diff gcc/ada/sem_ch5.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/ada/sem_ch5.adb	Fri Oct 27 22:46:09 2017 +0900
@@ -0,0 +1,4080 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                         GNAT COMPILER COMPONENTS                         --
+--                                                                          --
+--                              S E M _ C H 5                               --
+--                                                                          --
+--                                 B o d y                                  --
+--                                                                          --
+--          Copyright (C) 1992-2017, Free Software Foundation, Inc.         --
+--                                                                          --
+-- GNAT is free software;  you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
+-- for  more details.  You should have  received  a copy of the GNU General --
+-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license.          --
+--                                                                          --
+-- GNAT was originally developed  by the GNAT team at  New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc.      --
+--                                                                          --
+------------------------------------------------------------------------------
+
+with Aspects;  use Aspects;
+with Atree;    use Atree;
+with Checks;   use Checks;
+with Einfo;    use Einfo;
+with Errout;   use Errout;
+with Expander; use Expander;
+with Exp_Ch6;  use Exp_Ch6;
+with Exp_Util; use Exp_Util;
+with Freeze;   use Freeze;
+with Ghost;    use Ghost;
+with Lib;      use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet;    use Namet;
+with Nlists;   use Nlists;
+with Nmake;    use Nmake;
+with Opt;      use Opt;
+with Restrict; use Restrict;
+with Rident;   use Rident;
+with Sem;      use Sem;
+with Sem_Aux;  use Sem_Aux;
+with Sem_Case; use Sem_Case;
+with Sem_Ch3;  use Sem_Ch3;
+with Sem_Ch6;  use Sem_Ch6;
+with Sem_Ch8;  use Sem_Ch8;
+with Sem_Dim;  use Sem_Dim;
+with Sem_Disp; use Sem_Disp;
+with Sem_Elab; use Sem_Elab;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res;  use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Sem_Warn; use Sem_Warn;
+with Snames;   use Snames;
+with Stand;    use Stand;
+with Sinfo;    use Sinfo;
+with Targparm; use Targparm;
+with Tbuild;   use Tbuild;
+with Uintp;    use Uintp;
+
+package body Sem_Ch5 is
+
+   Current_Assignment : Node_Id := Empty;
+   --  This variable holds the node for an assignment that contains target
+   --  names. The corresponding flag has been set by the parser, and when
+   --  set the analysis of the RHS must be done with all expansion disabled,
+   --  because the assignment is reanalyzed after expansion has replaced all
+   --  occurrences of the target name appropriately.
+
+   Unblocked_Exit_Count : Nat := 0;
+   --  This variable is used when processing if statements, case statements,
+   --  and block statements. It counts the number of exit points that are not
+   --  blocked by unconditional transfer instructions: for IF and CASE, these
+   --  are the branches of the conditional; for a block, they are the statement
+   --  sequence of the block, and the statement sequences of any exception
+   --  handlers that are part of the block. When processing is complete, if
+   --  this count is zero, it means that control cannot fall through the IF,
+   --  CASE or block statement. This is used for the generation of warning
+   --  messages. This variable is recursively saved on entry to processing the
+   --  construct, and restored on exit.
+
+   procedure Preanalyze_Range (R_Copy : Node_Id);
+   --  Determine expected type of range or domain of iteration of Ada 2012
+   --  loop by analyzing separate copy. Do the analysis and resolution of the
+   --  copy of the bound(s) with expansion disabled, to prevent the generation
+   --  of finalization actions. This prevents memory leaks when the bounds
+   --  contain calls to functions returning controlled arrays or when the
+   --  domain of iteration is a container.
+
+   ------------------------
+   -- Analyze_Assignment --
+   ------------------------
+
+   --  WARNING: This routine manages Ghost regions. Return statements must be
+   --  replaced by gotos which jump to the end of the routine and restore the
+   --  Ghost mode.
+
+   procedure Analyze_Assignment (N : Node_Id) is
+      Lhs : constant Node_Id := Name (N);
+      Rhs : Node_Id          := Expression (N);
+
+      procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
+      --  N is the node for the left hand side of an assignment, and it is not
+      --  a variable. This routine issues an appropriate diagnostic.
