comparison paper/src/stackTest.agda @ 2:c7acb9211784

add code, figure. and paper fix content
author ryokka
date Mon, 27 Jan 2020 20:41:36 +0900
parents
children
comparison
equal deleted inserted replaced
1:ee44dbda6bd3 2:c7acb9211784
1 open import Level renaming (suc to succ ; zero to Zero )
2 module stackTest where
3
4 open import stack
5
6 open import Relation.Binary.PropositionalEquality
7 open import Relation.Binary.Core
8 open import Data.Nat
9 open import Function
10
11
12 open SingleLinkedStack
13 open Stack
14
15 ----
16 --
17 -- proof of properties ( concrete cases )
18 --
19
20 test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n}
21 test01 stack _ with (top stack)
22 ... | (Just _) = True
23 ... | Nothing = False
24
25
26 test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool
27 test02 stack = popSingleLinkedStack stack test01
28
29 test03 : {n : Level } {a : Set n} -> a -> Bool
30 test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02
31
32 -- after a push and a pop, the stack is empty
33 lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False
34 lemma = refl
35
36 testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m}
37 testStack01 v = pushStack createSingleLinkedStack v (
38 \s -> popStack s (\s1 d1 -> True))
39
40 -- after push 1 and 2, pop2 get 1 and 2
41
42 testStack02 : {m : Level } -> ( Stack ℕ (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m}
43 testStack02 cs = pushStack createSingleLinkedStack 1 (
44 \s -> pushStack s 2 cs)
45
46
47 testStack031 : (d1 d2 : ℕ ) -> Bool {Zero}
48 testStack031 2 1 = True
49 testStack031 _ _ = False
50
51 testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero}
52 testStack032 (Just d1) (Just d2) = testStack031 d1 d2
53 testStack032 _ _ = False
54
55 testStack03 : {m : Level } -> Stack ℕ (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m}
56 testStack03 s cs = pop2Stack s (
57 \s d1 d2 -> cs d1 d2 )
58
59 testStack04 : Bool
60 testStack04 = testStack02 (\s -> testStack03 s testStack032)
61
62 testStack05 : testStack04 ≡ True
63 testStack05 = refl
64
65 testStack06 : {m : Level } -> Maybe (Element ℕ)
66 testStack06 = pushStack createSingleLinkedStack 1 (
67 \s -> pushStack s 2 (\s -> top (stack s)))
68
69 testStack07 : {m : Level } -> Maybe (Element ℕ)
70 testStack07 = pushSingleLinkedStack emptySingleLinkedStack 1 (
71 \s -> pushSingleLinkedStack s 2 (\s -> top s))
72
73 testStack08 = pushSingleLinkedStack emptySingleLinkedStack 1
74 $ \s -> pushSingleLinkedStack s 2
75 $ \s -> pushSingleLinkedStack s 3
76 $ \s -> pushSingleLinkedStack s 4
77 $ \s -> pushSingleLinkedStack s 5
78 $ \s -> top s
79
80 ------
81 --
82 -- proof of properties with indefinite state of stack
83 --
84 -- this should be proved by properties of the stack inteface, not only by the implementation,
85 -- and the implementation have to provides the properties.
86 --
87 -- we cannot write "s ≡ s3", since level of the Set does not fit , but use stack s ≡ stack s3 is ok.
88 -- anyway some implementations may result s != s3
89 --
90
91 stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} D {t} ( SingleLinkedStack D )
92 stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec }
93
94 push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) ->
95 pushStack ( stackInSomeState s ) x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) ))
96 push->push->pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl }
97
98
99 -- id : {n : Level} {A : Set n} -> A -> A
100 -- id a = a
101
102 -- push a, n times
103
104 n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A
105 n-push zero s = s
106 n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s )
107
108 n-pop : {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A
109 n-pop zero s = s
110 n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s )
111
112 open ≡-Reasoning
113
114 push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s
115 push-pop-equiv s = refl
116
117 push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s
118 push-and-n-pop zero s = refl
119 push-and-n-pop {_} {A} {a} (suc n) s = begin
120 n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id)
121 ≡⟨ refl ⟩
122 popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s)
123 ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩
124 popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s)
125 ≡⟨ refl ⟩
126 n-pop {_} {A} {a} (suc n) s
127
128
129
130 n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s
131 n-push-pop-equiv zero s = refl
132 n-push-pop-equiv {_} {A} {a} (suc n) s = begin
133 n-pop {_} {A} {a} (suc n) (n-push (suc n) s)
134 ≡⟨ refl ⟩
135 n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s))
136 ≡⟨ push-and-n-pop n (n-push n s) ⟩
137 n-pop {_} {A} {a} n (n-push n s)
138 ≡⟨ n-push-pop-equiv n s ⟩
139 s
140
141
142
143 n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack
144 n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack