

P2 ≡ 〈F (µx.Fx), µx.Gx〉

Simultaneously, F and G are on the equalizing

process which is indicated by vertical dots above.

This example shows that the witness of difference

is seeked through the other sub formulae than the

variable bound by the µ abstraction.

4 Discussion

In this section, some discussions around the pro-

posed unification is provided.

4. 1 Scope management

Introducing fresh variables is not enough to pre-

vent from yielding a substitution of a formula in-

cluding a free variable which is bound by the exter-

nal context. For example, λx.xy and λx.xx are not

unifiable because x is bound in λx.xx. The failure

proof of this equation is as follows:

θ; ; z ` z = z

fail

θ; ; z ` y = z

θ; ; z `(xy)[z/x]=(xx)[z/x]

θ; ;`λx.xy =λx.xx

The sequent θ; ; z ` y = z fails because both two

possibility fail as follows. One is trying to obtain

substitution [z/y], however FV(G)∩∆ is non empty

where in this case G ≡ z and ∆ is {z}. The other is

trying to obtain [y/z], however v 6∈ V −∆−FV(F )

where in this case v ≡ z and ∆ is {z}. In this paper,

the scope of variable is strictly managed such as a

substitution of a formula within bound variable is

not allowed.
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4. 2 Types

Introducing type system sometimes has advan-

tage such as enabling strong normalizablity. The

formula in this paper is also typable with typing

rule for µ abstraction as follows: for a formula

µv.F , all of v, F and µv.F have the same type.

This is because µv.F represents the solution of an

equation such that v equals to F . However, because

µ formula is intended to represent possibly infinite

calculation, type system has no advantage from the

point of strong normalization.

From the point of type checking for reducing

redundant or useless calculation, the type system

may have advantage. It is known that when the

formula is evaluated in applicable order, only fixed

point of higher order function can be calculated in

finite steps. This means that the fixed point must

be a function, i.e. every µ formula has function

type. Therefore, in the case that the underlying

computation is in applicable order, the unification

problem between v and F comes and v ∈ FV(F ),

then we can reject the unification when v or F has

basic type, or we obtain the unification [µv.F/v]

with assignment of function type to v and F .

4. 3 Unifier composition with µ formulae

construction

In the definition of unification, the unification

rule for formulae which are application, an unifier

θ1 obtained by the left unification and the right one

θ2 are composed. Considering unification problem

as equation, unification for application is consid-

ered as simultaneous equation. Let v be one of the

variables to be replaced by θ1, when v ∈ FV(θ2),

v should be the solution of the simultaneous equa-

tion. For example, let θ1 be [(f x)/v] and θ2 be

[v/x], θ1 ◦ θ2 is [(f v)/v, v/x] while v should be the

solution of equation such that v equals to (f v) as

the composed substitution indicates. Thus there is

a question whether, in this case, the result should

be [µv.(f v)/v, µv.(f v)/x].

However, by the definition of unification, there is

no such case. The right formulae are unified after

the substitution θ1 which is obtained by the left

unification. Since any variable replaced by θ1 does

not occur freely in F2θ1 nor G2θ1, FV(θ2) does not

include such variable.

Some other unification methods, typically syn-

tactical unification, check the occurence of free vari-

ables when substitution is constructed, not when

substitutions are composed. As the unification

method provided in this paper introduce µ formula

instead of occur check, the operation of composing

substitution is simplified in the similar way.

4. 4 Effect of lock check

In the case that x 6∈ FV(F ) ∪ FV(θ), a substitu-

tion relation (λx.F )θ → λx.G may have the follow-

ing proof tree.

x`F [x/x] → F x`Fθ → G

`(λx.F )θ → λx.G

In the left sub tree, the substitution [x/x] cause re-

dundant or useless calculation by three reasons such

that it’s identical substitution, that x 6∈ FV(F ) and

that x is locked even if x ∈ FV(F ). Of cause, in

such a case, the rule for the case of the same bound

variables is intended to be applied.

x`Fθ → G

`(λx.F )θ → λx.G

However, the rule in the later tree is not a simple

special case of that of the former tree, because the

later tree is enabled even when x ∈ FV(F ).

At the beginning, the concept of locked variables

is introduced to prevent replacing captured vari-

ables. It works to reducing redundant or useless

calculation. To obtain the result of substitution,

there is a strategy such that a fresh variable is al-

ways intoroduced for abstraction. In this strategy,

there is no need to check locked variables. However,

this strategy yield many α equivalent formulae.

Considering that the unification method is used

in some reasoning system, there may be many

chance to check the equivalence. It is plausible

strategy such that identification of syntactically

equivalent formulae is prior to those not syntactical

but α equivalent. Therefore, reducing α equivalent

formulae cause efficiency for the external resoning

system.

Checking locked variables in unification also has

effect of efficiency. A fresh variable is introduced

for every equation of λ abstractions. When the lock

check such as v ∈ FV(G)−∆ is not made, substitu-

tions which replace bound variables are obtained.

Since the substitution is defined as no bound vari-

able is replaced, lock check has advantage of avoid-
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ing useless substitution.

In this manner, the scope of variable is managed

strictly. For example, λx.xy and λx.xx are not

unifiable because λx.xx equals to λz.zz and the

maybe unifier [x/y] cannot unify λx.xy and λz.zz.

However, unification with substitution of a formula

within bound variable for a free variable may be

useful. There are three classes of variable: must be

bound, must be free and may be both. The former

two classes are treated in this paper. As free vari-

ables must not be conflicted with bound variables,

bound variables are need to be renamed. However,

when a substitution includes bound variables, the

renaming should be rewinded.

5 Conclusion

This paper provides a decidable unification

method on α equivalence and µ equivalence for ex-

pressions of functions and fixed points. Introduc-

ing µ formulae allows to denote recursive functions

without side effect such as changing environment of

function name assigned to its entity.

The development of resoning system with µ for-

mulae is the future work.
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