module stack-product where open import product open import Data.Product open import Data.Nat open import Function using (id) open import Relation.Binary.PropositionalEquality -- definition based from Gears(209:5708390a9d88) src/parallel_execution goto = executeCS data Bool : Set where True : Bool False : Bool data Maybe (a : Set) : Set where Nothing : Maybe a Just : a @$\rightarrow$@ Maybe a record Stack {a t : Set} (stackImpl : Set) : Set where field stack : stackImpl push : CodeSegment (stackImpl @$\times$@ a @$\times$@ (CodeSegment stackImpl t)) t pop : CodeSegment (stackImpl @$\times$@ (CodeSegment (stackImpl @$\times$@ Maybe a) t)) t data Element (a : Set) : Set where cons : a @$\rightarrow$@ Maybe (Element a) @$\rightarrow$@ Element a datum : {a : Set} @$\rightarrow$@ Element a @$\rightarrow$@ a datum (cons a _) = a next : {a : Set} @$\rightarrow$@ Element a @$\rightarrow$@ Maybe (Element a) next (cons _ n) = n record SingleLinkedStack (a : Set) : Set where field top : Maybe (Element a) open SingleLinkedStack emptySingleLinkedStack : {a : Set} @$\rightarrow$@ SingleLinkedStack a emptySingleLinkedStack = record {top = Nothing} pushSingleLinkedStack : {a t : Set} @$\rightarrow$@ CodeSegment ((SingleLinkedStack a) @$\times$@ a @$\times$@ (CodeSegment (SingleLinkedStack a) t)) t pushSingleLinkedStack = cs push where push : {a t : Set} @$\rightarrow$@ ((SingleLinkedStack a) @$\times$@ a @$\times$@ (CodeSegment (SingleLinkedStack a) t)) @$\rightarrow$@ t push (stack , datum , next) = goto next stack1 where element = cons datum (top stack) stack1 = record {top = Just element} popSingleLinkedStack : {a t : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a @$\times$@ (CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) t)) t popSingleLinkedStack = cs pop where pop : {a t : Set} @$\rightarrow$@ (SingleLinkedStack a @$\times$@ (CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) t)) @$\rightarrow$@ t pop (record { top = Nothing } , nextCS) = goto nextCS (emptySingleLinkedStack , Nothing) pop (record { top = Just x } , nextCS) = goto nextCS (stack1 , (Just datum1)) where datum1 = datum x stack1 = record { top = (next x) } createSingleLinkedStack : {a b : Set} @$\rightarrow$@ Stack {a} {b} (SingleLinkedStack a) createSingleLinkedStack = record { stack = emptySingleLinkedStack ; push = pushSingleLinkedStack ; pop = popSingleLinkedStack } test01 : {a : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a @$\times$@ Maybe a) Bool test01 = cs test01' where test01' : {a : Set} @$\rightarrow$@ (SingleLinkedStack a @$\times$@ Maybe a) @$\rightarrow$@ Bool test01' (record { top = Nothing } , _) = False test01' (record { top = Just x } , _) = True test02 : {a : Set} @$\rightarrow$@ CodeSegment (SingleLinkedStack a) (SingleLinkedStack a @$\times$@ Maybe a) test02 = cs test02' where test02' : {a : Set} @$\rightarrow$@ SingleLinkedStack a @$\rightarrow$@ (SingleLinkedStack a @$\times$@ Maybe a) test02' stack = goto popSingleLinkedStack (stack , (cs id)) test03 : {a : Set} @$\rightarrow$@ CodeSegment a (SingleLinkedStack a) test03 = cs test03' where test03' : {a : Set} @$\rightarrow$@ a @$\rightarrow$@ SingleLinkedStack a test03' a = goto pushSingleLinkedStack (emptySingleLinkedStack , a , (cs id)) lemma : {A : Set} {a : A} @$\rightarrow$@ goto (test03 ◎ test02 ◎ test01) a @$\equiv$@ False lemma = refl n-push : {A : Set} {a : A} @$\rightarrow$@ CodeSegment (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) n-push {A} {a} = cs (push {A} {a}) where push : {A : Set} {a : A} @$\rightarrow$@ (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) @$\rightarrow$@ (@$\mathbb{N}$@ @$\times$@ SingleLinkedStack A) push {A} {a} (zero , s) = (zero , s) push {A} {a} (suc n , s) = goto pushSingleLinkedStack (s , a , {!!} {- n-push -}) -- needs subtype {- n-push : {A : Set} {a : A} @$\rightarrow$@ Nat @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A n-push zero s = s n-push {A} {a} (suc n) s = pushSingleLinkedStack (n-push {A} {a} n s) a (\s @$\rightarrow$@ s) n-pop : {A : Set} {a : A} @$\rightarrow$@ Nat @$\rightarrow$@ SingleLinkedStack A @$\rightarrow$@ SingleLinkedStack A n-pop zero s = s n-pop {A} {a} (suc n) s = popSingleLinkedStack (n-pop {A} {a} n s) (\s _ @$\rightarrow$@ s) open @$\equiv$@-Reasoning push-pop-equiv : {A : Set} {a : A} (s : SingleLinkedStack A) @$\rightarrow$@ popSingleLinkedStack (pushSingleLinkedStack s a (\s @$\rightarrow$@ s)) (\s _ @$\rightarrow$@ s) @$\equiv$@ s push-pop-equiv s = refl push-and-n-pop : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) @$\rightarrow$@ n-pop {A} {a} (suc n) (pushSingleLinkedStack s a id) @$\equiv$@ n-pop {A} {a} n s push-and-n-pop zero s = refl push-and-n-pop {A} {a} (suc n) s = begin n-pop (suc (suc n)) (pushSingleLinkedStack s a id) @$\equiv$@@$\langle$@ refl @$\rangle$@ popSingleLinkedStack (n-pop (suc n) (pushSingleLinkedStack s a id)) (\s _ @$\rightarrow$@ s) @$\equiv$@@$\langle$@ cong (\s @$\rightarrow$@ popSingleLinkedStack s (\s _ @$\rightarrow$@ s)) (push-and-n-pop n s) @$\rangle$@ popSingleLinkedStack (n-pop n s) (\s _ @$\rightarrow$@ s) @$\equiv$@@$\langle$@ refl @$\rangle$@ n-pop (suc n) s @$\blacksquare$@ n-push-pop-equiv : {A : Set} {a : A} (n : Nat) (s : SingleLinkedStack A) @$\rightarrow$@ (n-pop {A} {a} n (n-push {A} {a} n s)) @$\equiv$@ s n-push-pop-equiv zero s = refl n-push-pop-equiv {A} {a} (suc n) s = begin n-pop (suc n) (n-push (suc n) s) @$\equiv$@@$\langle$@ refl @$\rangle$@ n-pop (suc n) (pushSingleLinkedStack (n-push n s) a (\s @$\rightarrow$@ s)) @$\equiv$@@$\langle$@ push-and-n-pop n (n-push n s) @$\rangle$@ n-pop n (n-push n s) @$\equiv$@@$\langle$@ n-push-pop-equiv n s @$\rangle$@ s @$\blacksquare$@ n-push-pop-equiv-empty : {A : Set} {a : A} @$\rightarrow$@ (n : Nat) @$\rightarrow$@ n-pop {A} {a} n (n-push {A} {a} n emptySingleLinkedStack) @$\equiv$@ emptySingleLinkedStack n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack -}