comparison gcc/ada/sem_ch5.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
64
65 package body Sem_Ch5 is
66
67 Current_Assignment : Node_Id := Empty;
68 -- This variable holds the node for an assignment that contains target
69 -- names. The corresponding flag has been set by the parser, and when
70 -- set the analysis of the RHS must be done with all expansion disabled,
71 -- because the assignment is reanalyzed after expansion has replaced all
72 -- occurrences of the target name appropriately.
73
74 Unblocked_Exit_Count : Nat := 0;
75 -- This variable is used when processing if statements, case statements,
76 -- and block statements. It counts the number of exit points that are not
77 -- blocked by unconditional transfer instructions: for IF and CASE, these
78 -- are the branches of the conditional; for a block, they are the statement
79 -- sequence of the block, and the statement sequences of any exception
80 -- handlers that are part of the block. When processing is complete, if
81 -- this count is zero, it means that control cannot fall through the IF,
82 -- CASE or block statement. This is used for the generation of warning
83 -- messages. This variable is recursively saved on entry to processing the
84 -- construct, and restored on exit.
85
86 procedure Preanalyze_Range (R_Copy : Node_Id);
87 -- Determine expected type of range or domain of iteration of Ada 2012
88 -- loop by analyzing separate copy. Do the analysis and resolution of the
89 -- copy of the bound(s) with expansion disabled, to prevent the generation
90 -- of finalization actions. This prevents memory leaks when the bounds
91 -- contain calls to functions returning controlled arrays or when the
92 -- domain of iteration is a container.
93
94 ------------------------
95 -- Analyze_Assignment --
96 ------------------------
97
98 -- WARNING: This routine manages Ghost regions. Return statements must be
99 -- replaced by gotos which jump to the end of the routine and restore the
100 -- Ghost mode.
101
102 procedure Analyze_Assignment (N : Node_Id) is
103 Lhs : constant Node_Id := Name (N);
104 Rhs : Node_Id := Expression (N);
105
106 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
107 -- N is the node for the left hand side of an assignment, and it is not
108 -- a variable. This routine issues an appropriate diagnostic.
109
110 procedure Kill_Lhs;
111 -- This is called to kill current value settings of a simple variable
112 -- on the left hand side. We call it if we find any error in analyzing
113 -- the assignment, and at the end of processing before setting any new
114 -- current values in place.
115
116 procedure Set_Assignment_Type
117 (Opnd : Node_Id;
118 Opnd_Type : in out Entity_Id);
119 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
120 -- nominal subtype. This procedure is used to deal with cases where the
121 -- nominal subtype must be replaced by the actual subtype.
122
123 procedure Transform_BIP_Assignment (Typ : Entity_Id);
124 function Should_Transform_BIP_Assignment
125 (Typ : Entity_Id) return Boolean;
126 -- If the right-hand side of an assignment statement is a build-in-place
127 -- call we cannot build in place, so we insert a temp initialized with
128 -- the call, and transform the assignment statement to copy the temp.
129 -- Transform_BIP_Assignment does the tranformation, and
130 -- Should_Transform_BIP_Assignment determines whether we should.
131 -- The same goes for qualified expressions and conversions whose
132 -- operand is such a call.
133 --
134 -- This is only for nonlimited types; assignment statements are illegal
135 -- for limited types, but are generated internally for aggregates and
136 -- init procs. These limited-type are not really assignment statements
137 -- -- conceptually, they are initializations, so should not be
138 -- transformed.
139 --
140 -- Similarly, for nonlimited types, aggregates and init procs generate
141 -- assignment statements that are really initializations. These are
142 -- marked No_Ctrl_Actions.
143
144 -------------------------------
145 -- Diagnose_Non_Variable_Lhs --
146 -------------------------------
147
148 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
149 begin
150 -- Not worth posting another error if left hand side already flagged
151 -- as being illegal in some respect.
152
153 if Error_Posted (N) then
154 return;
155
156 -- Some special bad cases of entity names
157
158 elsif Is_Entity_Name (N) then
159 declare
160 Ent : constant Entity_Id := Entity (N);
161
162 begin
163 if Ekind (Ent) = E_In_Parameter then
164 Error_Msg_N
165 ("assignment to IN mode parameter not allowed", N);
166 return;
167
168 -- Renamings of protected private components are turned into
169 -- constants when compiling a protected function. In the case
170 -- of single protected types, the private component appears
171 -- directly.
172
173 elsif (Is_Prival (Ent)
174 and then
175 (Ekind (Current_Scope) = E_Function
176 or else Ekind (Enclosing_Dynamic_Scope
177 (Current_Scope)) = E_Function))
178 or else
179 (Ekind (Ent) = E_Component
180 and then Is_Protected_Type (Scope (Ent)))
181 then
182 Error_Msg_N
183 ("protected function cannot modify protected object", N);
184 return;
185
186 elsif Ekind (Ent) = E_Loop_Parameter then
187 Error_Msg_N ("assignment to loop parameter not allowed", N);
188 return;
189 end if;
190 end;
191
192 -- For indexed components, test prefix if it is in array. We do not
193 -- want to recurse for cases where the prefix is a pointer, since we
194 -- may get a message confusing the pointer and what it references.
195
196 elsif Nkind (N) = N_Indexed_Component
197 and then Is_Array_Type (Etype (Prefix (N)))
198 then
199 Diagnose_Non_Variable_Lhs (Prefix (N));
200 return;
201
202 -- Another special case for assignment to discriminant
203
204 elsif Nkind (N) = N_Selected_Component then
205 if Present (Entity (Selector_Name (N)))
206 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
207 then
208 Error_Msg_N ("assignment to discriminant not allowed", N);
209 return;
210
211 -- For selection from record, diagnose prefix, but note that again
212 -- we only do this for a record, not e.g. for a pointer.
213
214 elsif Is_Record_Type (Etype (Prefix (N))) then
215 Diagnose_Non_Variable_Lhs (Prefix (N));
216 return;
217 end if;
218 end if;
219
220 -- If we fall through, we have no special message to issue
221
222 Error_Msg_N ("left hand side of assignment must be a variable", N);
223 end Diagnose_Non_Variable_Lhs;
224
225 --------------
226 -- Kill_Lhs --
227 --------------
228
229 procedure Kill_Lhs is
230 begin
231 if Is_Entity_Name (Lhs) then
232 declare
233 Ent : constant Entity_Id := Entity (Lhs);
234 begin
235 if Present (Ent) then
236 Kill_Current_Values (Ent);
237 end if;
238 end;
239 end if;
240 end Kill_Lhs;
241
242 -------------------------
243 -- Set_Assignment_Type --
244 -------------------------
245
246 procedure Set_Assignment_Type
247 (Opnd : Node_Id;
248 Opnd_Type : in out Entity_Id)
249 is
250 Decl : Node_Id;
251
252 begin
253 Require_Entity (Opnd);
254
255 -- If the assignment operand is an in-out or out parameter, then we
256 -- get the actual subtype (needed for the unconstrained case). If the
257 -- operand is the actual in an entry declaration, then within the
258 -- accept statement it is replaced with a local renaming, which may
259 -- also have an actual subtype.
260
261 if Is_Entity_Name (Opnd)
262 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
263 or else Ekind_In (Entity (Opnd),
264 E_In_Out_Parameter,
265 E_Generic_In_Out_Parameter)
266 or else
267 (Ekind (Entity (Opnd)) = E_Variable
268 and then Nkind (Parent (Entity (Opnd))) =
269 N_Object_Renaming_Declaration
270 and then Nkind (Parent (Parent (Entity (Opnd)))) =
271 N_Accept_Statement))
272 then
273 Opnd_Type := Get_Actual_Subtype (Opnd);
274
275 -- If assignment operand is a component reference, then we get the
276 -- actual subtype of the component for the unconstrained case.
277
278 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
279 and then not Is_Unchecked_Union (Opnd_Type)
280 then
281 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
282
283 if Present (Decl) then
284 Insert_Action (N, Decl);
285 Mark_Rewrite_Insertion (Decl);
286 Analyze (Decl);
287 Opnd_Type := Defining_Identifier (Decl);
288 Set_Etype (Opnd, Opnd_Type);
289 Freeze_Itype (Opnd_Type, N);
290
291 elsif Is_Constrained (Etype (Opnd)) then
292 Opnd_Type := Etype (Opnd);
293 end if;
294
295 -- For slice, use the constrained subtype created for the slice
296
297 elsif Nkind (Opnd) = N_Slice then
298 Opnd_Type := Etype (Opnd);
299 end if;
300 end Set_Assignment_Type;
301
302 -------------------------------------
303 -- Should_Transform_BIP_Assignment --
304 -------------------------------------
305
306 function Should_Transform_BIP_Assignment
307 (Typ : Entity_Id) return Boolean
308 is
309 Result : Boolean;
310
311 begin
312 if Expander_Active
313 and then not Is_Limited_View (Typ)
314 and then Is_Build_In_Place_Result_Type (Typ)
315 and then not No_Ctrl_Actions (N)
316 then
317 -- This function is called early, before name resolution is
318 -- complete, so we have to deal with things that might turn into
319 -- function calls later. N_Function_Call and N_Op nodes are the
320 -- obvious case. An N_Identifier or N_Expanded_Name is a
321 -- parameterless function call if it denotes a function.
322 -- Finally, an attribute reference can be a function call.
323
324 case Nkind (Unqual_Conv (Rhs)) is
325 when N_Function_Call
326 | N_Op
327 =>
328 Result := True;
329
330 when N_Expanded_Name
331 | N_Identifier
332 =>
333 case Ekind (Entity (Unqual_Conv (Rhs))) is
334 when E_Function
335 | E_Operator
336 =>
337 Result := True;
338
339 when others =>
340 Result := False;
341 end case;
342
343 when N_Attribute_Reference =>
344 Result := Attribute_Name (Unqual_Conv (Rhs)) = Name_Input;
345 -- T'Input will turn into a call whose result type is T
346
347 when others =>
348 Result := False;
349 end case;
350 else
351 Result := False;
352 end if;
353
354 return Result;
355 end Should_Transform_BIP_Assignment;
356
357 ------------------------------
358 -- Transform_BIP_Assignment --
359 ------------------------------
360
361 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
362
363 -- Tranform "X : [constant] T := F (...);" into:
364 --
365 -- Temp : constant T := F (...);
366 -- X := Temp;
367
368 Loc : constant Source_Ptr := Sloc (N);
369 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', Rhs);
370 Obj_Decl : constant Node_Id :=
371 Make_Object_Declaration (Loc,
372 Defining_Identifier => Def_Id,
373 Constant_Present => True,
374 Object_Definition => New_Occurrence_Of (Typ, Loc),
375 Expression => Rhs,
376 Has_Init_Expression => True);
377
378 begin
379 Set_Etype (Def_Id, Typ);
380 Set_Expression (N, New_Occurrence_Of (Def_Id, Loc));
381
382 -- At this point, Rhs is no longer equal to Expression (N), so:
383
384 Rhs := Expression (N);
385
386 Insert_Action (N, Obj_Decl);
387 end Transform_BIP_Assignment;
388
389 -- Local variables
390
391 T1 : Entity_Id;
392 T2 : Entity_Id;
393
394 Save_Full_Analysis : Boolean;
395
396 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
397 -- Save the Ghost mode to restore on exit
398
399 -- Start of processing for Analyze_Assignment
400
401 begin
402 Mark_Coextensions (N, Rhs);
403
404 -- Preserve relevant elaboration-related attributes of the context which
405 -- are no longer available or very expensive to recompute once analysis,
406 -- resolution, and expansion are over.
407
408 Mark_Elaboration_Attributes
409 (N_Id => N,
410 Checks => True,
411 Modes => True);
412
413 -- Analyze the target of the assignment first in case the expression
414 -- contains references to Ghost entities. The checks that verify the
415 -- proper use of a Ghost entity need to know the enclosing context.
416
417 Analyze (Lhs);
418
419 -- An assignment statement is Ghost when the left hand side denotes a
420 -- Ghost entity. Set the mode now to ensure that any nodes generated
421 -- during analysis and expansion are properly marked as Ghost.
422
423 if Has_Target_Names (N) then
424 Current_Assignment := N;
425 Expander_Mode_Save_And_Set (False);
426 Save_Full_Analysis := Full_Analysis;
427 Full_Analysis := False;
428 else
429 Current_Assignment := Empty;
430 end if;
431
432 Mark_And_Set_Ghost_Assignment (N);
433 Analyze (Rhs);
434
435 -- Ensure that we never do an assignment on a variable marked as
436 -- Is_Safe_To_Reevaluate.
437
438 pragma Assert
439 (not Is_Entity_Name (Lhs)
440 or else Ekind (Entity (Lhs)) /= E_Variable
441 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
442
443 -- Start type analysis for assignment
444
445 T1 := Etype (Lhs);
446
447 -- In the most general case, both Lhs and Rhs can be overloaded, and we
448 -- must compute the intersection of the possible types on each side.
449
450 if Is_Overloaded (Lhs) then
451 declare
452 I : Interp_Index;
453 It : Interp;
454
455 begin
456 T1 := Any_Type;
457 Get_First_Interp (Lhs, I, It);
458
459 while Present (It.Typ) loop
460
461 -- An indexed component with generalized indexing is always
462 -- overloaded with the corresponding dereference. Discard the
463 -- interpretation that yields a reference type, which is not
464 -- assignable.
465
466 if Nkind (Lhs) = N_Indexed_Component
467 and then Present (Generalized_Indexing (Lhs))
468 and then Has_Implicit_Dereference (It.Typ)
469 then
470 null;
471
472 -- This may be a call to a parameterless function through an
473 -- implicit dereference, so discard interpretation as well.
474
475 elsif Is_Entity_Name (Lhs)
476 and then Has_Implicit_Dereference (It.Typ)
477 then
478 null;
479
480 elsif Has_Compatible_Type (Rhs, It.Typ) then
481 if T1 = Any_Type then
482 T1 := It.Typ;
483 else
484 -- An explicit dereference is overloaded if the prefix
485 -- is. Try to remove the ambiguity on the prefix, the
486 -- error will be posted there if the ambiguity is real.
487
488 if Nkind (Lhs) = N_Explicit_Dereference then
489 declare
490 PI : Interp_Index;
491 PI1 : Interp_Index := 0;
492 PIt : Interp;
493 Found : Boolean;
494
495 begin
496 Found := False;
497 Get_First_Interp (Prefix (Lhs), PI, PIt);
498
499 while Present (PIt.Typ) loop
500 if Is_Access_Type (PIt.Typ)
501 and then Has_Compatible_Type
502 (Rhs, Designated_Type (PIt.Typ))
503 then
504 if Found then
505 PIt :=
506 Disambiguate (Prefix (Lhs),
507 PI1, PI, Any_Type);
508
509 if PIt = No_Interp then
510 Error_Msg_N
511 ("ambiguous left-hand side in "
512 & "assignment", Lhs);
513 exit;
514 else
515 Resolve (Prefix (Lhs), PIt.Typ);
516 end if;
517
518 exit;
519 else
520 Found := True;
521 PI1 := PI;
522 end if;
523 end if;
524
525 Get_Next_Interp (PI, PIt);
526 end loop;
527 end;
528
529 else
530 Error_Msg_N
531 ("ambiguous left-hand side in assignment", Lhs);
532 exit;
533 end if;
534 end if;
535 end if;
536
537 Get_Next_Interp (I, It);
538 end loop;
539 end;
540
541 if T1 = Any_Type then
542 Error_Msg_N
543 ("no valid types for left-hand side for assignment", Lhs);
544 Kill_Lhs;
545 goto Leave;
546 end if;
547 end if;
548
549 -- Deal with build-in-place calls for nonlimited types. We don't do this
550 -- later, because resolving the rhs tranforms it incorrectly for build-
551 -- in-place.
552
553 if Should_Transform_BIP_Assignment (Typ => T1) then
554 Transform_BIP_Assignment (Typ => T1);
555 end if;
556
557 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
558
559 -- The resulting assignment type is T1, so now we will resolve the left
560 -- hand side of the assignment using this determined type.
561
562 Resolve (Lhs, T1);
563
564 -- Cases where Lhs is not a variable. In an instance or an inlined body
565 -- no need for further check because assignment was legal in template.
