
Programming in code and data and its duality
Shinji KONO

University of the Ryukyus
Email: kono@ie.u-ryukyu.ac.jp

Abstract—
We introduce system of code and data. Instead of function call,

code accepts input data and simply generates output data. Chains
of code and data performs computation. After calling next code, it
does not return to the caller, so it has no environment nor calling
stack. This system is designed for reliable system description and
parallel execution on various architecture. We use segments or
gears sometime. This is directly connected to the category theory
like lambda calculus. We also find a categorical representation
from the view point of data. This shows duality of code and data.
This duality will be a guideline of our system design.

I. RELIABLE COMPUTATION AND PREDICTABILITY

Various software are used in real world. Each of them have
to work in a reliable way. A piece of device contains millions
of lines of code. These programs are written in C, Haskell[6]
and so on. To assure its reliability, the computation of a func-
tion should be predictable. The correctness of the prediction
should be assured by measurements, model checking or proofs.

We propose new unit of computation, data segments and
code segments. Computations in these segments are finite and
predictable. We sometimes call these gears.

A set of gears makes a programming system.
Data segments and code segments are connected by meta

data segments and meta code segments. The idea is construct
system as a set of predictable unit of computation.

II. DEFINITION OF DATA SEGMENT AND CODE SEGMENT

Actually we implement our Gears language in LLVM[3],
but we can think both code and data are System F[2] term.
As usual, Types are defined starting from type variables X,Y,Z
and is generated by two operations:

1. if U and V are types, then U → V is a type.
2. if V i a type, and X a type variable,

then Π X.V is a type.

Terms are constructed by six schemes
1. variable: x, y, z,... of type T,
2. application: t u of type V, where t is of type

U → V and u is of type U,
3. λ-abstraction: λ x.v of type U → V,

where x is a variable of type U and v is of type V,
4. universal abstraction: if v is a term type V, then

we can form Λ X.v of type Π
X.V, so long as the

variable X is not free in the type of a free variable of v.
5. universal application: if t is a term of type Π

X.V
and U is a type, then tU is a term of type V[U/X].

and usual conversions,
1. (λ x.v)u ～> v[u/x]
2. (Λ X.v)U ～> v[U/X]

What we need here is that a term has a type, a function has
type U → V. Code segments f of type I → O, accepts data
segments of type I and generates data segments of type O.

f : I → O

Domain of C is I and codomain of C is O.
Gears system only allows calling another code at the bottom

of the code, that is all codes have tail call form. Normal
function call is not prohibited, but it should be closed in a
code.

Data Data

f

x y
Code

from x to y

f : x → y

III. META COMPUTATION OF GEARS

Computation of a code is limited in the inputs and the
outputs and it makes the computation of the code predictable,
but its data are usually connected to other data. The code has
its continuation also. These connections are out of the scope
of the code. We think these connections are made by a meta
computation, such as monads[4]. A monad is a data structure
with monad laws and after an execution of a code, monads
join code is called to handle meta data structure. With monad
T\verb,

C’ : I → T O

is a meta computation. C has one to one correspondence
with C’.

μ : T (T O) → T O

Parallel execution or IO handling are represented as a monad
in our scheme. Monads are only allows to use at the bottom
of a code in our system.

Meta Data
Meta Data

Meta Data

Data

f

y
Data

Meta Data

Data

μ

x

T x μ: T T y →T yT f: T x → T T y

f: x → T y

y

IV. A CATEGORY OF CODES
Types of code segments and data segments naturally com-

pose a category of function and types. Codes and data are
interconnected one by one.

Object : a, b, c ...
Arrows : f, g, h ...

An arrow has its domain object and codomain object. In this
case, Object is a type of data and arrows are function h with
type a → b, which domain is an input type a and codomain
is an output type b.

h : a → b
g : b → c
f : c → d

There is composition of arrows,
f o g : b → d

and it satisfies the composition law.
(f o g) o h = f o (g o h)

There is also an identity arrow id a for each object a,
which satisfies,

a o id (domain a) = a = id (domain a) o a

V. A CATEGORY OF DATA

A code generate an output type and it becomes an input
type of next code. It is similar to a code is in between an
input type and an output type. Is is possible to think data is
an arrow between codes?

Code
oupput=f

Code
input=f

Data

f
a b

In other words, is there any duality in codes and data?
Usual answer is no, since we cannot simply combine data
segments, but introducing continuation, it is possible to create
a category which objects are functions and which arrows
are data. Actually these two categories are dual in the sense
of adjunction, that is there is a one to one correspondence
between their arrows with isomorphism. Here we show the
duality as an exercise of a category theory.

The problem of data segments composition is that it for-
gets about later computation. We can simply store it as a
continuation in the data segment. Data segments now have
a continuation, which is a code segment. It is a part of meta
computation. We have a data f, which is a codomain of a code
a and is a domain of code b. A continuation of f will called
before the execution of code b.

Now an data arrow f is a triplet {a,b,n}, a is a code
which codomain is data f and b is a code which domain is data
f. n : codomain a → domain b is a continuation
of f.