+
+      procedure Kill_Lhs;
+      --  This is called to kill current value settings of a simple variable
+      --  on the left hand side. We call it if we find any error in analyzing
+      --  the assignment, and at the end of processing before setting any new
+      --  current values in place.
+
+      procedure Set_Assignment_Type
+        (Opnd      : Node_Id;
+         Opnd_Type : in out Entity_Id);
+      --  Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
+      --  nominal subtype. This procedure is used to deal with cases where the
+      --  nominal subtype must be replaced by the actual subtype.
+
+      procedure Transform_BIP_Assignment (Typ : Entity_Id);
+      function Should_Transform_BIP_Assignment
+        (Typ : Entity_Id) return Boolean;
+      --  If the right-hand side of an assignment statement is a build-in-place
+      --  call we cannot build in place, so we insert a temp initialized with
+      --  the call, and transform the assignment statement to copy the temp.
+      --  Transform_BIP_Assignment does the tranformation, and
+      --  Should_Transform_BIP_Assignment determines whether we should.
+      --  The same goes for qualified expressions and conversions whose
+      --  operand is such a call.
+      --
+      --  This is only for nonlimited types; assignment statements are illegal
+      --  for limited types, but are generated internally for aggregates and
+      --  init procs. These limited-type are not really assignment statements
+      --  -- conceptually, they are initializations, so should not be
+      --  transformed.
+      --
+      --  Similarly, for nonlimited types, aggregates and init procs generate
+      --  assignment statements that are really initializations. These are
+      --  marked No_Ctrl_Actions.
+
+      -------------------------------
+      -- Diagnose_Non_Variable_Lhs --
+      -------------------------------
+
+      procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
+      begin
+         --  Not worth posting another error if left hand side already flagged
+         --  as being illegal in some respect.
+
+         if Error_Posted (N) then
+            return;
+
+         --  Some special bad cases of entity names
+
+         elsif Is_Entity_Name (N) then
+            declare
+               Ent : constant Entity_Id := Entity (N);
+
+            begin
+               if Ekind (Ent) = E_In_Parameter then
+                  Error_Msg_N
+                    ("assignment to IN mode parameter not allowed", N);
+                  return;
+
+               --  Renamings of protected private components are turned into
+               --  constants when compiling a protected function. In the case
+               --  of single protected types, the private component appears
+               --  directly.
+
+               elsif (Is_Prival (Ent)
+                       and then
+                         (Ekind (Current_Scope) = E_Function
+                           or else Ekind (Enclosing_Dynamic_Scope
+                                            (Current_Scope)) = E_Function))
+                   or else
+                     (Ekind (Ent) = E_Component
+                       and then Is_Protected_Type (Scope (Ent)))
+               then
+                  Error_Msg_N
+                    ("protected function cannot modify protected object", N);
+                  return;
+
+               elsif Ekind (Ent) = E_Loop_Parameter then
+                  Error_Msg_N ("assignment to loop parameter not allowed", N);
+                  return;
+               end if;
+            end;
+
+         --  For indexed components, test prefix if it is in array. We do not
+         --  want to recurse for cases where the prefix is a pointer, since we
+         --  may get a message confusing the pointer and what it references.
+
+         elsif Nkind (N) = N_Indexed_Component
+           and then Is_Array_Type (Etype (Prefix (N)))
+         then
+            Diagnose_Non_Variable_Lhs (Prefix (N));
+            return;
+
+         --  Another special case for assignment to discriminant
+
+         elsif Nkind (N) = N_Selected_Component then
+            if Present (Entity (Selector_Name (N)))
+              and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
+            then
+               Error_Msg_N ("assignment to discriminant not allowed", N);
+               return;
+
+            --  For selection from record, diagnose prefix, but note that again
+            --  we only do this for a record, not e.g. for a pointer.