566
567 if In_Inlined_Body then
568 null;
569
570 elsif not Is_Variable (Lhs) then
571
572 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
573 -- protected object.
574
575 declare
576 Ent : Entity_Id;
577 S : Entity_Id;
578
579 begin
580 if Ada_Version >= Ada_2005 then
581
582 -- Handle chains of renamings
583
584 Ent := Lhs;
585 while Nkind (Ent) in N_Has_Entity
586 and then Present (Entity (Ent))
587 and then Present (Renamed_Object (Entity (Ent)))
588 loop
589 Ent := Renamed_Object (Entity (Ent));
590 end loop;
591
592 if (Nkind (Ent) = N_Attribute_Reference
593 and then Attribute_Name (Ent) = Name_Priority)
594
595 -- Renamings of the attribute Priority applied to protected
596 -- objects have been previously expanded into calls to the
597 -- Get_Ceiling run-time subprogram.
598
599 or else Is_Expanded_Priority_Attribute (Ent)
600 then
601 -- The enclosing subprogram cannot be a protected function
602
603 S := Current_Scope;
604 while not (Is_Subprogram (S)
605 and then Convention (S) = Convention_Protected)
606 and then S /= Standard_Standard
607 loop
608 S := Scope (S);
609 end loop;
610
611 if Ekind (S) = E_Function
612 and then Convention (S) = Convention_Protected
613 then
614 Error_Msg_N
615 ("protected function cannot modify protected object",
616 Lhs);
617 end if;
618
619 -- Changes of the ceiling priority of the protected object
620 -- are only effective if the Ceiling_Locking policy is in
621 -- effect (AARM D.5.2 (5/2)).
622
623 if Locking_Policy /= 'C' then
624 Error_Msg_N
625 ("assignment to the attribute PRIORITY has no effect??",
626 Lhs);
627 Error_Msg_N
628 ("\since no Locking_Policy has been specified??", Lhs);
629 end if;
630
631 goto Leave;
632 end if;
633 end if;
634 end;
635
636 Diagnose_Non_Variable_Lhs (Lhs);
637 goto Leave;
638
639 -- Error of assigning to limited type. We do however allow this in
640 -- certain cases where the front end generates the assignments.
641
642 elsif Is_Limited_Type (T1)
643 and then not Assignment_OK (Lhs)
644 and then not Assignment_OK (Original_Node (Lhs))
645 then
646 -- CPP constructors can only be called in declarations
647
648 if Is_CPP_Constructor_Call (Rhs) then
649 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
650 else
651 Error_Msg_N
652 ("left hand of assignment must not be limited type", Lhs);
653 Explain_Limited_Type (T1, Lhs);
654 end if;
655
656 goto Leave;
657
658 -- A class-wide type may be a limited view. This illegal case is not
659 -- caught by previous checks.
660
661 elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
662 Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
663 goto Leave;
664
665 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
666 -- abstract. This is only checked when the assignment Comes_From_Source,
667 -- because in some cases the expander generates such assignments (such
668 -- in the _assign operation for an abstract type).
669
670 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
671 Error_Msg_N
672 ("target of assignment operation must not be abstract", Lhs);
673 end if;
674
675 -- Resolution may have updated the subtype, in case the left-hand side
676 -- is a private protected component. Use the correct subtype to avoid
677 -- scoping issues in the back-end.
678
679 T1 := Etype (Lhs);
680
681 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
682 -- type. For example:
683
684 -- limited with P;
685 -- package Pkg is
686 -- type Acc is access P.T;
687 -- end Pkg;
688
689 -- with Pkg; use Acc;
690 -- procedure Example is
691 -- A, B : Acc;
692 -- begin
693 -- A.all := B.all; -- ERROR
694 -- end Example;
695
696 if Nkind (Lhs) = N_Explicit_Dereference
697 and then Ekind (T1) = E_Incomplete_Type
698 then
699 Error_Msg_N ("invalid use of incomplete type", Lhs);
700 Kill_Lhs;
701 goto Leave;
702 end if;
703
704 -- Now we can complete the resolution of the right hand side
705
706 Set_Assignment_Type (Lhs, T1);
707
708 -- If the target of the assignment is an entity of a mutable type and
709 -- the expression is a conditional expression, its alternatives can be
710 -- of different subtypes of the nominal type of the LHS, so they must be
711 -- resolved with the base type, given that their subtype may differ from
712 -- that of the target mutable object.
713
714 if Is_Entity_Name (Lhs)
715 and then Ekind_In (Entity (Lhs), E_In_Out_Parameter,
716 E_Out_Parameter,
717 E_Variable)
718 and then Is_Composite_Type (T1)
719 and then not Is_Constrained (Etype (Entity (Lhs)))
720 and then Nkind_In (Rhs, N_If_Expression, N_Case_Expression)
721 then
722 Resolve (Rhs, Base_Type (T1));
723
724 else
725 Resolve (Rhs, T1);
726 end if;
727
728 -- This is the point at which we check for an unset reference
729
730 Check_Unset_Reference (Rhs);
731 Check_Unprotected_Access (Lhs, Rhs);
732
733 -- Remaining steps are skipped if Rhs was syntactically in error
734
735 if Rhs = Error then
736 Kill_Lhs;
737 goto Leave;
738 end if;
739
740 T2 := Etype (Rhs);
741
742 if not Covers (T1, T2) then
743 Wrong_Type (Rhs, Etype (Lhs));
744 Kill_Lhs;
745 goto Leave;
746 end if;
747
748 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
749 -- types, use the non-limited view if available
750
751 if Nkind (Rhs) = N_Explicit_Dereference
752 and then Is_Tagged_Type (T2)
753 and then Has_Non_Limited_View (T2)
754 then
755 T2 := Non_Limited_View (T2);
756 end if;
757
758 Set_Assignment_Type (Rhs, T2);
759
760 if Total_Errors_Detected /= 0 then
761 if No (T1) then
762 T1 := Any_Type;
763 end if;
764
765 if No (T2) then
766 T2 := Any_Type;
767 end if;
768 end if;
769
770 if T1 = Any_Type or else T2 = Any_Type then
771 Kill_Lhs;
772 goto Leave;
773 end if;
774
775 -- If the rhs is class-wide or dynamically tagged, then require the lhs
776 -- to be class-wide. The case where the rhs is a dynamically tagged call
777 -- to a dispatching operation with a controlling access result is
778 -- excluded from this check, since the target has an access type (and
779 -- no tag propagation occurs in that case).
780
781 if (Is_Class_Wide_Type (T2)
782 or else (Is_Dynamically_Tagged (Rhs)
783 and then not Is_Access_Type (T1)))
784 and then not Is_Class_Wide_Type (T1)
785 then
786 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
787
788 elsif Is_Class_Wide_Type (T1)
789 and then not Is_Class_Wide_Type (T2)
790 and then not Is_Tag_Indeterminate (Rhs)
791 and then not Is_Dynamically_Tagged (Rhs)
792 then
793 Error_Msg_N ("dynamically tagged expression required!", Rhs);
794 end if;
795
796 -- Propagate the tag from a class-wide target to the rhs when the rhs
797 -- is a tag-indeterminate call.
798
799 if Is_Tag_Indeterminate (Rhs) then
800 if Is_Class_Wide_Type (T1) then
801 Propagate_Tag (Lhs, Rhs);
802
803 elsif Nkind (Rhs) = N_Function_Call
804 and then Is_Entity_Name (Name (Rhs))
805 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
806 then
807 Error_Msg_N
808 ("call to abstract function must be dispatching", Name (Rhs));
809
810 elsif Nkind (Rhs) = N_Qualified_Expression
811 and then Nkind (Expression (Rhs)) = N_Function_Call
812 and then Is_Entity_Name (Name (Expression (Rhs)))
813 and then
814 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
815 then
816 Error_Msg_N
817 ("call to abstract function must be dispatching",
818 Name (Expression (Rhs)));
819 end if;
820 end if;
821
822 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
823 -- apply an implicit conversion of the rhs to that type to force
824 -- appropriate static and run-time accessibility checks. This applies
825 -- as well to anonymous access-to-subprogram types that are component
826 -- subtypes or formal parameters.
827
828 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
829 if Is_Local_Anonymous_Access (T1)
830 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
831
832 -- Handle assignment to an Ada 2012 stand-alone object
833 -- of an anonymous access type.
834
835 or else (Ekind (T1) = E_Anonymous_Access_Type
836 and then Nkind (Associated_Node_For_Itype (T1)) =
837 N_Object_Declaration)
838
839 then
840 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
841 Analyze_And_Resolve (Rhs, T1);
842 end if;
843 end if;
844
845 -- Ada 2005 (AI-231): Assignment to not null variable
846
847 if Ada_Version >= Ada_2005
848 and then Can_Never_Be_Null (T1)
849 and then not Assignment_OK (Lhs)
850 then
851 -- Case where we know the right hand side is null
852
853 if Known_Null (Rhs) then
854 Apply_Compile_Time_Constraint_Error
855 (N => Rhs,
856 Msg =>
857 "(Ada 2005) null not allowed in null-excluding objects??",
858 Reason => CE_Null_Not_Allowed);
859
860 -- We still mark this as a possible modification, that's necessary
861 -- to reset Is_True_Constant, and desirable for xref purposes.
862
863 Note_Possible_Modification (Lhs, Sure => True);
864 goto Leave;
865
866 -- If we know the right hand side is non-null, then we convert to the
867 -- target type, since we don't need a run time check in that case.
868
869 elsif not Can_Never_Be_Null (T2) then
870 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
871 Analyze_And_Resolve (Rhs, T1);
872 end if;
873 end if;
874
875 if Is_Scalar_Type (T1) then
876 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
877
878 -- For array types, verify that lengths match. If the right hand side
879 -- is a function call that has been inlined, the assignment has been
880 -- rewritten as a block, and the constraint check will be applied to the
881 -- assignment within the block.
882
883 elsif Is_Array_Type (T1)
884 and then (Nkind (Rhs) /= N_Type_Conversion
885 or else Is_Constrained (Etype (Rhs)))
886 and then (Nkind (Rhs) /= N_Function_Call
887 or else Nkind (N) /= N_Block_Statement)
888 then
889 -- Assignment verifies that the length of the Lsh and Rhs are equal,
890 -- but of course the indexes do not have to match. If the right-hand
891 -- side is a type conversion to an unconstrained type, a length check
892 -- is performed on the expression itself during expansion. In rare
893 -- cases, the redundant length check is computed on an index type
894 -- with a different representation, triggering incorrect code in the
895 -- back end.
896
897 Apply_Length_Check (Rhs, Etype (Lhs));
898
899 else
900 -- Discriminant checks are applied in the course of expansion
901
902 null;
903 end if;
904
905 -- Note: modifications of the Lhs may only be recorded after
906 -- checks have been applied.
907
908 Note_Possible_Modification (Lhs, Sure => True);
909
910 -- ??? a real accessibility check is needed when ???
911
912 -- Post warning for redundant assignment or variable to itself
913
914 if Warn_On_Redundant_Constructs
915
916 -- We only warn for source constructs
917
918 and then Comes_From_Source (N)
919
920 -- Where the object is the same on both sides
921
922 and then Same_Object (Lhs, Original_Node (Rhs))
923
924 -- But exclude the case where the right side was an operation that
925 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
926 -- don't want to warn in such a case, since it is reasonable to write
927 -- such expressions especially when K is defined symbolically in some
928 -- other package.
929
930 and then Nkind (Original_Node (Rhs)) not in N_Op
931 then
932 if Nkind (Lhs) in N_Has_Entity then
933 Error_Msg_NE -- CODEFIX
934 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
935 else
936 Error_Msg_N -- CODEFIX
937 ("?r?useless assignment of object to itself!", N);
938 end if;
939 end if;
940
941 -- Check for non-allowed composite assignment
942
943 if not Support_Composite_Assign_On_Target
944 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
945 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
946 then
947 Error_Msg_CRT ("composite assignment", N);
948 end if;
949
950 -- Save the scenario for later examination by the ABE Processing phase
951
952 Record_Elaboration_Scenario (N);
953
954 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
955 -- assignment is a source assignment in the extended main source unit.
956 -- We are not interested in any reference information outside this
957 -- context, or in compiler generated assignment statements.
958
959 if Comes_From_Source (N)
960 and then In_Extended_Main_Source_Unit (Lhs)
961 then
962 Set_Referenced_Modified (Lhs, Out_Param => False);
963 end if;
964
965 -- RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
966 -- one of its ancestors) requires an invariant check. Apply check only
967 -- if expression comes from source, otherwise it will be applied when
968 -- value is assigned to source entity. This is not done in GNATprove
969 -- mode, as GNATprove handles invariant checks itself.
970
971 if Nkind (Lhs) = N_Type_Conversion
972 and then Has_Invariants (Etype (Expression (Lhs)))
973 and then Comes_From_Source (Expression (Lhs))
974 and then not GNATprove_Mode
975 then
976 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
977 end if;
978
979 -- Final step. If left side is an entity, then we may be able to reset
980 -- the current tracked values to new safe values. We only have something
981 -- to do if the left side is an entity name, and expansion has not
982 -- modified the node into something other than an assignment, and of
983 -- course we only capture values if it is safe to do so.
984
985 if Is_Entity_Name (Lhs)
986 and then Nkind (N) = N_Assignment_Statement
987 then
988 declare
989 Ent : constant Entity_Id := Entity (Lhs);
990
991 begin
992 if Safe_To_Capture_Value (N, Ent) then
993
994 -- If simple variable on left side, warn if this assignment
995 -- blots out another one (rendering it useless). We only do
996 -- this for source assignments, otherwise we can generate bogus
997 -- warnings when an assignment is rewritten as another
998 -- assignment, and gets tied up with itself.
999
1000 -- There may have been a previous reference to a component of
1001 -- the variable, which in general removes the Last_Assignment
1002 -- field of the variable to indicate a relevant use of the
1003 -- previous assignment. However, if the assignment is to a
1004 -- subcomponent the reference may not have registered, because
1005 -- it is not possible to determine whether the context is an
1006 -- assignment. In those cases we generate a Deferred_Reference,
1007 -- to be used at the end of compilation to generate the right
1008 -- kind of reference, and we suppress a potential warning for
1009 -- a useless assignment, which might be premature. This may
1010 -- lose a warning in rare cases, but seems preferable to a
1011 -- misleading warning.
1012
1013 if Warn_On_Modified_Unread
1014 and then Is_Assignable (Ent)
1015 and then Comes_From_Source (N)
1016 and then In_Extended_Main_Source_Unit (Ent)
1017 and then not Has_Deferred_Reference (Ent)
1018 then
1019 Warn_On_Useless_Assignment (Ent, N);
1020 end if;
1021
1022 -- If we are assigning an access type and the left side is an
1023 -- entity, then make sure that the Is_Known_[Non_]Null flags
1024 -- properly reflect the state of the entity after assignment.
1025
1026 if Is_Access_Type (T1) then
1027 if Known_Non_Null (Rhs) then
1028 Set_Is_Known_Non_Null (Ent, True);
1029
1030 elsif Known_Null (Rhs)
1031 and then not Can_Never_Be_Null (Ent)
1032 then
1033 Set_Is_Known_Null (Ent, True);
1034
1035 else
1036 Set_Is_Known_Null (Ent, False);
1037
1038 if not Can_Never_Be_Null (Ent) then
1039 Set_Is_Known_Non_Null (Ent, False);
1040 end if;
1041 end if;
1042
1043 -- For discrete types, we may be able to set the current value
1044 -- if the value is known at compile time.
1045
1046 elsif Is_Discrete_Type (T1)
1047 and then Compile_Time_Known_Value (Rhs)
1048 then
1049 Set_Current_Value (Ent, Rhs);
1050 else
1051 Set_Current_Value (Ent, Empty);
1052 end if;
1053
1054 -- If not safe to capture values, kill them
1055
1056 else
1057 Kill_Lhs;
1058 end if;
1059 end;
1060 end if;
1061
1062 -- If assigning to an object in whole or in part, note location of
1063 -- assignment in case no one references value. We only do this for
1064 -- source assignments, otherwise we can generate bogus warnings when an
1065 -- assignment is rewritten as another assignment, and gets tied up with
1066 -- itself.
