
Implementing Continuation based language in
LLVM and Clang

Kaito TOKUMORI
University of the Ryukyus

Email: kaito@cr.ie.u-ryukyu.ac.jp

Shinji KONO
University of the Ryukyus

Email: kono@ie.u-ryukyu.ac.jp

Abstract—A programming paradigm which use data segments
and code segments is proposed. CbC is a lower language of
C for this paradigm. CbC has standalone compiler and GCC
version. In this study, we add an implement CbC compiler on
LLVM/clang-3.7. The detail of implementation and evaluation
are shown.

I. A PRACTICAL CONTINUATION BASED LANGUAGE

We proposed units of program named code segment and data
segment. Code segment is a unit of calculation which has no
state. Data segment is a set of typed data. Code segments are
connected to data segments with a context, which is a meta
data segment. After an execution of a code segment and its
context, next code segments (Continuation) is executed.

We had developed a programming language “Continuation
based C (CbC)” [1]. Hearafter we call it CbC, which supports
code segments. CbC is compatible with the C language and it
has continuation as a goto statement.

Code segments and data segments are low level enough to
represent computation details, and it is architecture indepen-
dent. It can be used as an architecture independent assembler.

CbC has standalone compiler and GCC version. Here we
report new partial implementation of CbC compiler based on
LLVM and Clang 3.7.

First we show the CbC language overview.

II. CONTINUATION BASED C

CbC’s basic programing unit is a code segment. It is not a
subroutine, but it looks like a function, because it has input
and output. These interfaces should be data segments and we
are currently designing data segments part.

1 __code f(Allocate allocate){
2 allocate.size = 0;
3 goto g(allocate);
4 }
5
6 // data segment definition
7 // (generated automatically)
8 union Data {
9 struct Allocate {

10 long size;
11 } allocate;
12 };

TABLE I
CBC EXAMPLE

In this example, a code segment f has input datasegment
allocate (Allocate is a data segment identifier) and sends

output it to a code segment g. CbC compiler generates data
segment definition automatically so we do not have to write
it. There is no return from code segment g, g should call
another continuation using goto. Code segments has one input
data segment and several output data segment, and their
dependency is proved by data segments.

Code SegmentData 
Segment

Data 
Segment

Data 
Segment

Code Segment

Code Segment

Fig. 1. Code Segments and Data Segments on CbC

In CbC, we can go to a code segment from a C function and
we can call C functions in a code segment. So we don’t have
to shift completely from C to CbC. The later one is straight
forward, but the former one needs further extensions.

1 int main() {
2 goto hello("Hello World\n", __return,

__environment);
3 }
4
5 __code hello(char *s, __code(*ret)(int, void*),

void *env) {
6 printf(s);
7 goto (*ret)(0);
8 }

TABLE II
CALL C FUNCTIONS IN A CODE SEGMENT

In this hello world example, the environment of main() and
its continuation is kept in a variable environment. The envi-
ronment and the continuation can be get using environment
and return.Arbitrary mixture of code segments and func-
tions are allowed. The continuation of goto statement never
returns to original function, but it goes to caller of original
function. In this case, it returns result 0 to the operating
system. This cotinuation is called goto with environment.

III. LLVM AND CLANG

The LLVM Project is a collection of modular and reusable
compiler and toolchain technologies, and the LLVM Core
libraries provide a modern source and target independent op-
timizer, along with code generation support for many popular



LLVM IR SelectionDAG
ISel

Machine 
Code

optimizations

Machine 
Code

Code 
Emission

Assembly
Code

C/C++
Obj-C Parser clang

AST CodeGen

clang

LLVM

Fig. 2. LLVM and Clang structure

CPUs. Clang is an LLVM native C/C++/Objective-C compiler.
Figure 2 is Clang and LLVM’s compile flow.

LLVM has a intermediate representation which called
LLVM IR[2]. Importantly, we do not modify it so we do not
have to modifiy optimize part.

IV. IMPLEMENTATION IN LLVM AND CLANG

So how to implement CbC compiler in LLVM and Clang.
Here we show our idea.

• Code segments are implemented by C functions.
• Transition is implemented by forced tail call.
• Goto with environment is implemented by setjmp and

longjmp.
code is implemented as a new type keyword in LLVM

and Clang. You may think code is an attribute of a function,
which means that the function can call in tail call elimination
only. Because of this implementation, we can actually call
code segment as a C function call.

Forcing tail call require many conditions. For example, there
should be no statement after tail call, caller and callee’s calling
convention have to be the same and type is cc10, cc11 or
fastcc, callee’s return value type have to be the same as caller’s
it, add tail call elimination pass, and so on.

All code segment has the void return type and we do not
allow to write statement after continuation, so type problem
and after statement problem is solved.

Tail call elimination pass is enabled in BackendUtil.cpp.
In the clang, when optimize level is two or more, tail call
elimination pass is enabled. We modify it to enable anytime
and if optimize level is one or less, tail call elimination pass
work for only code segment.

Next, we solve a calling convention problem. We select
fastcc for code segment’s calling convention. In the clang,
calling convention is managed by CGFunctionInfo class and
its infomations are set in CGCall.cpp. We modify here to set
fastcc to code segments.

Goto with environment is implemented by code rearranging.
If the environment or return is declared, CbC compiler
rearrange code for goto with environment. We use setjmp and
longjmp for it. Setjmp save environment before continuation,
and longjmp restore it.

V. RESULT

Here is our benchmark program.

1 int f0(int i) {
2 int k,j;
3 k = 3+i;
4 j = g0(i+3);
5 return k+4+j;
6 }
7
8 int g0(int i) {
9 return h0(i+4)+i;

10 }
11
12 int h0(int i) {
13 return i+4;
14 }

TABLE III
BENCHMARK PROGRAM CONV1

It is written in C and CbC and there are several optimization
is possible. When argument is 1, use CbC continuation. When
argument is 2 or 3, optimization is enabled.

Here we show benchmark result (TABLE IV).

./conv1 1 ./conv1 2 ./conv1 3
Micro-C 6.875 2.4562 3.105
GCC -O2 2.9438 0.955 1.265
LLVM/clang -O0 5.835 4.1887 5.0625
LLVM/clang -O2 3.3875 2.29 2.5087

TABLE IV
EXECUTION TIME(S)

LLVM and clang compiler is faster than Micro-C when
optimization is enabled. It mean LLVM’s optimization is
powerful and useful. LLVM and clang compiler is slower than
GCC but GCC cannot compile safety without optimization. It
means LLVM can compile more reliability than GCC.

VI. CONCLUSION

We have designed and implemented Continuation based
language for practical use. We have partial implementation
of CbC using LLVM and Clang 3.7. CbC can use LLVM’s
optimization. We did not modify LLVM IR to implement CbC
compiler.

In future, we design and implement data segment and meta
code segment, meta data segment for meta computation.

REFERENCES

[1] S. Kono and K. Yogi, “Implementing continuation based language
in GCC,” CoRR, vol. abs/1109.4048, 2011. [Online]. Available:
http://arxiv.org/abs/1109.4048

[2] LLVM Language Reference Manual,
http://llvm.org/docs/LangRef.html.

[3] LLVM Documentation,
http://llvm.org/docs/index.html.

[4] clang documentation,
http://clang.llvm.org/docs/index.html.