+
+            elsif Is_Record_Type (Etype (Prefix (N))) then
+               Diagnose_Non_Variable_Lhs (Prefix (N));
+               return;
+            end if;
+         end if;
+
+         --  If we fall through, we have no special message to issue
+
+         Error_Msg_N ("left hand side of assignment must be a variable", N);
+      end Diagnose_Non_Variable_Lhs;
+
+      --------------
+      -- Kill_Lhs --
+      --------------
+
+      procedure Kill_Lhs is
+      begin
+         if Is_Entity_Name (Lhs) then
+            declare
+               Ent : constant Entity_Id := Entity (Lhs);
+            begin
+               if Present (Ent) then
+                  Kill_Current_Values (Ent);
+               end if;
+            end;
+         end if;
+      end Kill_Lhs;
+
+      -------------------------
+      -- Set_Assignment_Type --
+      -------------------------
+
+      procedure Set_Assignment_Type
+        (Opnd      : Node_Id;
+         Opnd_Type : in out Entity_Id)
+      is
+         Decl : Node_Id;
+
+      begin
+         Require_Entity (Opnd);
+
+         --  If the assignment operand is an in-out or out parameter, then we
+         --  get the actual subtype (needed for the unconstrained case). If the
+         --  operand is the actual in an entry declaration, then within the
+         --  accept statement it is replaced with a local renaming, which may
+         --  also have an actual subtype.
+
+         if Is_Entity_Name (Opnd)
+           and then (Ekind (Entity (Opnd)) = E_Out_Parameter
+                      or else Ekind_In (Entity (Opnd),
+                                        E_In_Out_Parameter,
+                                        E_Generic_In_Out_Parameter)
+                      or else
+                        (Ekind (Entity (Opnd)) = E_Variable
+                          and then Nkind (Parent (Entity (Opnd))) =
+                                     N_Object_Renaming_Declaration
+                          and then Nkind (Parent (Parent (Entity (Opnd)))) =
+                                     N_Accept_Statement))
+         then
+            Opnd_Type := Get_Actual_Subtype (Opnd);
+
+         --  If assignment operand is a component reference, then we get the
+         --  actual subtype of the component for the unconstrained case.
+
+         elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
+           and then not Is_Unchecked_Union (Opnd_Type)
+         then
+            Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
+
+            if Present (Decl) then
+               Insert_Action (N, Decl);
+               Mark_Rewrite_Insertion (Decl);
+               Analyze (Decl);
+               Opnd_Type := Defining_Identifier (Decl);
+               Set_Etype (Opnd, Opnd_Type);
+               Freeze_Itype (Opnd_Type, N);
+
+            elsif Is_Constrained (Etype (Opnd)) then
+               Opnd_Type := Etype (Opnd);
+            end if;
+
+         --  For slice, use the constrained subtype created for the slice
+
+         elsif Nkind (Opnd) = N_Slice then
+            Opnd_Type := Etype (Opnd);
+         end if;
+      end Set_Assignment_Type;
+
+      -------------------------------------
+      -- Should_Transform_BIP_Assignment --
+      -------------------------------------
+
+      function Should_Transform_BIP_Assignment
+        (Typ : Entity_Id) return Boolean
+      is
+         Result : Boolean;
+
+      begin
+         if Expander_Active
+           and then not Is_Limited_View (Typ)
+           and then Is_Build_In_Place_Result_Type (Typ)
+           and then not No_Ctrl_Actions (N)
+         then
+            --  This function is called early, before name resolution is
+            --  complete, so we have to deal with things that might turn into
+            --  function calls later. N_Function_Call and N_Op nodes are the
+            --  obvious case. An N_Identifier or N_Expanded_Name is a
+            --  parameterless function call if it denotes a function.
+            --  Finally, an attribute reference can be a function call.