1067
1068 declare
1069 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
1070 begin
1071 if Present (Ent)
1072 and then Safe_To_Capture_Value (N, Ent)
1073 and then Nkind (N) = N_Assignment_Statement
1074 and then Warn_On_Modified_Unread
1075 and then Is_Assignable (Ent)
1076 and then Comes_From_Source (N)
1077 and then In_Extended_Main_Source_Unit (Ent)
1078 then
1079 Set_Last_Assignment (Ent, Lhs);
1080 end if;
1081 end;
1082
1083 Analyze_Dimension (N);
1084
1085 <<Leave>>
1086 Restore_Ghost_Mode (Saved_GM);
1087
1088 -- If the right-hand side contains target names, expansion has been
1089 -- disabled to prevent expansion that might move target names out of
1090 -- the context of the assignment statement. Restore the expander mode
1091 -- now so that assignment statement can be properly expanded.
1092
1093 if Nkind (N) = N_Assignment_Statement then
1094 if Has_Target_Names (N) then
1095 Expander_Mode_Restore;
1096 Full_Analysis := Save_Full_Analysis;
1097 end if;
1098
1099 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
1100 end if;
1101 end Analyze_Assignment;
1102
1103 -----------------------------
1104 -- Analyze_Block_Statement --
1105 -----------------------------
1106
1107 procedure Analyze_Block_Statement (N : Node_Id) is
1108 procedure Install_Return_Entities (Scop : Entity_Id);
1109 -- Install all entities of return statement scope Scop in the visibility
1110 -- chain except for the return object since its entity is reused in a
1111 -- renaming.
1112
1113 -----------------------------
1114 -- Install_Return_Entities --
1115 -----------------------------
1116
1117 procedure Install_Return_Entities (Scop : Entity_Id) is
1118 Id : Entity_Id;
1119
1120 begin
1121 Id := First_Entity (Scop);
1122 while Present (Id) loop
1123
1124 -- Do not install the return object
1125
1126 if not Ekind_In (Id, E_Constant, E_Variable)
1127 or else not Is_Return_Object (Id)
1128 then
1129 Install_Entity (Id);
1130 end if;
1131
1132 Next_Entity (Id);
1133 end loop;
1134 end Install_Return_Entities;
1135
1136 -- Local constants and variables
1137
1138 Decls : constant List_Id := Declarations (N);
1139 Id : constant Node_Id := Identifier (N);
1140 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1141
1142 Is_BIP_Return_Statement : Boolean;
1143
1144 -- Start of processing for Analyze_Block_Statement
1145
1146 begin
1147 -- In SPARK mode, we reject block statements. Note that the case of
1148 -- block statements generated by the expander is fine.
1149
1150 if Nkind (Original_Node (N)) = N_Block_Statement then
1151 Check_SPARK_05_Restriction ("block statement is not allowed", N);
1152 end if;
1153
1154 -- If no handled statement sequence is present, things are really messed
1155 -- up, and we just return immediately (defence against previous errors).
1156
1157 if No (HSS) then
1158 Check_Error_Detected;
1159 return;
1160 end if;
1161
1162 -- Detect whether the block is actually a rewritten return statement of
1163 -- a build-in-place function.
1164
1165 Is_BIP_Return_Statement :=
1166 Present (Id)
1167 and then Present (Entity (Id))
1168 and then Ekind (Entity (Id)) = E_Return_Statement
1169 and then Is_Build_In_Place_Function
1170 (Return_Applies_To (Entity (Id)));
1171
1172 -- Normal processing with HSS present
1173
1174 declare
1175 EH : constant List_Id := Exception_Handlers (HSS);
1176 Ent : Entity_Id := Empty;
1177 S : Entity_Id;
1178
1179 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1180 -- Recursively save value of this global, will be restored on exit
1181
1182 begin
1183 -- Initialize unblocked exit count for statements of begin block
1184 -- plus one for each exception handler that is present.
1185
1186 Unblocked_Exit_Count := 1;
1187
1188 if Present (EH) then
1189 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
1190 end if;
1191
1192 -- If a label is present analyze it and mark it as referenced
1193
1194 if Present (Id) then
1195 Analyze (Id);
1196 Ent := Entity (Id);
1197
1198 -- An error defense. If we have an identifier, but no entity, then
1199 -- something is wrong. If previous errors, then just remove the
1200 -- identifier and continue, otherwise raise an exception.
1201
1202 if No (Ent) then
1203 Check_Error_Detected;
1204 Set_Identifier (N, Empty);
1205
1206 else
1207 Set_Ekind (Ent, E_Block);
1208 Generate_Reference (Ent, N, ' ');
1209 Generate_Definition (Ent);
1210
1211 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1212 Set_Label_Construct (Parent (Ent), N);
1213 end if;
1214 end if;
1215 end if;
1216
1217 -- If no entity set, create a label entity
1218
1219 if No (Ent) then
1220 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1221 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1222 Set_Parent (Ent, N);
1223 end if;
1224
1225 Set_Etype (Ent, Standard_Void_Type);
1226 Set_Block_Node (Ent, Identifier (N));
1227 Push_Scope (Ent);
1228
1229 -- The block served as an extended return statement. Ensure that any
1230 -- entities created during the analysis and expansion of the return
1231 -- object declaration are once again visible.
1232
1233 if Is_BIP_Return_Statement then
1234 Install_Return_Entities (Ent);
1235 end if;
1236
1237 if Present (Decls) then
1238 Analyze_Declarations (Decls);
1239 Check_Completion;
1240 Inspect_Deferred_Constant_Completion (Decls);
1241 end if;
1242
1243 Analyze (HSS);
1244 Process_End_Label (HSS, 'e', Ent);
1245
1246 -- If exception handlers are present, then we indicate that enclosing
1247 -- scopes contain a block with handlers. We only need to mark non-
1248 -- generic scopes.
1249
1250 if Present (EH) then
1251 S := Scope (Ent);
1252 loop
1253 Set_Has_Nested_Block_With_Handler (S);
1254 exit when Is_Overloadable (S)
1255 or else Ekind (S) = E_Package
1256 or else Is_Generic_Unit (S);
1257 S := Scope (S);
1258 end loop;
1259 end if;
1260
1261 Check_References (Ent);
1262 Update_Use_Clause_Chain;
1263 End_Scope;
1264
1265 if Unblocked_Exit_Count = 0 then
1266 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1267 Check_Unreachable_Code (N);
1268 else
1269 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1270 end if;
1271 end;
1272 end Analyze_Block_Statement;
1273
1274 --------------------------------
1275 -- Analyze_Compound_Statement --
1276 --------------------------------
1277
1278 procedure Analyze_Compound_Statement (N : Node_Id) is
1279 begin
1280 Analyze_List (Actions (N));
1281 end Analyze_Compound_Statement;
1282
1283 ----------------------------
1284 -- Analyze_Case_Statement --
1285 ----------------------------
1286
1287 procedure Analyze_Case_Statement (N : Node_Id) is
1288 Exp : Node_Id;
1289 Exp_Type : Entity_Id;
1290 Exp_Btype : Entity_Id;
1291 Last_Choice : Nat;
1292
1293 Others_Present : Boolean;
1294 -- Indicates if Others was present
1295
1296 pragma Warnings (Off, Last_Choice);
1297 -- Don't care about assigned value
1298
1299 Statements_Analyzed : Boolean := False;
1300 -- Set True if at least some statement sequences get analyzed. If False
1301 -- on exit, means we had a serious error that prevented full analysis of
1302 -- the case statement, and as a result it is not a good idea to output
1303 -- warning messages about unreachable code.
1304
1305 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1306 -- Recursively save value of this global, will be restored on exit
1307
1308 procedure Non_Static_Choice_Error (Choice : Node_Id);
1309 -- Error routine invoked by the generic instantiation below when the
1310 -- case statement has a non static choice.
1311
1312 procedure Process_Statements (Alternative : Node_Id);
1313 -- Analyzes the statements associated with a case alternative. Needed
1314 -- by instantiation below.
1315
1316 package Analyze_Case_Choices is new
1317 Generic_Analyze_Choices
1318 (Process_Associated_Node => Process_Statements);
1319 use Analyze_Case_Choices;
1320 -- Instantiation of the generic choice analysis package
1321
1322 package Check_Case_Choices is new
1323 Generic_Check_Choices
1324 (Process_Empty_Choice => No_OP,
1325 Process_Non_Static_Choice => Non_Static_Choice_Error,
1326 Process_Associated_Node => No_OP);
1327 use Check_Case_Choices;
1328 -- Instantiation of the generic choice processing package
1329
1330 -----------------------------
1331 -- Non_Static_Choice_Error --
1332 -----------------------------
1333
1334 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1335 begin
1336 Flag_Non_Static_Expr
1337 ("choice given in case statement is not static!", Choice);
1338 end Non_Static_Choice_Error;
1339
1340 ------------------------
1341 -- Process_Statements --
1342 ------------------------
1343
1344 procedure Process_Statements (Alternative : Node_Id) is
1345 Choices : constant List_Id := Discrete_Choices (Alternative);
1346 Ent : Entity_Id;
1347
1348 begin
1349 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1350 Statements_Analyzed := True;
1351
1352 -- An interesting optimization. If the case statement expression
1353 -- is a simple entity, then we can set the current value within an
1354 -- alternative if the alternative has one possible value.
1355
1356 -- case N is
1357 -- when 1 => alpha
1358 -- when 2 | 3 => beta
1359 -- when others => gamma
1360
1361 -- Here we know that N is initially 1 within alpha, but for beta and
1362 -- gamma, we do not know anything more about the initial value.
1363
1364 if Is_Entity_Name (Exp) then
1365 Ent := Entity (Exp);
1366
1367 if Ekind_In (Ent, E_Variable,
1368 E_In_Out_Parameter,
1369 E_Out_Parameter)
1370 then
1371 if List_Length (Choices) = 1
1372 and then Nkind (First (Choices)) in N_Subexpr
1373 and then Compile_Time_Known_Value (First (Choices))
1374 then
1375 Set_Current_Value (Entity (Exp), First (Choices));
1376 end if;
1377
1378 Analyze_Statements (Statements (Alternative));
1379
1380 -- After analyzing the case, set the current value to empty
1381 -- since we won't know what it is for the next alternative
1382 -- (unless reset by this same circuit), or after the case.
1383
1384 Set_Current_Value (Entity (Exp), Empty);
1385 return;
1386 end if;
1387 end if;
1388
1389 -- Case where expression is not an entity name of a variable
1390
1391 Analyze_Statements (Statements (Alternative));
1392 end Process_Statements;
1393
1394 -- Start of processing for Analyze_Case_Statement
1395
1396 begin
1397 Unblocked_Exit_Count := 0;
1398 Exp := Expression (N);
1399 Analyze (Exp);
1400
1401 -- The expression must be of any discrete type. In rare cases, the
1402 -- expander constructs a case statement whose expression has a private
1403 -- type whose full view is discrete. This can happen when generating
1404 -- a stream operation for a variant type after the type is frozen,
1405 -- when the partial of view of the type of the discriminant is private.
1406 -- In that case, use the full view to analyze case alternatives.
1407
1408 if not Is_Overloaded (Exp)
1409 and then not Comes_From_Source (N)
1410 and then Is_Private_Type (Etype (Exp))
1411 and then Present (Full_View (Etype (Exp)))
1412 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1413 then
1414 Resolve (Exp, Etype (Exp));
1415 Exp_Type := Full_View (Etype (Exp));
1416
1417 else
1418 Analyze_And_Resolve (Exp, Any_Discrete);
1419 Exp_Type := Etype (Exp);
1420 end if;
1421
1422 Check_Unset_Reference (Exp);
1423 Exp_Btype := Base_Type (Exp_Type);
1424
1425 -- The expression must be of a discrete type which must be determinable
1426 -- independently of the context in which the expression occurs, but
1427 -- using the fact that the expression must be of a discrete type.
1428 -- Moreover, the type this expression must not be a character literal
1429 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1430
1431 -- If error already reported by Resolve, nothing more to do
1432
1433 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1434 return;
1435
1436 elsif Exp_Btype = Any_Character then
1437 Error_Msg_N
1438 ("character literal as case expression is ambiguous", Exp);
1439 return;
1440
1441 elsif Ada_Version = Ada_83
1442 and then (Is_Generic_Type (Exp_Btype)
1443 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1444 then
1445 Error_Msg_N
1446 ("(Ada 83) case expression cannot be of a generic type", Exp);
1447 return;
1448 end if;
1449
1450 -- If the case expression is a formal object of mode in out, then treat
1451 -- it as having a nonstatic subtype by forcing use of the base type
1452 -- (which has to get passed to Check_Case_Choices below). Also use base
1453 -- type when the case expression is parenthesized.
1454
1455 if Paren_Count (Exp) > 0
1456 or else (Is_Entity_Name (Exp)
1457 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1458 then
1459 Exp_Type := Exp_Btype;
1460 end if;
1461
1462 -- Call instantiated procedures to analyzwe and check discrete choices
1463
1464 Analyze_Choices (Alternatives (N), Exp_Type);
1465 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1466
1467 -- Case statement with single OTHERS alternative not allowed in SPARK
1468
1469 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1470 Check_SPARK_05_Restriction
1471 ("OTHERS as unique case alternative is not allowed", N);
1472 end if;
1473
1474 if Exp_Type = Universal_Integer and then not Others_Present then
1475 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1476 end if;
1477
1478 -- If all our exits were blocked by unconditional transfers of control,
1479 -- then the entire CASE statement acts as an unconditional transfer of
1480 -- control, so treat it like one, and check unreachable code. Skip this
1481 -- test if we had serious errors preventing any statement analysis.
1482
1483 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1484 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1485 Check_Unreachable_Code (N);
1486 else
1487 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1488 end if;
1489
1490 -- If the expander is active it will detect the case of a statically
1491 -- determined single alternative and remove warnings for the case, but
1492 -- if we are not doing expansion, that circuit won't be active. Here we
1493 -- duplicate the effect of removing warnings in the same way, so that
1494 -- we will get the same set of warnings in -gnatc mode.
1495
1496 if not Expander_Active
1497 and then Compile_Time_Known_Value (Expression (N))
1498 and then Serious_Errors_Detected = 0
1499 then
1500 declare
1501 Chosen : constant Node_Id := Find_Static_Alternative (N);
1502 Alt : Node_Id;
1503
1504 begin
1505 Alt := First (Alternatives (N));
1506 while Present (Alt) loop
1507 if Alt /= Chosen then
1508 Remove_Warning_Messages (Statements (Alt));
1509 end if;
1510
1511 Next (Alt);
1512 end loop;
1513 end;
1514 end if;
1515 end Analyze_Case_Statement;
1516
1517 ----------------------------
1518 -- Analyze_Exit_Statement --
1519 ----------------------------
1520
1521 -- If the exit includes a name, it must be the name of a currently open
1522 -- loop. Otherwise there must be an innermost open loop on the stack, to
1523 -- which the statement implicitly refers.
1524
1525 -- Additionally, in SPARK mode:
1526
1527 -- The exit can only name the closest enclosing loop;
1528
1529 -- An exit with a when clause must be directly contained in a loop;
1530
1531 -- An exit without a when clause must be directly contained in an
1532 -- if-statement with no elsif or else, which is itself directly contained
1533 -- in a loop. The exit must be the last statement in the if-statement.
1534
1535 procedure Analyze_Exit_Statement (N : Node_Id) is
1536 Target : constant Node_Id := Name (N);
1537 Cond : constant Node_Id := Condition (N);
1538 Scope_Id : Entity_Id := Empty; -- initialize to prevent warning
1539 U_Name : Entity_Id;
1540 Kind : Entity_Kind;
1541
1542 begin
1543 if No (Cond) then
1544 Check_Unreachable_Code (N);
1545 end if;
1546
1547 if Present (Target) then
1548 Analyze (Target);
1549 U_Name := Entity (Target);
1550
1551 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1552 Error_Msg_N ("invalid loop name in exit statement", N);
1553 return;
1554
1555 else
1556 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1557 Check_SPARK_05_Restriction
1558 ("exit label must name the closest enclosing loop", N);
1559 end if;
1560
1561 Set_Has_Exit (U_Name);
1562 end if;
1563
1564 else
1565 U_Name := Empty;
1566 end if;
1567
1568 for J in reverse 0 .. Scope_Stack.Last loop
1569 Scope_Id := Scope_Stack.Table (J).Entity;
1570 Kind := Ekind (Scope_Id);
1571
1572 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1573 Set_Has_Exit (Scope_Id);
1574 exit;
1575
1576 elsif Kind = E_Block
1577 or else Kind = E_Loop
1578 or else Kind = E_Return_Statement
1579 then
1580 null;
1581
1582 else
1583 Error_Msg_N
1584 ("cannot exit from program unit or accept statement", N);
1585 return;
1586 end if;
1587 end loop;
1588
1589 -- Verify that if present the condition is a Boolean expression
1590
1591 if Present (Cond) then
1592 Analyze_And_Resolve (Cond, Any_Boolean);
1593 Check_Unset_Reference (Cond);
1594 end if;
1595
1596 -- In SPARK mode, verify that the exit statement respects the SPARK
1597 -- restrictions.
