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Abstract—The abstract goes here.

I. CONTINUATION BASED C

We proposed programming style using unit of program
named code segment and data segment. Code segment is
a unit of calculation not dependents state. Data segment
contains values of calculation and calculation context called
meta data segment. Execution of program is represented by
moves interconnected code segments. Code/Data segment style
programming was suitable to state based concurrent program.

Programming language ’Continuation based C’ (CbC[1])
supported code/data segment style programming. CbC is lower
language of C removed function call and loop-statements(for,
while) and added continuation by goto and code segment.
Code segment of CbC is function without return values in
C. Interconnections of code segment represents goto with
environment. CbC can define meta calculation as calculation
of calculation named meta code segment. Meta computations
contains various computations including partiality, nondeter-
minism, side-effects, exceptions and continuations.

II. META COMPUTATION AND MONADS

Meta computations in CbC formalized by Monads to pre-
vent chaos by unlimited computations. Monads are a notion
of Category Theory, in programs Monad correspondence of
normal/meta computations[2]. For example, diverging compu-
tation is represented direct sum of normal values and bottom.

We show formalization of programs for using Monads.
Programs notated typed lambda calculus constructed values
and abstractions. Abstraction f maps value to value, and
applies to value x notated fx. Every lambda term has a type.
Value x has type A notated x : A. Abstraction f has a argument
of type A and return value of type B notated f : A → B.

x : A

f : A → B

fx : B

Type matched abstractions can be composed by operator
’◦’. Order of composition are commutative.

f : A → B

g : B → C

g ◦ f : A → C

h : C → D

(h ◦ g) ◦ f = h ◦ (g ◦ f) : A → D

Abstractions has many arguments notated by abstraction
took a argument, and returns a abstraction that argument
numbers has decreased(Currying).

Abstractions can be extended using Monad. Monad is
triple(T, η, µ) satisfies laws.

• association law : µA ◦ µTA = µA ◦ TµA

• unity law : µA ◦ ηTA = µA ◦ TηA = idTA

Various meta computations represents by definition of triple.
Monad has another description Kleisli Triple (T, η, ∗).

Kleisli triple are following equations hold:
• η∗A = idTA

• η; f∗ = f for f : A → TB
• f∗; g∗ = (f ; g∗)∗ for f : A → TB and g : B → TC

id is abstraction that identity mapping for any typed values
(idx = x). id was exists any typed values. Notation idXx is
application id to a value x typed X. Then, T is functor that
pair of structure and a map that abstraction for non-structured
values to abstraction for structured values. If applied functor
T to type A notated TA. For example, list of any types is
functor. List can be constructed to any typed values (list of
characters, list of integers, etc) and can be apply abstraction
for stored elements.

xs = [10 , 20 , 30]

xs : List Int

f : Int → String

[f 10 , f 20 , f 30] : List String

It’s summarized informal definition of functor for explain
Monad. Values extended using property of functor T extend
abstraction to normal values to structured values. Kleisli triple
(T, η, ∗) are a triple of functor T and η extension of normal
values to meta one and ∗ extension of abstraction. Kleisli
triple are derivable from Monad (T, η, µ)



Definition of diverging computation as extend normal com-
putations using Monad are shown.

• TA = A⊥(= A+ {⊥})
• ηA is the inclusion of A into A⊥
• if f : A → TB, then f∗(⊥) = ⊥ and f∗(a) = f(a)

when a has type A.

III. MODIFICATION OF PROGRAM USING MONAD

Reliability of a program dynamically changed in software
development. We propose handle modifications of a program
as meta computations for improve reliability. Modifications
represents a set of program versions including values and
abstraction with type consistency. Execution of program in-
cluding modification like concurrent execution of all versions.

Definition of modifications named ’Delta Monad’ are
shown:

• TA = A0 ×A1 × · · · ×An

• ηA is map to values accumulated modification.
• if f : A → TB and x : TA then

f∗(x) = ⟨f0(x0), f1(x1), . . . , fn(xn)⟩
Versions of a program without branching represents finite

direct product.
We simulated Delta Monad in Haskell (TableIII).

1 data Delta a = Mono a | Delta a (Delta a)
2
3 headDelta :: Delta a -> a
4 headDelta (Mono x) = x
5 headDelta (Delta x _) = x
6
7 tailDelta :: Delta a -> Delta a
8 tailDelta (Mono x) = Mono x
9 tailDelta (Delta _ ds) = ds

10
11 instance Monad Delta where
12 return x = Mono x
13 (Mono x) >>= f = f x
14 (Delta x d) >>= f = Delta (headDelta (f x))
15 (d >>= (tailDelta . f))

TABLE I
DEFINITION OF DELTA MONAD IN HASKELL

We aim to prove Delta Monads satisfies Monad laws using
Haskell has built-in Monad definition. Modifications of values
stored list like structure named Delta. Delta contains two
constructor Mono and Delta, Mono represents first version,
Delta represents modification. Infix operator >>= handles
extended abstraction has typed A → Delta B recursive
applies to each original versions. This definition represents
simple modification only monotonic increase versioning (ex-
clude branching and merging) and program has consistent type
in all versions. We executed different versions in same time
and proved satisfying Monad laws by proof assistant language
Agda[3].

IV. CONCLUSION AND FUTURE WORKS

Handleable modification by meta computations is proposed.
Using this Delta Monad, we can make reliable program devel-
opment possible. Especially, Automatically property compari-
son in development cycle is made possible by CbC also plans
incorporate model checker as meta computations. We aim

to extend Delta Monad represents all possible modifications
(branching, merging, and more) with proof and implement to
CbC.
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