+
+            case Nkind (Unqual_Conv (Rhs)) is
+               when N_Function_Call
+                  | N_Op
+               =>
+                  Result := True;
+
+               when N_Expanded_Name
+                  | N_Identifier
+               =>
+                  case Ekind (Entity (Unqual_Conv (Rhs))) is
+                     when E_Function
+                        | E_Operator
+                     =>
+                        Result := True;
+
+                     when others =>
+                        Result := False;
+                  end case;
+
+               when N_Attribute_Reference =>
+                  Result := Attribute_Name (Unqual_Conv (Rhs)) = Name_Input;
+                  --  T'Input will turn into a call whose result type is T
+
+               when others =>
+                  Result := False;
+            end case;
+         else
+            Result := False;
+         end if;
+
+         return Result;
+      end Should_Transform_BIP_Assignment;
+
+      ------------------------------
+      -- Transform_BIP_Assignment --
+      ------------------------------
+
+      procedure Transform_BIP_Assignment (Typ : Entity_Id) is
+
+         --  Tranform "X : [constant] T := F (...);" into:
+         --
+         --     Temp : constant T := F (...);
+         --     X := Temp;
+
+         Loc      : constant Source_Ptr := Sloc (N);
+         Def_Id   : constant Entity_Id  := Make_Temporary (Loc, 'Y', Rhs);
+         Obj_Decl : constant Node_Id    :=
+                      Make_Object_Declaration (Loc,
+                        Defining_Identifier => Def_Id,
+                        Constant_Present    => True,
+                        Object_Definition   => New_Occurrence_Of (Typ, Loc),
+                        Expression          => Rhs,
+                        Has_Init_Expression => True);
+
+      begin
+         Set_Etype (Def_Id, Typ);
+         Set_Expression (N, New_Occurrence_Of (Def_Id, Loc));
+
+         --  At this point, Rhs is no longer equal to Expression (N), so:
+
+         Rhs := Expression (N);
+
+         Insert_Action (N, Obj_Decl);
+      end Transform_BIP_Assignment;
+
+      --  Local variables
+
+      T1 : Entity_Id;
+      T2 : Entity_Id;
+
+      Save_Full_Analysis : Boolean;
+
+      Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
+      --  Save the Ghost mode to restore on exit
+
+   --  Start of processing for Analyze_Assignment
+
+   begin
+      Mark_Coextensions (N, Rhs);
+
+      --  Preserve relevant elaboration-related attributes of the context which
+      --  are no longer available or very expensive to recompute once analysis,
+      --  resolution, and expansion are over.
+
+      Mark_Elaboration_Attributes
+        (N_Id   => N,
+         Checks => True,
+         Modes  => True);
+
+      --  Analyze the target of the assignment first in case the expression
+      --  contains references to Ghost entities. The checks that verify the
+      --  proper use of a Ghost entity need to know the enclosing context.
+
+      Analyze (Lhs);
+
+      --  An assignment statement is Ghost when the left hand side denotes a
+      --  Ghost entity. Set the mode now to ensure that any nodes generated
+      --  during analysis and expansion are properly marked as Ghost.
+
+      if Has_Target_Names (N) then
+         Current_Assignment := N;
+         Expander_Mode_Save_And_Set (False);
+         Save_Full_Analysis := Full_Analysis;
+         Full_Analysis      := False;
+      else
+         Current_Assignment := Empty;
+      end if;
+
+      Mark_And_Set_Ghost_Assignment (N);
+      Analyze (Rhs);
+
+      --  Ensure that we never do an assignment on a variable marked as
+      --  Is_Safe_To_Reevaluate.
+
+      pragma Assert
+        (not Is_Entity_Name (Lhs)
+          or else Ekind (Entity (Lhs)) /= E_Variable
+          or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
+
+      --  Start type analysis for assignment
+
+      T1 := Etype (Lhs);
+
+      --  In the most general case, both Lhs and Rhs can be overloaded, and we
+      --  must compute the intersection of the possible types on each side.
+
+      if Is_Overloaded (Lhs) then
+         declare
+            I  : Interp_Index;
+            It : Interp;
+
+         begin
+            T1 := Any_Type;
+            Get_First_Interp (Lhs, I, It);
+
+            while Present (It.Typ) loop
+
+               --  An indexed component with generalized indexing is always
+               --  overloaded with the corresponding dereference. Discard the
+               --  interpretation that yields a reference type, which is not
+               --  assignable.