1598
1599 if Present (Cond) then
1600 if Nkind (Parent (N)) /= N_Loop_Statement then
1601 Check_SPARK_05_Restriction
1602 ("exit with when clause must be directly in loop", N);
1603 end if;
1604
1605 else
1606 if Nkind (Parent (N)) /= N_If_Statement then
1607 if Nkind (Parent (N)) = N_Elsif_Part then
1608 Check_SPARK_05_Restriction
1609 ("exit must be in IF without ELSIF", N);
1610 else
1611 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1612 end if;
1613
1614 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1615 Check_SPARK_05_Restriction
1616 ("exit must be in IF directly in loop", N);
1617
1618 -- First test the presence of ELSE, so that an exit in an ELSE leads
1619 -- to an error mentioning the ELSE.
1620
1621 elsif Present (Else_Statements (Parent (N))) then
1622 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1623
1624 -- An exit in an ELSIF does not reach here, as it would have been
1625 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1626
1627 elsif Present (Elsif_Parts (Parent (N))) then
1628 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1629 end if;
1630 end if;
1631
1632 -- Chain exit statement to associated loop entity
1633
1634 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1635 Set_First_Exit_Statement (Scope_Id, N);
1636
1637 -- Since the exit may take us out of a loop, any previous assignment
1638 -- statement is not useless, so clear last assignment indications. It
1639 -- is OK to keep other current values, since if the exit statement
1640 -- does not exit, then the current values are still valid.
1641
1642 Kill_Current_Values (Last_Assignment_Only => True);
1643 end Analyze_Exit_Statement;
1644
1645 ----------------------------
1646 -- Analyze_Goto_Statement --
1647 ----------------------------
1648
1649 procedure Analyze_Goto_Statement (N : Node_Id) is
1650 Label : constant Node_Id := Name (N);
1651 Scope_Id : Entity_Id;
1652 Label_Scope : Entity_Id;
1653 Label_Ent : Entity_Id;
1654
1655 begin
1656 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1657
1658 -- Actual semantic checks
1659
1660 Check_Unreachable_Code (N);
1661 Kill_Current_Values (Last_Assignment_Only => True);
1662
1663 Analyze (Label);
1664 Label_Ent := Entity (Label);
1665
1666 -- Ignore previous error
1667
1668 if Label_Ent = Any_Id then
1669 Check_Error_Detected;
1670 return;
1671
1672 -- We just have a label as the target of a goto
1673
1674 elsif Ekind (Label_Ent) /= E_Label then
1675 Error_Msg_N ("target of goto statement must be a label", Label);
1676 return;
1677
1678 -- Check that the target of the goto is reachable according to Ada
1679 -- scoping rules. Note: the special gotos we generate for optimizing
1680 -- local handling of exceptions would violate these rules, but we mark
1681 -- such gotos as analyzed when built, so this code is never entered.
1682
1683 elsif not Reachable (Label_Ent) then
1684 Error_Msg_N ("target of goto statement is not reachable", Label);
1685 return;
1686 end if;
1687
1688 -- Here if goto passes initial validity checks
1689
1690 Label_Scope := Enclosing_Scope (Label_Ent);
1691
1692 for J in reverse 0 .. Scope_Stack.Last loop
1693 Scope_Id := Scope_Stack.Table (J).Entity;
1694
1695 if Label_Scope = Scope_Id
1696 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1697 then
1698 if Scope_Id /= Label_Scope then
1699 Error_Msg_N
1700 ("cannot exit from program unit or accept statement", N);
1701 end if;
1702
1703 return;
1704 end if;
1705 end loop;
1706
1707 raise Program_Error;
1708 end Analyze_Goto_Statement;
1709
1710 --------------------------
1711 -- Analyze_If_Statement --
1712 --------------------------
1713
1714 -- A special complication arises in the analysis of if statements
1715
1716 -- The expander has circuitry to completely delete code that it can tell
1717 -- will not be executed (as a result of compile time known conditions). In
1718 -- the analyzer, we ensure that code that will be deleted in this manner
1719 -- is analyzed but not expanded. This is obviously more efficient, but
1720 -- more significantly, difficulties arise if code is expanded and then
1721 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1722 -- generated in deleted code must be frozen from start, because the nodes
1723 -- on which they depend will not be available at the freeze point.
1724
1725 procedure Analyze_If_Statement (N : Node_Id) is
1726 E : Node_Id;
1727
1728 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1729 -- Recursively save value of this global, will be restored on exit
1730
1731 Save_In_Deleted_Code : Boolean;
1732
1733 Del : Boolean := False;
1734 -- This flag gets set True if a True condition has been found, which
1735 -- means that remaining ELSE/ELSIF parts are deleted.
1736
1737 procedure Analyze_Cond_Then (Cnode : Node_Id);
1738 -- This is applied to either the N_If_Statement node itself or to an
1739 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1740 -- statements associated with it.
1741
1742 -----------------------
1743 -- Analyze_Cond_Then --
1744 -----------------------
1745
1746 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1747 Cond : constant Node_Id := Condition (Cnode);
1748 Tstm : constant List_Id := Then_Statements (Cnode);
1749
1750 begin
1751 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1752 Analyze_And_Resolve (Cond, Any_Boolean);
1753 Check_Unset_Reference (Cond);
1754 Set_Current_Value_Condition (Cnode);
1755
1756 -- If already deleting, then just analyze then statements
1757
1758 if Del then
1759 Analyze_Statements (Tstm);
1760
1761 -- Compile time known value, not deleting yet
1762
1763 elsif Compile_Time_Known_Value (Cond) then
1764 Save_In_Deleted_Code := In_Deleted_Code;
1765
1766 -- If condition is True, then analyze the THEN statements and set
1767 -- no expansion for ELSE and ELSIF parts.
1768
1769 if Is_True (Expr_Value (Cond)) then
1770 Analyze_Statements (Tstm);
1771 Del := True;
1772 Expander_Mode_Save_And_Set (False);
1773 In_Deleted_Code := True;
1774
1775 -- If condition is False, analyze THEN with expansion off
1776
1777 else -- Is_False (Expr_Value (Cond))
1778 Expander_Mode_Save_And_Set (False);
1779 In_Deleted_Code := True;
1780 Analyze_Statements (Tstm);
1781 Expander_Mode_Restore;
1782 In_Deleted_Code := Save_In_Deleted_Code;
1783 end if;
1784
1785 -- Not known at compile time, not deleting, normal analysis
1786
1787 else
1788 Analyze_Statements (Tstm);
1789 end if;
1790 end Analyze_Cond_Then;
1791
1792 -- Start of processing for Analyze_If_Statement
1793
1794 begin
1795 -- Initialize exit count for else statements. If there is no else part,
1796 -- this count will stay non-zero reflecting the fact that the uncovered
1797 -- else case is an unblocked exit.
1798
1799 Unblocked_Exit_Count := 1;
1800 Analyze_Cond_Then (N);
1801
1802 -- Now to analyze the elsif parts if any are present
1803
1804 if Present (Elsif_Parts (N)) then
1805 E := First (Elsif_Parts (N));
1806 while Present (E) loop
1807 Analyze_Cond_Then (E);
1808 Next (E);
1809 end loop;
1810 end if;
1811
1812 if Present (Else_Statements (N)) then
1813 Analyze_Statements (Else_Statements (N));
1814 end if;
1815
1816 -- If all our exits were blocked by unconditional transfers of control,
1817 -- then the entire IF statement acts as an unconditional transfer of
1818 -- control, so treat it like one, and check unreachable code.
1819
1820 if Unblocked_Exit_Count = 0 then
1821 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1822 Check_Unreachable_Code (N);
1823 else
1824 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1825 end if;
1826
1827 if Del then
1828 Expander_Mode_Restore;
1829 In_Deleted_Code := Save_In_Deleted_Code;
1830 end if;
1831
1832 if not Expander_Active
1833 and then Compile_Time_Known_Value (Condition (N))
1834 and then Serious_Errors_Detected = 0
1835 then
1836 if Is_True (Expr_Value (Condition (N))) then
1837 Remove_Warning_Messages (Else_Statements (N));
1838
1839 if Present (Elsif_Parts (N)) then
1840 E := First (Elsif_Parts (N));
1841 while Present (E) loop
1842 Remove_Warning_Messages (Then_Statements (E));
1843 Next (E);
1844 end loop;
1845 end if;
1846
1847 else
1848 Remove_Warning_Messages (Then_Statements (N));
1849 end if;
1850 end if;
1851
1852 -- Warn on redundant if statement that has no effect
1853
1854 -- Note, we could also check empty ELSIF parts ???
1855
1856 if Warn_On_Redundant_Constructs
1857
1858 -- If statement must be from source
1859
1860 and then Comes_From_Source (N)
1861
1862 -- Condition must not have obvious side effect
1863
1864 and then Has_No_Obvious_Side_Effects (Condition (N))
1865
1866 -- No elsif parts of else part
1867
1868 and then No (Elsif_Parts (N))
1869 and then No (Else_Statements (N))
1870
1871 -- Then must be a single null statement
1872
1873 and then List_Length (Then_Statements (N)) = 1
1874 then
1875 -- Go to original node, since we may have rewritten something as
1876 -- a null statement (e.g. a case we could figure the outcome of).
1877
1878 declare
1879 T : constant Node_Id := First (Then_Statements (N));
1880 S : constant Node_Id := Original_Node (T);
1881
1882 begin
1883 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1884 Error_Msg_N ("if statement has no effect?r?", N);
1885 end if;
1886 end;
1887 end if;
1888 end Analyze_If_Statement;
1889
1890 ----------------------------------------
1891 -- Analyze_Implicit_Label_Declaration --
1892 ----------------------------------------
1893
1894 -- An implicit label declaration is generated in the innermost enclosing
1895 -- declarative part. This is done for labels, and block and loop names.
1896
1897 -- Note: any changes in this routine may need to be reflected in
1898 -- Analyze_Label_Entity.
1899
1900 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1901 Id : constant Node_Id := Defining_Identifier (N);
1902 begin
1903 Enter_Name (Id);
1904 Set_Ekind (Id, E_Label);
1905 Set_Etype (Id, Standard_Void_Type);
1906 Set_Enclosing_Scope (Id, Current_Scope);
1907 end Analyze_Implicit_Label_Declaration;
1908
1909 ------------------------------
1910 -- Analyze_Iteration_Scheme --
1911 ------------------------------
1912
1913 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1914 Cond : Node_Id;
1915 Iter_Spec : Node_Id;
1916 Loop_Spec : Node_Id;
1917
1918 begin
1919 -- For an infinite loop, there is no iteration scheme
1920
1921 if No (N) then
1922 return;
1923 end if;
1924
1925 Cond := Condition (N);
1926 Iter_Spec := Iterator_Specification (N);
1927 Loop_Spec := Loop_Parameter_Specification (N);
1928
1929 if Present (Cond) then
1930 Analyze_And_Resolve (Cond, Any_Boolean);
1931 Check_Unset_Reference (Cond);
1932 Set_Current_Value_Condition (N);
1933
1934 elsif Present (Iter_Spec) then
1935 Analyze_Iterator_Specification (Iter_Spec);
1936
1937 else
1938 Analyze_Loop_Parameter_Specification (Loop_Spec);
1939 end if;
1940 end Analyze_Iteration_Scheme;
1941
1942 ------------------------------------
1943 -- Analyze_Iterator_Specification --
1944 ------------------------------------
1945
1946 procedure Analyze_Iterator_Specification (N : Node_Id) is
1947 procedure Check_Reverse_Iteration (Typ : Entity_Id);
1948 -- For an iteration over a container, if the loop carries the Reverse
1949 -- indicator, verify that the container type has an Iterate aspect that
1950 -- implements the reversible iterator interface.
1951
1952 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1953 -- For containers with Iterator and related aspects, the cursor is
1954 -- obtained by locating an entity with the proper name in the scope
1955 -- of the type.
1956
1957 -----------------------------
1958 -- Check_Reverse_Iteration --
1959 -----------------------------
1960
1961 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
1962 begin
1963 if Reverse_Present (N) then
1964 if Is_Array_Type (Typ)
1965 or else Is_Reversible_Iterator (Typ)
1966 or else
1967 (Present (Find_Aspect (Typ, Aspect_Iterable))
1968 and then
1969 Present
1970 (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
1971 then
1972 null;
1973 else
1974 Error_Msg_NE
1975 ("container type does not support reverse iteration", N, Typ);
1976 end if;
1977 end if;
1978 end Check_Reverse_Iteration;
1979
1980 ---------------------
1981 -- Get_Cursor_Type --
1982 ---------------------
1983
1984 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
1985 Ent : Entity_Id;
1986
1987 begin
1988 -- If iterator type is derived, the cursor is declared in the scope
1989 -- of the parent type.
1990
1991 if Is_Derived_Type (Typ) then
1992 Ent := First_Entity (Scope (Etype (Typ)));
1993 else
1994 Ent := First_Entity (Scope (Typ));
1995 end if;
1996
1997 while Present (Ent) loop
1998 exit when Chars (Ent) = Name_Cursor;
1999 Next_Entity (Ent);
2000 end loop;
2001
2002 if No (Ent) then
2003 return Any_Type;
2004 end if;
2005
2006 -- The cursor is the target of generated assignments in the
2007 -- loop, and cannot have a limited type.
2008
2009 if Is_Limited_Type (Etype (Ent)) then
2010 Error_Msg_N ("cursor type cannot be limited", N);
2011 end if;
2012
2013 return Etype (Ent);
2014 end Get_Cursor_Type;
2015
2016 -- Local variables
2017
2018 Def_Id : constant Node_Id := Defining_Identifier (N);
2019 Iter_Name : constant Node_Id := Name (N);
2020 Loc : constant Source_Ptr := Sloc (N);
2021 Subt : constant Node_Id := Subtype_Indication (N);
2022
2023 Bas : Entity_Id := Empty; -- initialize to prevent warning
2024 Typ : Entity_Id;
2025
2026 -- Start of processing for Analyze_Iterator_Specification
2027
2028 begin
2029 Enter_Name (Def_Id);
2030
2031 -- AI12-0151 specifies that when the subtype indication is present, it
2032 -- must statically match the type of the array or container element.
2033 -- To simplify this check, we introduce a subtype declaration with the
2034 -- given subtype indication when it carries a constraint, and rewrite
2035 -- the original as a reference to the created subtype entity.
2036
2037 if Present (Subt) then
2038 if Nkind (Subt) = N_Subtype_Indication then
2039 declare
2040 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
2041 Decl : constant Node_Id :=
2042 Make_Subtype_Declaration (Loc,
2043 Defining_Identifier => S,
2044 Subtype_Indication => New_Copy_Tree (Subt));
2045 begin
2046 Insert_Before (Parent (Parent (N)), Decl);
2047 Analyze (Decl);
2048 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
2049 end;
2050 else
2051 Analyze (Subt);
2052 end if;
2053
2054 -- Save entity of subtype indication for subsequent check
2055
2056 Bas := Entity (Subt);
2057 end if;
2058
2059 Preanalyze_Range (Iter_Name);
2060
2061 -- Set the kind of the loop variable, which is not visible within the
2062 -- iterator name.
2063
2064 Set_Ekind (Def_Id, E_Variable);
2065
2066 -- Provide a link between the iterator variable and the container, for
2067 -- subsequent use in cross-reference and modification information.