We introduce access function as follows:
data-domain f = a
data-codomain f = b

continuation f = n

We use data-codomain and data-codomain for new Data
Category C, which is constructed from a category C. Objects
of Data category C are arrows of category C. An arrow of Data
category C from a to c is a data segment f with continuation
n, b’ is a intermediate data segment.

n : codomain a → domain b
f = {a,b,n}

f is an arrow from a to b.

Code
oupput=f

Code
input=f

output=g

Data

f
a b

Code
input=g

Data

g
c

Code
oupput=f

DataGear

f o g
a

Code
input=g

cwith continuation b

If f and g has same data-domain and data-codomain, an
equality of f and g is defined as follows,

f = g if b o continuation f = b o continuation g

where b is data-codomain of f and g.
Composition of arrows of Data category is defined as

follows.
{b,c,m} + {a,b,n} = {a,c,m o (b o n))}

It is easy to see its composition lows.
{c,d,l} + ({b,c,m} + {a,b,n}) =

({c,d,l} + {b,c,m}) + {a,b,n}

because
d o (l o (m o (b o n))) = d o ((l o m) o (b o n)) .

To make an identity arrow in the Data category, if a is a
codomain of f, we need a reverse arrow of a, a’. So every
arrows a in C have to have a reverse arrow a’, where

a o a’ = id (codomain a)

Then an identity data segment of a in Data Category C is
{a,a,a’}

Code
oupput=a

Data

f o (reverse-of f) = id a
a

id’s continuation = reverse-of f

To check {a,a,a’} is an identity,
{b,b,b’} + {a,b,n} = {a,b,b’ o (b o n)} = {a,b,n}

Right identity law holds the same way.
If we use

continuation f = continuation g

as a definition of arrow equality, we need
a’ o a = id (domain a)

VI. A TRIVIAL DUALITY OF CODE AND DATA

Data

Data

Data

Codeη(a)
f

U(f*)

f = U(f*)η(a)

Code Code
Data

f*
F(a) b

UF(a)

U(b)a

U(b)

η(a) : a → UF(a)
U:D→C F: C→D

Data category is a data segment with continuation, which is
one step behind, so there is a trivial one to one correspondence.
It is also easy to show C and Data category C is an adjunction
pair. We show it using a universal mapping problem.

Data segments in a Data category C is an object of original
category C, so it has an identity arrow, which is an object of
Data Category C . Actually, we have a map F,

F : Obj C → Obj (Data Category C)
F a = id a

As a reverse, Functor U : (DataCategory C) C is defined as
follows :

U d = codomain d
U {a,b,n} = b o n

where d is an object of Data Category C, and {a,b,n} is
an arrow from a to b, with continuation n. Identity law and
distribution law of U is easyly checked as

U {a,a,a’} = a o a’ = id (codomain a)

We need a mapping η, which will be a natural transforma-
tion.

η : Obj C → U (F a)

η a = id a

We can define a solution * of universal mapping problem
for F, U, η for

f : a → U {a,b,n}.

it is an allow from F a to b,

* f = {a,b,b’ o f}

To see this is a solution,
U (*f) o (η a) = (b o (b’ o f)) o id a = f

is directly checked and *f is unique, that is
if there is an arrow g U g o (η a) = f then g = *f.

This is also trivial as
b o continuation g =

(b o b’) o (b o continuation g) =
b o (b’ o (b o continuation g)) =
b o (b ’ o f) =
b o continuation (*f)

which implies g = *f. Q.E.D.

VII. COMPARISON

Meta computation in Haskell is defined as set of explicit
monads. In Gears, meta computation is unique among the
system, which is something like operating system kernel or
libraries.

In OpenCL[5] or Cuda[1], there is a code segment which is
called kernel. The kernel runs parallelly in a GPU. The kernel
is very similar to our code segment.

Object oriented languages, such as Smalltalk-80 or Java ,
has meta computation as a virtual machines. It is very different
from monad or meta computation of our Gears system. Data
segment has no identity such as Smalltalk’s self, it can be
copied easyly, which is a very good property in a parallel
computation environment.

Code segment can be seen as a kind of Typed assembly
language, which has typed input and predictable behavior.

In old age, there is a software design method called data
flow diagram. Category of code and data is very much like
data flow diagram approach. It can be seen as a revival of
main frame technologies.

VIII. CONCLUSION

As usual categorical result, trivial duality of category and
Data category means nothing itself. During the design of gears
system, we see similarities of code segment and data segment.
It has meta segments and continuations. We think the duality
gives us some guidance to design software system such as an
operating system or libraries.

We have implemented Gears system on top of LLVM[3]
and hope it can be used as real system description language.

REFERENCES

[1] Cuda. http://www.nvidia.com/.
[2] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types.

Cambridge University Press, New York, NY, USA, 1989.

[3] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[4] E. Moggi. Computational lambda-calculus and monads. In Proceedings
of the Fourth Annual Symposium on Logic in Computer Science, pages
14–23, Piscataway, NJ, USA, 1989. IEEE Press.

[5] Aaftab Munshi. The OpenCL Specification Version: 1.0. Khronos
OpenCL Working Group, 2009.

[6] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real world haskell,
2008.