2068
2069 if Of_Present (N) then
2070 Set_Related_Expression (Def_Id, Iter_Name);
2071
2072 -- For a container, the iterator is specified through the aspect
2073
2074 if not Is_Array_Type (Etype (Iter_Name)) then
2075 declare
2076 Iterator : constant Entity_Id :=
2077 Find_Value_Of_Aspect
2078 (Etype (Iter_Name), Aspect_Default_Iterator);
2079
2080 I : Interp_Index;
2081 It : Interp;
2082
2083 begin
2084 if No (Iterator) then
2085 null; -- error reported below
2086
2087 elsif not Is_Overloaded (Iterator) then
2088 Check_Reverse_Iteration (Etype (Iterator));
2089
2090 -- If Iterator is overloaded, use reversible iterator if one is
2091 -- available.
2092
2093 elsif Is_Overloaded (Iterator) then
2094 Get_First_Interp (Iterator, I, It);
2095 while Present (It.Nam) loop
2096 if Ekind (It.Nam) = E_Function
2097 and then Is_Reversible_Iterator (Etype (It.Nam))
2098 then
2099 Set_Etype (Iterator, It.Typ);
2100 Set_Entity (Iterator, It.Nam);
2101 exit;
2102 end if;
2103
2104 Get_Next_Interp (I, It);
2105 end loop;
2106
2107 Check_Reverse_Iteration (Etype (Iterator));
2108 end if;
2109 end;
2110 end if;
2111 end if;
2112
2113 -- If the domain of iteration is an expression, create a declaration for
2114 -- it, so that finalization actions are introduced outside of the loop.
2115 -- The declaration must be a renaming because the body of the loop may
2116 -- assign to elements.
2117
2118 if not Is_Entity_Name (Iter_Name)
2119
2120 -- When the context is a quantified expression, the renaming
2121 -- declaration is delayed until the expansion phase if we are
2122 -- doing expansion.
2123
2124 and then (Nkind (Parent (N)) /= N_Quantified_Expression
2125 or else Operating_Mode = Check_Semantics)
2126
2127 -- Do not perform this expansion for ASIS and when expansion is
2128 -- disabled, where the temporary may hide the transformation of a
2129 -- selected component into a prefixed function call, and references
2130 -- need to see the original expression.
2131
2132 and then Expander_Active
2133 then
2134 declare
2135 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
2136 Decl : Node_Id;
2137 Act_S : Node_Id;
2138
2139 begin
2140
2141 -- If the domain of iteration is an array component that depends
2142 -- on a discriminant, create actual subtype for it. Pre-analysis
2143 -- does not generate the actual subtype of a selected component.
2144
2145 if Nkind (Iter_Name) = N_Selected_Component
2146 and then Is_Array_Type (Etype (Iter_Name))
2147 then
2148 Act_S :=
2149 Build_Actual_Subtype_Of_Component
2150 (Etype (Selector_Name (Iter_Name)), Iter_Name);
2151 Insert_Action (N, Act_S);
2152
2153 if Present (Act_S) then
2154 Typ := Defining_Identifier (Act_S);
2155 else
2156 Typ := Etype (Iter_Name);
2157 end if;
2158
2159 else
2160 Typ := Etype (Iter_Name);
2161
2162 -- Verify that the expression produces an iterator
2163
2164 if not Of_Present (N) and then not Is_Iterator (Typ)
2165 and then not Is_Array_Type (Typ)
2166 and then No (Find_Aspect (Typ, Aspect_Iterable))
2167 then
2168 Error_Msg_N
2169 ("expect object that implements iterator interface",
2170 Iter_Name);
2171 end if;
2172 end if;
2173
2174 -- Protect against malformed iterator
2175
2176 if Typ = Any_Type then
2177 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
2178 return;
2179 end if;
2180
2181 if not Of_Present (N) then
2182 Check_Reverse_Iteration (Typ);
2183 end if;
2184
2185 -- The name in the renaming declaration may be a function call.
2186 -- Indicate that it does not come from source, to suppress
2187 -- spurious warnings on renamings of parameterless functions,
2188 -- a common enough idiom in user-defined iterators.
2189
2190 Decl :=
2191 Make_Object_Renaming_Declaration (Loc,
2192 Defining_Identifier => Id,
2193 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2194 Name =>
2195 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
2196
2197 Insert_Actions (Parent (Parent (N)), New_List (Decl));
2198 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
2199 Set_Etype (Id, Typ);
2200 Set_Etype (Name (N), Typ);
2201 end;
2202
2203 -- Container is an entity or an array with uncontrolled components, or
2204 -- else it is a container iterator given by a function call, typically
2205 -- called Iterate in the case of predefined containers, even though
2206 -- Iterate is not a reserved name. What matters is that the return type
2207 -- of the function is an iterator type.
2208
2209 elsif Is_Entity_Name (Iter_Name) then
2210 Analyze (Iter_Name);
2211
2212 if Nkind (Iter_Name) = N_Function_Call then
2213 declare
2214 C : constant Node_Id := Name (Iter_Name);
2215 I : Interp_Index;
2216 It : Interp;
2217
2218 begin
2219 if not Is_Overloaded (Iter_Name) then
2220 Resolve (Iter_Name, Etype (C));
2221
2222 else
2223 Get_First_Interp (C, I, It);
2224 while It.Typ /= Empty loop
2225 if Reverse_Present (N) then
2226 if Is_Reversible_Iterator (It.Typ) then
2227 Resolve (Iter_Name, It.Typ);
2228 exit;
2229 end if;
2230
2231 elsif Is_Iterator (It.Typ) then
2232 Resolve (Iter_Name, It.Typ);
2233 exit;
2234 end if;
2235
2236 Get_Next_Interp (I, It);
2237 end loop;
2238 end if;
2239 end;
2240
2241 -- Domain of iteration is not overloaded
2242
2243 else
2244 Resolve (Iter_Name, Etype (Iter_Name));
2245 end if;
2246
2247 if not Of_Present (N) then
2248 Check_Reverse_Iteration (Etype (Iter_Name));
2249 end if;
2250 end if;
2251
2252 -- Get base type of container, for proper retrieval of Cursor type
2253 -- and primitive operations.
2254
2255 Typ := Base_Type (Etype (Iter_Name));
2256
2257 if Is_Array_Type (Typ) then
2258 if Of_Present (N) then
2259 Set_Etype (Def_Id, Component_Type (Typ));
2260
2261 -- The loop variable is aliased if the array components are
2262 -- aliased.
2263
2264 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2265
2266 -- AI12-0047 stipulates that the domain (array or container)
2267 -- cannot be a component that depends on a discriminant if the
2268 -- enclosing object is mutable, to prevent a modification of the
2269 -- dowmain of iteration in the course of an iteration.
2270
2271 -- If the object is an expression it has been captured in a
2272 -- temporary, so examine original node.
2273
2274 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2275 and then Is_Dependent_Component_Of_Mutable_Object
2276 (Original_Node (Iter_Name))
2277 then
2278 Error_Msg_N
2279 ("iterable name cannot be a discriminant-dependent "
2280 & "component of a mutable object", N);
2281 end if;
2282
2283 if Present (Subt)
2284 and then
2285 (Base_Type (Bas) /= Base_Type (Component_Type (Typ))
2286 or else
2287 not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
2288 then
2289 Error_Msg_N
2290 ("subtype indication does not match component type", Subt);
2291 end if;
2292
2293 -- Here we have a missing Range attribute
2294
2295 else
2296 Error_Msg_N
2297 ("missing Range attribute in iteration over an array", N);
2298
2299 -- In Ada 2012 mode, this may be an attempt at an iterator
2300
2301 if Ada_Version >= Ada_2012 then
2302 Error_Msg_NE
2303 ("\if& is meant to designate an element of the array, use OF",
2304 N, Def_Id);
2305 end if;
2306
2307 -- Prevent cascaded errors
2308
2309 Set_Ekind (Def_Id, E_Loop_Parameter);
2310 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2311 end if;
2312
2313 -- Check for type error in iterator
2314
2315 elsif Typ = Any_Type then
2316 return;
2317
2318 -- Iteration over a container
2319
2320 else
2321 Set_Ekind (Def_Id, E_Loop_Parameter);
2322 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2323
2324 -- OF present
2325
2326 if Of_Present (N) then
2327 if Has_Aspect (Typ, Aspect_Iterable) then
2328 declare
2329 Elt : constant Entity_Id :=
2330 Get_Iterable_Type_Primitive (Typ, Name_Element);
2331 begin
2332 if No (Elt) then
2333 Error_Msg_N
2334 ("missing Element primitive for iteration", N);
2335 else
2336 Set_Etype (Def_Id, Etype (Elt));
2337 Check_Reverse_Iteration (Typ);
2338 end if;
2339 end;
2340
2341 -- For a predefined container, The type of the loop variable is
2342 -- the Iterator_Element aspect of the container type.
2343
2344 else
2345 declare
2346 Element : constant Entity_Id :=
2347 Find_Value_Of_Aspect
2348 (Typ, Aspect_Iterator_Element);
2349 Iterator : constant Entity_Id :=
2350 Find_Value_Of_Aspect
2351 (Typ, Aspect_Default_Iterator);
2352 Orig_Iter_Name : constant Node_Id :=
2353 Original_Node (Iter_Name);
2354 Cursor_Type : Entity_Id;
2355
2356 begin
2357 if No (Element) then
2358 Error_Msg_NE ("cannot iterate over&", N, Typ);
2359 return;
2360
2361 else
2362 Set_Etype (Def_Id, Entity (Element));
2363 Cursor_Type := Get_Cursor_Type (Typ);
2364 pragma Assert (Present (Cursor_Type));
2365
2366 -- If subtype indication was given, verify that it covers
2367 -- the element type of the container.
2368
2369 if Present (Subt)
2370 and then (not Covers (Bas, Etype (Def_Id))
2371 or else not Subtypes_Statically_Match
2372 (Bas, Etype (Def_Id)))
2373 then
2374 Error_Msg_N
2375 ("subtype indication does not match element type",
2376 Subt);
2377 end if;
2378
2379 -- If the container has a variable indexing aspect, the
2380 -- element is a variable and is modifiable in the loop.
2381
2382 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2383 Set_Ekind (Def_Id, E_Variable);
2384 end if;
2385
2386 -- If the container is a constant, iterating over it
2387 -- requires a Constant_Indexing operation.
2388
2389 if not Is_Variable (Iter_Name)
2390 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2391 then
2392 Error_Msg_N
2393 ("iteration over constant container require "
2394 & "constant_indexing aspect", N);
2395
2396 -- The Iterate function may have an in_out parameter,
2397 -- and a constant container is thus illegal.
2398
2399 elsif Present (Iterator)
2400 and then Ekind (Entity (Iterator)) = E_Function
2401 and then Ekind (First_Formal (Entity (Iterator))) /=
2402 E_In_Parameter
2403 and then not Is_Variable (Iter_Name)
2404 then
2405 Error_Msg_N ("variable container expected", N);
2406 end if;
2407
2408 -- Detect a case where the iterator denotes a component
2409 -- of a mutable object which depends on a discriminant.
2410 -- Note that the iterator may denote a function call in
2411 -- qualified form, in which case this check should not
2412 -- be performed.
2413
2414 if Nkind (Orig_Iter_Name) = N_Selected_Component
2415 and then
2416 Present (Entity (Selector_Name (Orig_Iter_Name)))
2417 and then Ekind_In
2418 (Entity (Selector_Name (Orig_Iter_Name)),
2419 E_Component,
2420 E_Discriminant)
2421 and then Is_Dependent_Component_Of_Mutable_Object
2422 (Orig_Iter_Name)
2423 then
2424 Error_Msg_N
2425 ("container cannot be a discriminant-dependent "
2426 & "component of a mutable object", N);
2427 end if;
2428 end if;
2429 end;
2430 end if;
2431
2432 -- IN iterator, domain is a range, or a call to Iterate function
2433
2434 else
2435 -- For an iteration of the form IN, the name must denote an
2436 -- iterator, typically the result of a call to Iterate. Give a
2437 -- useful error message when the name is a container by itself.
2438
2439 -- The type may be a formal container type, which has to have
2440 -- an Iterable aspect detailing the required primitives.
2441
2442 if Is_Entity_Name (Original_Node (Name (N)))
2443 and then not Is_Iterator (Typ)
2444 then
2445 if Has_Aspect (Typ, Aspect_Iterable) then
2446 null;
2447
2448 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2449 Error_Msg_NE
2450 ("cannot iterate over&", Name (N), Typ);
2451 else
2452 Error_Msg_N
2453 ("name must be an iterator, not a container", Name (N));
2454 end if;
2455
2456 if Has_Aspect (Typ, Aspect_Iterable) then
2457 null;
2458 else
2459 Error_Msg_NE
2460 ("\to iterate directly over the elements of a container, "
2461 & "write `of &`", Name (N), Original_Node (Name (N)));
2462
2463 -- No point in continuing analysis of iterator spec
2464
2465 return;
2466 end if;
2467 end if;
2468
2469 -- If the name is a call (typically prefixed) to some Iterate
2470 -- function, it has been rewritten as an object declaration.
2471 -- If that object is a selected component, verify that it is not
2472 -- a component of an unconstrained mutable object.
2473
2474 if Nkind (Iter_Name) = N_Identifier
2475 or else (not Expander_Active and Comes_From_Source (Iter_Name))
2476 then
2477 declare
2478 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2479 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2480 Obj : Node_Id;
2481
2482 begin
2483 if Iter_Kind = N_Selected_Component then
2484 Obj := Prefix (Orig_Node);
2485
2486 elsif Iter_Kind = N_Function_Call then
2487 Obj := First_Actual (Orig_Node);
2488
2489 -- If neither, the name comes from source
2490
2491 else
2492 Obj := Iter_Name;
2493 end if;
2494
2495 if Nkind (Obj) = N_Selected_Component
2496 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2497 then
2498 Error_Msg_N
2499 ("container cannot be a discriminant-dependent "
2500 & "component of a mutable object", N);
2501 end if;
2502 end;
2503 end if;
2504
2505 -- The result type of Iterate function is the classwide type of
2506 -- the interface parent. We need the specific Cursor type defined
2507 -- in the container package. We obtain it by name for a predefined
2508 -- container, or through the Iterable aspect for a formal one.
2509
2510 if Has_Aspect (Typ, Aspect_Iterable) then
2511 Set_Etype (Def_Id,
2512 Get_Cursor_Type
2513 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2514 Typ));
2515
2516 else
2517 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2518 Check_Reverse_Iteration (Etype (Iter_Name));
2519 end if;
2520
2521 end if;
2522 end if;
2523 end Analyze_Iterator_Specification;
2524
2525 -------------------
2526 -- Analyze_Label --
2527 -------------------
2528
2529 -- Note: the semantic work required for analyzing labels (setting them as
2530 -- reachable) was done in a prepass through the statements in the block,
2531 -- so that forward gotos would be properly handled. See Analyze_Statements
2532 -- for further details. The only processing required here is to deal with
2533 -- optimizations that depend on an assumption of sequential control flow,
2534 -- since of course the occurrence of a label breaks this assumption.
2535
2536 procedure Analyze_Label (N : Node_Id) is
2537 pragma Warnings (Off, N);
2538 begin
2539 Kill_Current_Values;
2540 end Analyze_Label;
2541
2542 --------------------------
2543 -- Analyze_Label_Entity --
2544 --------------------------
2545
2546 procedure Analyze_Label_Entity (E : Entity_Id) is
2547 begin
2548 Set_Ekind (E, E_Label);
2549 Set_Etype (E, Standard_Void_Type);
2550 Set_Enclosing_Scope (E, Current_Scope);
2551 Set_Reachable (E, True);
2552 end Analyze_Label_Entity;
2553
2554 ------------------------------------------
2555 -- Analyze_Loop_Parameter_Specification --
2556 ------------------------------------------
2557
2558 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2559 Loop_Nod : constant Node_Id := Parent (Parent (N));
2560
2561 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2562 -- If the bounds are given by a 'Range reference on a function call
2563 -- that returns a controlled array, introduce an explicit declaration
2564 -- to capture the bounds, so that the function result can be finalized
2565 -- in timely fashion.
2566
2567 procedure Check_Predicate_Use (T : Entity_Id);
2568 -- Diagnose Attempt to iterate through non-static predicate. Note that
2569 -- a type with inherited predicates may have both static and dynamic
2570 -- forms. In this case it is not sufficent to check the static predicate
2571 -- function only, look for a dynamic predicate aspect as well.
2572
2573 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2574 -- N is the node for an arbitrary construct. This function searches the
2575 -- construct N to see if any expressions within it contain function
2576 -- calls that use the secondary stack, returning True if any such call
2577 -- is found, and False otherwise.
2578
2579 procedure Process_Bounds (R : Node_Id);
2580 -- If the iteration is given by a range, create temporaries and
2581 -- assignment statements block to capture the bounds and perform
2582 -- required finalization actions in case a bound includes a function
2583 -- call that uses the temporary stack. We first pre-analyze a copy of
2584 -- the range in order to determine the expected type, and analyze and
2585 -- resolve the original bounds.
2586
2587 --------------------------------------
2588 -- Check_Controlled_Array_Attribute --
2589 --------------------------------------
2590
2591 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2592 begin
2593 if Nkind (DS) = N_Attribute_Reference
2594 and then Is_Entity_Name (Prefix (DS))
2595 and then Ekind (Entity (Prefix (DS))) = E_Function
2596 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2597 and then
2598 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2599 and then Expander_Active
2600 then
2601 declare
2602 Loc : constant Source_Ptr := Sloc (N);
2603 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2604 Indx : constant Entity_Id :=
2605 Base_Type (Etype (First_Index (Arr)));
2606 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2607 Decl : Node_Id;
2608
2609 begin
2610 Decl :=
2611 Make_Subtype_Declaration (Loc,
2612 Defining_Identifier => Subt,
2613 Subtype_Indication =>
2614 Make_Subtype_Indication (Loc,
2615 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2616 Constraint =>
2617 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2618 Insert_Before (Loop_Nod, Decl);
2619 Analyze (Decl);
2620
2621 Rewrite (DS,
2622 Make_Attribute_Reference (Loc,
2623 Prefix => New_Occurrence_Of (Subt, Loc),
2624 Attribute_Name => Attribute_Name (DS)));
2625
2626 Analyze (DS);
2627 end;
2628 end if;
2629 end Check_Controlled_Array_Attribute;
2630
2631 -------------------------
2632 -- Check_Predicate_Use --
2633 -------------------------
2634
2635 procedure Check_Predicate_Use (T : Entity_Id) is
2636 begin
2637 -- A predicated subtype is illegal in loops and related constructs
2638 -- if the predicate is not static, or if it is a non-static subtype
2639 -- of a statically predicated subtype.
2640
2641 if Is_Discrete_Type (T)
2642 and then Has_Predicates (T)
2643 and then (not Has_Static_Predicate (T)
2644 or else not Is_Static_Subtype (T)
2645 or else Has_Dynamic_Predicate_Aspect (T))
2646 then
2647 -- Seems a confusing message for the case of a static predicate
2648 -- with a non-static subtype???
2649
2650 Bad_Predicated_Subtype_Use
2651 ("cannot use subtype& with non-static predicate for loop "
2652 & "iteration", Discrete_Subtype_Definition (N),
2653 T, Suggest_Static => True);
2654
2655 elsif Inside_A_Generic
2656 and then Is_Generic_Formal (T)
2657 and then Is_Discrete_Type (T)
2658 then
2659 Set_No_Dynamic_Predicate_On_Actual (T);
2660 end if;
2661 end Check_Predicate_Use;
2662
2663 ------------------------------------
2664 -- Has_Call_Using_Secondary_Stack --
2665 ------------------------------------
2666
2667 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2668
2669 function Check_Call (N : Node_Id) return Traverse_Result;
2670 -- Check if N is a function call which uses the secondary stack
2671
2672 ----------------
2673 -- Check_Call --
2674 ----------------
2675
2676 function Check_Call (N : Node_Id) return Traverse_Result is
2677 Nam : Node_Id;
2678 Subp : Entity_Id;
2679 Return_Typ : Entity_Id;
2680
2681 begin
2682 if Nkind (N) = N_Function_Call then
2683 Nam := Name (N);
2684
2685 -- Call using access to subprogram with explicit dereference
2686
2687 if Nkind (Nam) = N_Explicit_Dereference then
2688 Subp := Etype (Nam);
2689
2690 -- Call using a selected component notation or Ada 2005 object
2691 -- operation notation
2692
2693 elsif Nkind (Nam) = N_Selected_Component then
2694 Subp := Entity (Selector_Name (Nam));
2695
2696 -- Common case
2697
2698 else
2699 Subp := Entity (Nam);
2700 end if;
2701
2702 Return_Typ := Etype (Subp);
2703
2704 if Is_Composite_Type (Return_Typ)
2705 and then not Is_Constrained (Return_Typ)
2706 then
2707 return Abandon;
2708
2709 elsif Sec_Stack_Needed_For_Return (Subp) then
2710 return Abandon;
2711 end if;
2712 end if;
2713
2714 -- Continue traversing the tree
2715
2716 return OK;
2717 end Check_Call;
2718
2719 function Check_Calls is new Traverse_Func (Check_Call);
2720
2721 -- Start of processing for Has_Call_Using_Secondary_Stack
2722
2723 begin
2724 return Check_Calls (N) = Abandon;
2725 end Has_Call_Using_Secondary_Stack;
2726
2727 --------------------
2728 -- Process_Bounds --
2729 --------------------
2730
2731 procedure Process_Bounds (R : Node_Id) is
2732 Loc : constant Source_Ptr := Sloc (N);
2733
2734 function One_Bound
2735 (Original_Bound : Node_Id;
2736 Analyzed_Bound : Node_Id;
2737 Typ : Entity_Id) return Node_Id;
2738 -- Capture value of bound and return captured value
2739
2740 ---------------
2741 -- One_Bound --
2742 ---------------
2743
2744 function One_Bound
2745 (Original_Bound : Node_Id;
2746 Analyzed_Bound : Node_Id;
2747 Typ : Entity_Id) return Node_Id
2748 is
2749 Assign : Node_Id;
2750 Decl : Node_Id;
2751 Id : Entity_Id;
2752
2753 begin
2754 -- If the bound is a constant or an object, no need for a separate
2755 -- declaration. If the bound is the result of previous expansion
2756 -- it is already analyzed and should not be modified. Note that
2757 -- the Bound will be resolved later, if needed, as part of the
2758 -- call to Make_Index (literal bounds may need to be resolved to
2759 -- type Integer).
2760
2761 if Analyzed (Original_Bound) then
2762 return Original_Bound;
2763
2764 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2765 N_Character_Literal)
2766 or else Is_Entity_Name (Analyzed_Bound)
2767 then
2768 Analyze_And_Resolve (Original_Bound, Typ);
2769 return Original_Bound;
2770 end if;
2771
2772 -- Normally, the best approach is simply to generate a constant
2773 -- declaration that captures the bound. However, there is a nasty
2774 -- case where this is wrong. If the bound is complex, and has a
2775 -- possible use of the secondary stack, we need to generate a
2776 -- separate assignment statement to ensure the creation of a block
2777 -- which will release the secondary stack.
2778
2779 -- We prefer the constant declaration, since it leaves us with a
2780 -- proper trace of the value, useful in optimizations that get rid
2781 -- of junk range checks.
2782
2783 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2784 Analyze_And_Resolve (Original_Bound, Typ);
2785
2786 -- Ensure that the bound is valid. This check should not be
2787 -- generated when the range belongs to a quantified expression
2788 -- as the construct is still not expanded into its final form.
2789
2790 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2791 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2792 then
2793 Ensure_Valid (Original_Bound);
2794 end if;
2795
2796 Force_Evaluation (Original_Bound);
2797 return Original_Bound;
2798 end if;
2799
2800 Id := Make_Temporary (Loc, 'R', Original_Bound);
2801
2802 -- Here we make a declaration with a separate assignment
2803 -- statement, and insert before loop header.
2804
2805 Decl :=
2806 Make_Object_Declaration (Loc,
2807 Defining_Identifier => Id,
2808 Object_Definition => New_Occurrence_Of (Typ, Loc));
2809
2810 Assign :=
2811 Make_Assignment_Statement (Loc,
2812 Name => New_Occurrence_Of (Id, Loc),
2813 Expression => Relocate_Node (Original_Bound));
2814
2815 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2816
2817 -- Now that this temporary variable is initialized we decorate it
2818 -- as safe-to-reevaluate to inform to the backend that no further
2819 -- asignment will be issued and hence it can be handled as side
2820 -- effect free. Note that this decoration must be done when the
2821 -- assignment has been analyzed because otherwise it will be
2822 -- rejected (see Analyze_Assignment).
2823
2824 Set_Is_Safe_To_Reevaluate (Id);
2825
2826 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2827
2828 if Nkind (Assign) = N_Assignment_Statement then
2829 return Expression (Assign);
2830 else
2831 return Original_Bound;
2832 end if;
2833 end One_Bound;
2834
2835 Hi : constant Node_Id := High_Bound (R);
2836 Lo : constant Node_Id := Low_Bound (R);
2837 R_Copy : constant Node_Id := New_Copy_Tree (R);
2838 New_Hi : Node_Id;
2839 New_Lo : Node_Id;
2840 Typ : Entity_Id;
2841
2842 -- Start of processing for Process_Bounds
2843
2844 begin
2845 Set_Parent (R_Copy, Parent (R));
2846 Preanalyze_Range (R_Copy);
2847 Typ := Etype (R_Copy);
2848
2849 -- If the type of the discrete range is Universal_Integer, then the
2850 -- bound's type must be resolved to Integer, and any object used to
2851 -- hold the bound must also have type Integer, unless the literal
2852 -- bounds are constant-folded expressions with a user-defined type.
2853
2854 if Typ = Universal_Integer then
2855 if Nkind (Lo) = N_Integer_Literal
2856 and then Present (Etype (Lo))
2857 and then Scope (Etype (Lo)) /= Standard_Standard
2858 then
2859 Typ := Etype (Lo);
2860
2861 elsif Nkind (Hi) = N_Integer_Literal
2862 and then Present (Etype (Hi))
2863 and then Scope (Etype (Hi)) /= Standard_Standard
2864 then
2865 Typ := Etype (Hi);
2866
2867 else
2868 Typ := Standard_Integer;
2869 end if;
2870 end if;
2871
2872 Set_Etype (R, Typ);
2873
2874 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2875 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2876
2877 -- Propagate staticness to loop range itself, in case the
2878 -- corresponding subtype is static.
2879
2880 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2881 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2882 end if;
2883
2884 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2885 Rewrite (High_Bound (R), New_Copy (New_Hi));
2886 end if;
2887 end Process_Bounds;
2888
2889 -- Local variables
2890
2891 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2892 Id : constant Entity_Id := Defining_Identifier (N);
2893
2894 DS_Copy : Node_Id;
2895
2896 -- Start of processing for Analyze_Loop_Parameter_Specification
2897
2898 begin
2899 Enter_Name (Id);
2900
2901 -- We always consider the loop variable to be referenced, since the loop
2902 -- may be used just for counting purposes.
2903
2904 Generate_Reference (Id, N, ' ');
2905
2906 -- Check for the case of loop variable hiding a local variable (used
2907 -- later on to give a nice warning if the hidden variable is never
2908 -- assigned).
2909
2910 declare
2911 H : constant Entity_Id := Homonym (Id);
2912 begin
2913 if Present (H)
2914 and then Ekind (H) = E_Variable
2915 and then Is_Discrete_Type (Etype (H))
2916 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2917 then
2918 Set_Hiding_Loop_Variable (H, Id);
2919 end if;
2920 end;
2921
2922 -- Loop parameter specification must include subtype mark in SPARK
2923
2924 if Nkind (DS) = N_Range then
2925 Check_SPARK_05_Restriction
2926 ("loop parameter specification must include subtype mark", N);
2927 end if;
2928
2929 -- Analyze the subtype definition and create temporaries for the bounds.
2930 -- Do not evaluate the range when preanalyzing a quantified expression
2931 -- because bounds expressed as function calls with side effects will be
2932 -- incorrectly replicated.
2933
2934 if Nkind (DS) = N_Range
2935 and then Expander_Active
2936 and then Nkind (Parent (N)) /= N_Quantified_Expression
2937 then
2938 Process_Bounds (DS);
2939
2940 -- Either the expander not active or the range of iteration is a subtype
2941 -- indication, an entity, or a function call that yields an aggregate or
2942 -- a container.
2943
2944 else
2945 DS_Copy := New_Copy_Tree (DS);
2946 Set_Parent (DS_Copy, Parent (DS));
2947 Preanalyze_Range (DS_Copy);
2948
2949 -- Ada 2012: If the domain of iteration is:
2950
2951 -- a) a function call,
2952 -- b) an identifier that is not a type,
2953 -- c) an attribute reference 'Old (within a postcondition),
2954 -- d) an unchecked conversion or a qualified expression with
2955 -- the proper iterator type.
2956
2957 -- then it is an iteration over a container. It was classified as
2958 -- a loop specification by the parser, and must be rewritten now
2959 -- to activate container iteration. The last case will occur within
2960 -- an expanded inlined call, where the expansion wraps an actual in
2961 -- an unchecked conversion when needed. The expression of the
2962 -- conversion is always an object.
2963
2964 if Nkind (DS_Copy) = N_Function_Call
2965
2966 or else (Is_Entity_Name (DS_Copy)
2967 and then not Is_Type (Entity (DS_Copy)))
2968
2969 or else (Nkind (DS_Copy) = N_Attribute_Reference
2970 and then Nam_In (Attribute_Name (DS_Copy),
2971 Name_Loop_Entry, Name_Old))
2972
2973 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
2974
2975 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
2976 or else (Nkind (DS_Copy) = N_Qualified_Expression
2977 and then Is_Iterator (Etype (DS_Copy)))
2978 then
2979 -- This is an iterator specification. Rewrite it as such and
2980 -- analyze it to capture function calls that may require
2981 -- finalization actions.
2982
2983 declare
2984 I_Spec : constant Node_Id :=
2985 Make_Iterator_Specification (Sloc (N),
2986 Defining_Identifier => Relocate_Node (Id),
2987 Name => DS_Copy,
2988 Subtype_Indication => Empty,
2989 Reverse_Present => Reverse_Present (N));
2990 Scheme : constant Node_Id := Parent (N);
2991
2992 begin
2993 Set_Iterator_Specification (Scheme, I_Spec);
2994 Set_Loop_Parameter_Specification (Scheme, Empty);
2995 Analyze_Iterator_Specification (I_Spec);
2996
2997 -- In a generic context, analyze the original domain of
2998 -- iteration, for name capture.
2999
3000 if not Expander_Active then
3001 Analyze (DS);
3002 end if;
3003
3004 -- Set kind of loop parameter, which may be used in the
3005 -- subsequent analysis of the condition in a quantified
3006 -- expression.
3007
3008 Set_Ekind (Id, E_Loop_Parameter);
3009 return;
3010 end;
3011
3012 -- Domain of iteration is not a function call, and is side-effect
3013 -- free.
3014
3015 else
3016 -- A quantified expression that appears in a pre/post condition
3017 -- is pre-analyzed several times. If the range is given by an
3018 -- attribute reference it is rewritten as a range, and this is
3019 -- done even with expansion disabled. If the type is already set
3020 -- do not reanalyze, because a range with static bounds may be
3021 -- typed Integer by default.
3022
3023 if Nkind (Parent (N)) = N_Quantified_Expression
3024 and then Present (Etype (DS))
3025 then
3026 null;
3027 else
3028 Analyze (DS);
3029 end if;
3030 end if;
3031 end if;
3032
3033 if DS = Error then
3034 return;
3035 end if;
3036
3037 -- Some additional checks if we are iterating through a type
3038
3039 if Is_Entity_Name (DS)
3040 and then Present (Entity (DS))
3041 and then Is_Type (Entity (DS))
3042 then
3043 -- The subtype indication may denote the completion of an incomplete
3044 -- type declaration.
3045
3046 if Ekind (Entity (DS)) = E_Incomplete_Type then
3047 Set_Entity (DS, Get_Full_View (Entity (DS)));
3048 Set_Etype (DS, Entity (DS));
3049 end if;
3050
3051 Check_Predicate_Use (Entity (DS));
3052 end if;
3053
3054 -- Error if not discrete type
3055
3056 if not Is_Discrete_Type (Etype (DS)) then
3057 Wrong_Type (DS, Any_Discrete);
3058 Set_Etype (DS, Any_Type);
3059 end if;
3060
3061 Check_Controlled_Array_Attribute (DS);
3062
3063 if Nkind (DS) = N_Subtype_Indication then
3064 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
3065 end if;
3066
3067 Make_Index (DS, N, In_Iter_Schm => True);
3068 Set_Ekind (Id, E_Loop_Parameter);
3069
3070 -- A quantified expression which appears in a pre- or post-condition may
3071 -- be analyzed multiple times. The analysis of the range creates several
3072 -- itypes which reside in different scopes depending on whether the pre-
3073 -- or post-condition has been expanded. Update the type of the loop
3074 -- variable to reflect the proper itype at each stage of analysis.
3075
3076 if No (Etype (Id))
3077 or else Etype (Id) = Any_Type
3078 or else
3079 (Present (Etype (Id))
3080 and then Is_Itype (Etype (Id))
3081 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
3082 and then Nkind (Original_Node (Parent (Loop_Nod))) =
3083 N_Quantified_Expression)
3084 then
3085 Set_Etype (Id, Etype (DS));
3086 end if;
3087
3088 -- Treat a range as an implicit reference to the type, to inhibit
3089 -- spurious warnings.
3090
3091 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
3092 Set_Is_Known_Valid (Id, True);
3093
3094 -- The loop is not a declarative part, so the loop variable must be
3095 -- frozen explicitly. Do not freeze while preanalyzing a quantified
3096 -- expression because the freeze node will not be inserted into the
3097 -- tree due to flag Is_Spec_Expression being set.
3098
3099 if Nkind (Parent (N)) /= N_Quantified_Expression then
3100 declare
3101 Flist : constant List_Id := Freeze_Entity (Id, N);
3102 begin
3103 if Is_Non_Empty_List (Flist) then
3104 Insert_Actions (N, Flist);
3105 end if;
3106 end;
3107 end if;
3108
3109 -- Case where we have a range or a subtype, get type bounds
3110
3111 if Nkind_In (DS, N_Range, N_Subtype_Indication)
3112 and then not Error_Posted (DS)
3113 and then Etype (DS) /= Any_Type
3114 and then Is_Discrete_Type (Etype (DS))
3115 then
3116 declare
3117 L : Node_Id;
3118 H : Node_Id;
3119
3120 begin
3121 if Nkind (DS) = N_Range then
3122 L := Low_Bound (DS);
3123 H := High_Bound (DS);
3124 else
3125 L :=
3126 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3127 H :=
3128 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3129 end if;
3130
3131 -- Check for null or possibly null range and issue warning. We
3132 -- suppress such messages in generic templates and instances,
3133 -- because in practice they tend to be dubious in these cases. The
3134 -- check applies as well to rewritten array element loops where a
3135 -- null range may be detected statically.
3136
3137 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
3138
3139 -- Suppress the warning if inside a generic template or
3140 -- instance, since in practice they tend to be dubious in these
3141 -- cases since they can result from intended parameterization.
3142
3143 if not Inside_A_Generic and then not In_Instance then
3144
3145 -- Specialize msg if invalid values could make the loop
3146 -- non-null after all.
3147
3148 if Compile_Time_Compare
3149 (L, H, Assume_Valid => False) = GT
3150 then
3151 -- Since we know the range of the loop is null, set the
3152 -- appropriate flag to remove the loop entirely during
3153 -- expansion.
3154
3155 Set_Is_Null_Loop (Loop_Nod);
3156
3157 if Comes_From_Source (N) then
3158 Error_Msg_N
3159 ("??loop range is null, loop will not execute", DS);
3160 end if;
3161
3162 -- Here is where the loop could execute because of
3163 -- invalid values, so issue appropriate message and in
3164 -- this case we do not set the Is_Null_Loop flag since
3165 -- the loop may execute.
3166
3167 elsif Comes_From_Source (N) then
3168 Error_Msg_N
3169 ("??loop range may be null, loop may not execute",
3170 DS);
3171 Error_Msg_N
3172 ("??can only execute if invalid values are present",
3173 DS);
3174 end if;
3175 end if;
3176
3177 -- In either case, suppress warnings in the body of the loop,
3178 -- since it is likely that these warnings will be inappropriate
3179 -- if the loop never actually executes, which is likely.
3180
3181 Set_Suppress_Loop_Warnings (Loop_Nod);
3182
3183 -- The other case for a warning is a reverse loop where the
3184 -- upper bound is the integer literal zero or one, and the
3185 -- lower bound may exceed this value.
3186
3187 -- For example, we have
3188
3189 -- for J in reverse N .. 1 loop
3190
3191 -- In practice, this is very likely to be a case of reversing
3192 -- the bounds incorrectly in the range.
3193
3194 elsif Reverse_Present (N)
3195 and then Nkind (Original_Node (H)) = N_Integer_Literal
3196 and then
3197 (Intval (Original_Node (H)) = Uint_0
3198 or else
3199 Intval (Original_Node (H)) = Uint_1)
3200 then
3201 -- Lower bound may in fact be known and known not to exceed
3202 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
3203
3204 if Compile_Time_Known_Value (L)
3205 and then Expr_Value (L) <= Expr_Value (H)
3206 then
3207 null;
3208
3209 -- Otherwise warning is warranted
3210
3211 else
3212 Error_Msg_N ("??loop range may be null", DS);
3213 Error_Msg_N ("\??bounds may be wrong way round", DS);
3214 end if;
3215 end if;
3216
3217 -- Check if either bound is known to be outside the range of the
3218 -- loop parameter type, this is e.g. the case of a loop from
3219 -- 20..X where the type is 1..19.
3220
3221 -- Such a loop is dubious since either it raises CE or it executes
3222 -- zero times, and that cannot be useful!
3223
3224 if Etype (DS) /= Any_Type
3225 and then not Error_Posted (DS)
3226 and then Nkind (DS) = N_Subtype_Indication
3227 and then Nkind (Constraint (DS)) = N_Range_Constraint
3228 then
3229 declare
3230 LLo : constant Node_Id :=
3231 Low_Bound (Range_Expression (Constraint (DS)));
3232 LHi : constant Node_Id :=
3233 High_Bound (Range_Expression (Constraint (DS)));
3234
3235 Bad_Bound : Node_Id := Empty;
3236 -- Suspicious loop bound
3237
3238 begin
3239 -- At this stage L, H are the bounds of the type, and LLo
3240 -- Lhi are the low bound and high bound of the loop.
3241
3242 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3243 or else
3244 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3245 then
3246 Bad_Bound := LLo;
3247 end if;
3248
3249 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3250 or else
3251 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3252 then
3253 Bad_Bound := LHi;
3254 end if;
3255
3256 if Present (Bad_Bound) then
3257 Error_Msg_N
3258 ("suspicious loop bound out of range of "
3259 & "loop subtype??", Bad_Bound);
3260 Error_Msg_N
3261 ("\loop executes zero times or raises "
3262 & "Constraint_Error??", Bad_Bound);
3263 end if;
3264 end;
3265 end if;
3266
3267 -- This declare block is about warnings, if we get an exception while
3268 -- testing for warnings, we simply abandon the attempt silently. This
3269 -- most likely occurs as the result of a previous error, but might
3270 -- just be an obscure case we have missed. In either case, not giving
3271 -- the warning is perfectly acceptable.
3272
3273 exception
3274 when others => null;
3275 end;
3276 end if;
3277
3278 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3279 -- This check is relevant only when SPARK_Mode is on as it is not a
3280 -- standard Ada legality check.
3281
3282 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3283 Error_Msg_N ("loop parameter cannot be volatile", Id);
3284 end if;
3285 end Analyze_Loop_Parameter_Specification;
3286
3287 ----------------------------
3288 -- Analyze_Loop_Statement --
3289 ----------------------------
3290
3291 procedure Analyze_Loop_Statement (N : Node_Id) is
3292
3293 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
3294 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3295 -- container iteration.
3296
3297 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
3298 -- Determine whether loop statement N has been wrapped in a block to
3299 -- capture finalization actions that may be generated for container
3300 -- iterators. Prevents infinite recursion when block is analyzed.
3301 -- Routine is a noop if loop is single statement within source block.
3302
3303 ---------------------------
3304 -- Is_Container_Iterator --
3305 ---------------------------
3306
3307 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
3308 begin
3309 -- Infinite loop
3310
3311 if No (Iter) then
3312 return False;
3313
3314 -- While loop
3315
3316 elsif Present (Condition (Iter)) then
3317 return False;
3318
3319 -- for Def_Id in [reverse] Name loop
3320 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3321
3322 elsif Present (Iterator_Specification (Iter)) then
3323 declare
3324 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
3325 Nam_Copy : Node_Id;
3326
3327 begin
3328 Nam_Copy := New_Copy_Tree (Nam);
3329 Set_Parent (Nam_Copy, Parent (Nam));
3330 Preanalyze_Range (Nam_Copy);
3331
3332 -- The only two options here are iteration over a container or
3333 -- an array.
3334
3335 return not Is_Array_Type (Etype (Nam_Copy));
3336 end;
3337
3338 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3339
3340 else
3341 declare
3342 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
3343 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
3344 DS_Copy : Node_Id;
3345
3346 begin
3347 DS_Copy := New_Copy_Tree (DS);
3348 Set_Parent (DS_Copy, Parent (DS));
3349 Preanalyze_Range (DS_Copy);
3350
3351 -- Check for a call to Iterate () or an expression with
3352 -- an iterator type.
3353
3354 return
3355 (Nkind (DS_Copy) = N_Function_Call
3356 and then Needs_Finalization (Etype (DS_Copy)))
3357 or else Is_Iterator (Etype (DS_Copy));
3358 end;
3359 end if;
3360 end Is_Container_Iterator;
3361
3362 -------------------------
3363 -- Is_Wrapped_In_Block --
3364 -------------------------
3365
3366 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
3367 HSS : Node_Id;
3368 Stat : Node_Id;
3369
3370 begin
3371
3372 -- Check if current scope is a block that is not a transient block.
3373
3374 if Ekind (Current_Scope) /= E_Block
3375 or else No (Block_Node (Current_Scope))
3376 then
3377 return False;
3378
3379 else
3380 HSS :=
3381 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
3382
3383 -- Skip leading pragmas that may be introduced for invariant and
3384 -- predicate checks.
3385
3386 Stat := First (Statements (HSS));
3387 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
3388 Stat := Next (Stat);
3389 end loop;
3390
3391 return Stat = N and then No (Next (Stat));
3392 end if;
3393 end Is_Wrapped_In_Block;
3394
3395 -- Local declarations
3396
3397 Id : constant Node_Id := Identifier (N);
3398 Iter : constant Node_Id := Iteration_Scheme (N);
3399 Loc : constant Source_Ptr := Sloc (N);
3400 Ent : Entity_Id;
3401 Stmt : Node_Id;
3402
3403 -- Start of processing for Analyze_Loop_Statement
3404
3405 begin
3406 if Present (Id) then
3407
3408 -- Make name visible, e.g. for use in exit statements. Loop labels
3409 -- are always considered to be referenced.
3410
3411 Analyze (Id);
3412 Ent := Entity (Id);
3413
3414 -- Guard against serious error (typically, a scope mismatch when
3415 -- semantic analysis is requested) by creating loop entity to
3416 -- continue analysis.
3417
3418 if No (Ent) then
3419 if Total_Errors_Detected /= 0 then
3420 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3421 else
3422 raise Program_Error;
3423 end if;
3424
3425 -- Verify that the loop name is hot hidden by an unrelated
3426 -- declaration in an inner scope.
3427
3428 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3429 Error_Msg_Sloc := Sloc (Ent);
3430 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3431
3432 if Present (Homonym (Ent))
3433 and then Ekind (Homonym (Ent)) = E_Label
3434 then
3435 Set_Entity (Id, Ent);
3436 Set_Ekind (Ent, E_Loop);
3437 end if;
3438
3439 else
3440 Generate_Reference (Ent, N, ' ');
3441 Generate_Definition (Ent);
3442
3443 -- If we found a label, mark its type. If not, ignore it, since it
3444 -- means we have a conflicting declaration, which would already
3445 -- have been diagnosed at declaration time. Set Label_Construct
3446 -- of the implicit label declaration, which is not created by the
3447 -- parser for generic units.
3448
3449 if Ekind (Ent) = E_Label then
3450 Set_Ekind (Ent, E_Loop);
3451
3452 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3453 Set_Label_Construct (Parent (Ent), N);
3454 end if;
3455 end if;
3456 end if;
3457
3458 -- Case of no identifier present. Create one and attach it to the
3459 -- loop statement for use as a scope and as a reference for later
3460 -- expansions. Indicate that the label does not come from source,
3461 -- and attach it to the loop statement so it is part of the tree,
3462 -- even without a full declaration.
3463
3464 else
3465 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3466 Set_Etype (Ent, Standard_Void_Type);
3467 Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
3468 Set_Parent (Ent, N);
3469 Set_Has_Created_Identifier (N);
3470 end if;
3471
3472 -- If the iterator specification has a syntactic error, transform
3473 -- construct into an infinite loop to prevent a crash and perform
3474 -- some analysis.
3475
3476 if Present (Iter)
3477 and then Present (Iterator_Specification (Iter))
3478 and then Error_Posted (Iterator_Specification (Iter))
3479 then
3480 Set_Iteration_Scheme (N, Empty);
3481 Analyze (N);
3482 return;
3483 end if;
3484
3485 -- Iteration over a container in Ada 2012 involves the creation of a
3486 -- controlled iterator object. Wrap the loop in a block to ensure the
3487 -- timely finalization of the iterator and release of container locks.
3488 -- The same applies to the use of secondary stack when obtaining an
3489 -- iterator.
3490
3491 if Ada_Version >= Ada_2012
3492 and then Is_Container_Iterator (Iter)
3493 and then not Is_Wrapped_In_Block (N)
3494 then
3495 declare
3496 Block_Nod : Node_Id;
3497 Block_Id : Entity_Id;
3498
3499 begin
3500 Block_Nod :=
3501 Make_Block_Statement (Loc,
3502 Declarations => New_List,
3503 Handled_Statement_Sequence =>
3504 Make_Handled_Sequence_Of_Statements (Loc,
3505 Statements => New_List (Relocate_Node (N))));
3506
3507 Add_Block_Identifier (Block_Nod, Block_Id);
3508
3509 -- The expansion of iterator loops generates an iterator in order
3510 -- to traverse the elements of a container:
3511
3512 -- Iter : <iterator type> := Iterate (Container)'reference;
3513
3514 -- The iterator is controlled and returned on the secondary stack.
3515 -- The analysis of the call to Iterate establishes a transient
3516 -- scope to deal with the secondary stack management, but never
3517 -- really creates a physical block as this would kill the iterator
3518 -- too early (see Wrap_Transient_Declaration). To address this
3519 -- case, mark the generated block as needing secondary stack
3520 -- management.
3521
3522 Set_Uses_Sec_Stack (Block_Id);
3523
3524 Rewrite (N, Block_Nod);
3525 Analyze (N);
3526 return;
3527 end;
3528 end if;
3529
3530 -- Kill current values on entry to loop, since statements in the body of
3531 -- the loop may have been executed before the loop is entered. Similarly
3532 -- we kill values after the loop, since we do not know that the body of
3533 -- the loop was executed.
3534
3535 Kill_Current_Values;
3536 Push_Scope (Ent);
3537 Analyze_Iteration_Scheme (Iter);
3538
3539 -- Check for following case which merits a warning if the type E of is
3540 -- a multi-dimensional array (and no explicit subscript ranges present).
3541
3542 -- for J in E'Range
3543 -- for K in E'Range
3544
3545 if Present (Iter)
3546 and then Present (Loop_Parameter_Specification (Iter))
3547 then
3548 declare
3549 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3550 DSD : constant Node_Id :=
3551 Original_Node (Discrete_Subtype_Definition (LPS));
3552 begin
3553 if Nkind (DSD) = N_Attribute_Reference
3554 and then Attribute_Name (DSD) = Name_Range
3555 and then No (Expressions (DSD))
3556 then
3557 declare
3558 Typ : constant Entity_Id := Etype (Prefix (DSD));
3559 begin
3560 if Is_Array_Type (Typ)
3561 and then Number_Dimensions (Typ) > 1
3562 and then Nkind (Parent (N)) = N_Loop_Statement
3563 and then Present (Iteration_Scheme (Parent (N)))
3564 then
3565 declare
3566 OIter : constant Node_Id :=
3567 Iteration_Scheme (Parent (N));
3568 OLPS : constant Node_Id :=
3569 Loop_Parameter_Specification (OIter);
3570 ODSD : constant Node_Id :=
3571 Original_Node (Discrete_Subtype_Definition (OLPS));
3572 begin
3573 if Nkind (ODSD) = N_Attribute_Reference
3574 and then Attribute_Name (ODSD) = Name_Range
3575 and then No (Expressions (ODSD))
3576 and then Etype (Prefix (ODSD)) = Typ
3577 then
3578 Error_Msg_Sloc := Sloc (ODSD);
3579 Error_Msg_N
3580 ("inner range same as outer range#??", DSD);
3581 end if;
3582 end;
3583 end if;
3584 end;
3585 end if;
3586 end;
3587 end if;
3588
3589 -- Analyze the statements of the body except in the case of an Ada 2012
3590 -- iterator with the expander active. In this case the expander will do
3591 -- a rewrite of the loop into a while loop. We will then analyze the
3592 -- loop body when we analyze this while loop.
3593
3594 -- We need to do this delay because if the container is for indefinite
3595 -- types the actual subtype of the components will only be determined
3596 -- when the cursor declaration is analyzed.
3597
3598 -- If the expander is not active then we want to analyze the loop body
3599 -- now even in the Ada 2012 iterator case, since the rewriting will not
3600 -- be done. Insert the loop variable in the current scope, if not done
3601 -- when analysing the iteration scheme. Set its kind properly to detect
3602 -- improper uses in the loop body.
3603
3604 -- In GNATprove mode, we do one of the above depending on the kind of
3605 -- loop. If it is an iterator over an array, then we do not analyze the
3606 -- loop now. We will analyze it after it has been rewritten by the
3607 -- special SPARK expansion which is activated in GNATprove mode. We need
3608 -- to do this so that other expansions that should occur in GNATprove
3609 -- mode take into account the specificities of the rewritten loop, in
3610 -- particular the introduction of a renaming (which needs to be
3611 -- expanded).
3612
3613 -- In other cases in GNATprove mode then we want to analyze the loop
3614 -- body now, since no rewriting will occur. Within a generic the
3615 -- GNATprove mode is irrelevant, we must analyze the generic for
3616 -- non-local name capture.
3617
3618 if Present (Iter)
3619 and then Present (Iterator_Specification (Iter))
3620 then
3621 if GNATprove_Mode
3622 and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
3623 and then not Inside_A_Generic
3624 then
3625 null;
3626
3627 elsif not Expander_Active then
3628 declare
3629 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3630 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3631
3632 begin
3633 if Scope (Id) /= Current_Scope then
3634 Enter_Name (Id);
3635 end if;
3636
3637 -- In an element iterator, The loop parameter is a variable if
3638 -- the domain of iteration (container or array) is a variable.
3639
3640 if not Of_Present (I_Spec)
3641 or else not Is_Variable (Name (I_Spec))
3642 then
3643 Set_Ekind (Id, E_Loop_Parameter);
3644 end if;
3645 end;
3646
3647 Analyze_Statements (Statements (N));
3648 end if;
3649
3650 else
3651 -- Pre-Ada2012 for-loops and while loops
3652
3653 Analyze_Statements (Statements (N));
3654 end if;
3655
3656 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3657 -- the loop is transformed into a conditional block. Retrieve the loop.
3658
3659 Stmt := N;
3660
3661 if Subject_To_Loop_Entry_Attributes (Stmt) then
3662 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3663 end if;
3664
3665 -- Finish up processing for the loop. We kill all current values, since
3666 -- in general we don't know if the statements in the loop have been
3667 -- executed. We could do a bit better than this with a loop that we
3668 -- know will execute at least once, but it's not worth the trouble and
3669 -- the front end is not in the business of flow tracing.
3670
3671 Process_End_Label (Stmt, 'e', Ent);
3672 End_Scope;
3673 Kill_Current_Values;
3674
3675 -- Check for infinite loop. Skip check for generated code, since it
3676 -- justs waste time and makes debugging the routine called harder.
3677
3678 -- Note that we have to wait till the body of the loop is fully analyzed
3679 -- before making this call, since Check_Infinite_Loop_Warning relies on
3680 -- being able to use semantic visibility information to find references.
3681
3682 if Comes_From_Source (Stmt) then
3683 Check_Infinite_Loop_Warning (Stmt);
3684 end if;
3685
3686 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3687 -- contains no EXIT statements within the body of the loop.
3688
3689 if No (Iter) and then not Has_Exit (Ent) then
3690 Check_Unreachable_Code (Stmt);
3691 end if;
3692 end Analyze_Loop_Statement;
3693
3694 ----------------------------
3695 -- Analyze_Null_Statement --
3696 ----------------------------
3697
3698 -- Note: the semantics of the null statement is implemented by a single
3699 -- null statement, too bad everything isn't as simple as this.
3700
3701 procedure Analyze_Null_Statement (N : Node_Id) is
3702 pragma Warnings (Off, N);
3703 begin
3704 null;
3705 end Analyze_Null_Statement;
3706
3707 -------------------------
3708 -- Analyze_Target_Name --
3709 -------------------------
3710
3711 procedure Analyze_Target_Name (N : Node_Id) is
3712 begin
3713 -- A target name has the type of the left-hand side of the enclosing
3714 -- assignment.
3715
3716 Set_Etype (N, Etype (Name (Current_Assignment)));
3717 end Analyze_Target_Name;
3718
3719 ------------------------
3720 -- Analyze_Statements --
3721 ------------------------
3722
3723 procedure Analyze_Statements (L : List_Id) is
3724 Lab : Entity_Id;
3725 S : Node_Id;
3726
3727 begin
3728 -- The labels declared in the statement list are reachable from
3729 -- statements in the list. We do this as a prepass so that any goto
3730 -- statement will be properly flagged if its target is not reachable.
3731 -- This is not required, but is nice behavior.
3732
3733 S := First (L);
3734 while Present (S) loop
3735 if Nkind (S) = N_Label then
3736 Analyze (Identifier (S));
3737 Lab := Entity (Identifier (S));
3738
3739 -- If we found a label mark it as reachable
3740
3741 if Ekind (Lab) = E_Label then
3742 Generate_Definition (Lab);
3743 Set_Reachable (Lab);
3744
3745 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3746 Set_Label_Construct (Parent (Lab), S);
3747 end if;
3748
3749 -- If we failed to find a label, it means the implicit declaration
3750 -- of the label was hidden. A for-loop parameter can do this to
3751 -- a label with the same name inside the loop, since the implicit
3752 -- label declaration is in the innermost enclosing body or block
3753 -- statement.
3754
3755 else
3756 Error_Msg_Sloc := Sloc (Lab);
3757 Error_Msg_N
3758 ("implicit label declaration for & is hidden#",
3759 Identifier (S));
3760 end if;
3761 end if;
3762
3763 Next (S);
3764 end loop;
3765
3766 -- Perform semantic analysis on all statements
3767
3768 Conditional_Statements_Begin;
3769
3770 S := First (L);
3771 while Present (S) loop
3772 Analyze (S);
3773
3774 -- Remove dimension in all statements
3775
3776 Remove_Dimension_In_Statement (S);
3777 Next (S);
3778 end loop;
3779
3780 Conditional_Statements_End;
3781
3782 -- Make labels unreachable. Visibility is not sufficient, because labels
3783 -- in one if-branch for example are not reachable from the other branch,
3784 -- even though their declarations are in the enclosing declarative part.
3785
3786 S := First (L);
3787 while Present (S) loop
3788 if Nkind (S) = N_Label then
3789 Set_Reachable (Entity (Identifier (S)), False);
3790 end if;
3791
3792 Next (S);
3793 end loop;
3794 end Analyze_Statements;
3795
3796 ----------------------------
3797 -- Check_Unreachable_Code --
3798 ----------------------------
3799
3800 procedure Check_Unreachable_Code (N : Node_Id) is
3801 Error_Node : Node_Id;
3802 P : Node_Id;
3803
3804 begin
3805 if Is_List_Member (N) and then Comes_From_Source (N) then
3806 declare
3807 Nxt : Node_Id;
3808
3809 begin
3810 Nxt := Original_Node (Next (N));
3811
3812 -- Skip past pragmas
3813
3814 while Nkind (Nxt) = N_Pragma loop
3815 Nxt := Original_Node (Next (Nxt));
3816 end loop;
3817
3818 -- If a label follows us, then we never have dead code, since
3819 -- someone could branch to the label, so we just ignore it, unless
3820 -- we are in formal mode where goto statements are not allowed.
3821
3822 if Nkind (Nxt) = N_Label
3823 and then not Restriction_Check_Required (SPARK_05)
3824 then
3825 return;
3826
3827 -- Otherwise see if we have a real statement following us
3828
3829 elsif Present (Nxt)
3830 and then Comes_From_Source (Nxt)
3831 and then Is_Statement (Nxt)
3832 then
3833 -- Special very annoying exception. If we have a return that
3834 -- follows a raise, then we allow it without a warning, since
3835 -- the Ada RM annoyingly requires a useless return here.
3836
3837 if Nkind (Original_Node (N)) /= N_Raise_Statement
3838 or else Nkind (Nxt) /= N_Simple_Return_Statement
3839 then
3840 -- The rather strange shenanigans with the warning message
3841 -- here reflects the fact that Kill_Dead_Code is very good
3842 -- at removing warnings in deleted code, and this is one
3843 -- warning we would prefer NOT to have removed.
3844
3845 Error_Node := Nxt;
3846
3847 -- If we have unreachable code, analyze and remove the
3848 -- unreachable code, since it is useless and we don't
3849 -- want to generate junk warnings.
3850
3851 -- We skip this step if we are not in code generation mode
3852 -- or CodePeer mode.
3853
3854 -- This is the one case where we remove dead code in the
3855 -- semantics as opposed to the expander, and we do not want
3856 -- to remove code if we are not in code generation mode,
3857 -- since this messes up the ASIS trees or loses useful
3858 -- information in the CodePeer tree.
3859
3860 -- Note that one might react by moving the whole circuit to
3861 -- exp_ch5, but then we lose the warning in -gnatc mode.
3862
3863 if Operating_Mode = Generate_Code
3864 and then not CodePeer_Mode
3865 then
3866 loop
3867 Nxt := Next (N);
3868
3869 -- Quit deleting when we have nothing more to delete
3870 -- or if we hit a label (since someone could transfer
3871 -- control to a label, so we should not delete it).
3872
3873 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3874
3875 -- Statement/declaration is to be deleted
3876
3877 Analyze (Nxt);
3878 Remove (Nxt);
3879 Kill_Dead_Code (Nxt);
3880 end loop;
3881 end if;
3882
3883 -- Now issue the warning (or error in formal mode)
3884
3885 if Restriction_Check_Required (SPARK_05) then
3886 Check_SPARK_05_Restriction
3887 ("unreachable code is not allowed", Error_Node);
3888 else
3889 Error_Msg
3890 ("??unreachable code!", Sloc (Error_Node), Error_Node);
3891 end if;
3892 end if;
3893
3894 -- If the unconditional transfer of control instruction is the
3895 -- last statement of a sequence, then see if our parent is one of
3896 -- the constructs for which we count unblocked exits, and if so,
3897 -- adjust the count.
3898
3899 else
3900 P := Parent (N);
3901
3902 -- Statements in THEN part or ELSE part of IF statement
3903
3904 if Nkind (P) = N_If_Statement then
3905 null;
3906
3907 -- Statements in ELSIF part of an IF statement
3908
3909 elsif Nkind (P) = N_Elsif_Part then
3910 P := Parent (P);
3911 pragma Assert (Nkind (P) = N_If_Statement);
3912
3913 -- Statements in CASE statement alternative
3914
3915 elsif Nkind (P) = N_Case_Statement_Alternative then
3916 P := Parent (P);
3917 pragma Assert (Nkind (P) = N_Case_Statement);
3918
3919 -- Statements in body of block
3920
3921 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3922 and then Nkind (Parent (P)) = N_Block_Statement
3923 then
3924 -- The original loop is now placed inside a block statement
3925 -- due to the expansion of attribute 'Loop_Entry. Return as
3926 -- this is not a "real" block for the purposes of exit
3927 -- counting.
3928
3929 if Nkind (N) = N_Loop_Statement
3930 and then Subject_To_Loop_Entry_Attributes (N)
3931 then
3932 return;
3933 end if;
3934
3935 -- Statements in exception handler in a block
3936
3937 elsif Nkind (P) = N_Exception_Handler
3938 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3939 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3940 then
3941 null;
3942
3943 -- None of these cases, so return
3944
3945 else
3946 return;
3947 end if;
3948
3949 -- This was one of the cases we are looking for (i.e. the
3950 -- parent construct was IF, CASE or block) so decrement count.
3951
3952 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3953 end if;
3954 end;
3955 end if;
3956 end Check_Unreachable_Code;
3957
3958 ----------------------
3959 -- Preanalyze_Range --
3960 ----------------------
3961
3962 procedure Preanalyze_Range (R_Copy : Node_Id) is
3963 Save_Analysis : constant Boolean := Full_Analysis;
3964 Typ : Entity_Id;
3965
3966 begin
3967 Full_Analysis := False;
3968 Expander_Mode_Save_And_Set (False);
3969
3970 Analyze (R_Copy);
3971
3972 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3973
3974 -- Apply preference rules for range of predefined integer types, or
3975 -- check for array or iterable construct for "of" iterator, or
3976 -- diagnose true ambiguity.
3977
3978 declare
3979 I : Interp_Index;
3980 It : Interp;
3981 Found : Entity_Id := Empty;
3982
3983 begin
3984 Get_First_Interp (R_Copy, I, It);
3985 while Present (It.Typ) loop
3986 if Is_Discrete_Type (It.Typ) then
3987 if No (Found) then
3988 Found := It.Typ;
3989 else
3990 if Scope (Found) = Standard_Standard then
3991 null;
3992
3993 elsif Scope (It.Typ) = Standard_Standard then
3994 Found := It.Typ;
3995
3996 else
3997 -- Both of them are user-defined
3998
3999 Error_Msg_N
4000 ("ambiguous bounds in range of iteration", R_Copy);
4001 Error_Msg_N ("\possible interpretations:", R_Copy);
4002 Error_Msg_NE ("\\} ", R_Copy, Found);
4003 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
4004 exit;
4005 end if;
4006 end if;
4007
4008 elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
4009 and then Of_Present (Parent (R_Copy))
4010 then
4011 if Is_Array_Type (It.Typ)
4012 or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
4013 or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
4014 or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
4015 then
4016 if No (Found) then
4017 Found := It.Typ;
4018 Set_Etype (R_Copy, It.Typ);
4019
4020 else
4021 Error_Msg_N ("ambiguous domain of iteration", R_Copy);
4022 end if;
4023 end if;
4024 end if;
4025
4026 Get_Next_Interp (I, It);
4027 end loop;
4028 end;
4029 end if;
4030
4031 -- Subtype mark in iteration scheme
4032
4033 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
4034 null;
4035
4036 -- Expression in range, or Ada 2012 iterator
4037
4038 elsif Nkind (R_Copy) in N_Subexpr then
4039 Resolve (R_Copy);
4040 Typ := Etype (R_Copy);
4041
4042 if Is_Discrete_Type (Typ) then
4043 null;
4044
4045 -- Check that the resulting object is an iterable container
4046
4047 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
4048 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
4049 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
4050 then
4051 null;
4052
4053 -- The expression may yield an implicit reference to an iterable
4054 -- container. Insert explicit dereference so that proper type is
4055 -- visible in the loop.
4056
4057 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
4058 declare
4059 Disc : Entity_Id;
4060
4061 begin
4062 Disc := First_Discriminant (Typ);
4063 while Present (Disc) loop
4064 if Has_Implicit_Dereference (Disc) then
4065 Build_Explicit_Dereference (R_Copy, Disc);
4066 exit;
4067 end if;
4068
4069 Next_Discriminant (Disc);
4070 end loop;
4071 end;
4072
4073 end if;
4074 end if;
4075
4076 Expander_Mode_Restore;
4077 Full_Analysis := Save_Analysis;
4078 end Preanalyze_Range;
4079
4080 end Sem_Ch5;