+
+               if Nkind (Lhs) = N_Indexed_Component
+                 and then Present (Generalized_Indexing (Lhs))
+                 and then Has_Implicit_Dereference (It.Typ)
+               then
+                  null;
+
+               --  This may be a call to a parameterless function through an
+               --  implicit dereference, so discard interpretation as well.
+
+               elsif Is_Entity_Name (Lhs)
+                 and then Has_Implicit_Dereference (It.Typ)
+               then
+                  null;
+
+               elsif Has_Compatible_Type (Rhs, It.Typ) then
+                  if T1 = Any_Type then
+                     T1 := It.Typ;
+                  else
+                     --  An explicit dereference is overloaded if the prefix
+                     --  is. Try to remove the ambiguity on the prefix, the
+                     --  error will be posted there if the ambiguity is real.
+
+                     if Nkind (Lhs) = N_Explicit_Dereference then
+                        declare
+                           PI    : Interp_Index;
+                           PI1   : Interp_Index := 0;
+                           PIt   : Interp;
+                           Found : Boolean;
+
+                        begin
+                           Found := False;
+                           Get_First_Interp (Prefix (Lhs), PI, PIt);
+
+                           while Present (PIt.Typ) loop
+                              if Is_Access_Type (PIt.Typ)
+                                and then Has_Compatible_Type
+                                           (Rhs, Designated_Type (PIt.Typ))
+                              then
+                                 if Found then
+                                    PIt :=
+                                      Disambiguate (Prefix (Lhs),
+                                        PI1, PI, Any_Type);
+
+                                    if PIt = No_Interp then
+                                       Error_Msg_N
+                                         ("ambiguous left-hand side in "
+                                          & "assignment", Lhs);
+                                       exit;
+                                    else
+                                       Resolve (Prefix (Lhs), PIt.Typ);
+                                    end if;
+
+                                    exit;
+                                 else
+                                    Found := True;
+                                    PI1 := PI;
+                                 end if;
+                              end if;
+
+                              Get_Next_Interp (PI, PIt);
+                           end loop;
+                        end;
+
+                     else
+                        Error_Msg_N
+                          ("ambiguous left-hand side in assignment", Lhs);
+                        exit;
+                     end if;
+                  end if;
+               end if;
+
+               Get_Next_Interp (I, It);
+            end loop;
+         end;
+
+         if T1 = Any_Type then
+            Error_Msg_N
+              ("no valid types for left-hand side for assignment", Lhs);
+            Kill_Lhs;
+            goto Leave;
+         end if;
+      end if;
+
+      --  Deal with build-in-place calls for nonlimited types. We don't do this
+      --  later, because resolving the rhs tranforms it incorrectly for build-
+      --  in-place.
+
+      if Should_Transform_BIP_Assignment (Typ => T1) then
+         Transform_BIP_Assignment (Typ => T1);
+      end if;
+
+      pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
+
+      --  The resulting assignment type is T1, so now we will resolve the left
+      --  hand side of the assignment using this determined type.
+
+      Resolve (Lhs, T1);
+
+      --  Cases where Lhs is not a variable. In an instance or an inlined body
+      --  no need for further check because assignment was legal in template.
+
+      if In_Inlined_Body then
+         null;
+
+      elsif not Is_Variable (Lhs) then
+
+         --  Ada 2005 (AI-327): Check assignment to the attribute Priority of a
+         --  protected object.
+
+         declare
+            Ent : Entity_Id;
+            S   : Entity_Id;
+
+         begin
+            if Ada_Version >= Ada_2005 then
+
+               --  Handle chains of renamings
+
+               Ent := Lhs;
+               while Nkind (Ent) in N_Has_Entity
+                 and then Present (Entity (Ent))
+                 and then Present (Renamed_Object (Entity (Ent)))
+               loop
+                  Ent := Renamed_Object (Entity (Ent));
+               end loop;
+
+               if (Nkind (Ent) = N_Attribute_Reference
+                    and then Attribute_Name (Ent) = Name_Priority)
+
+                  --  Renamings of the attribute Priority applied to protected
+                  --  objects have been previously expanded into calls to the
+                  --  Get_Ceiling run-time subprogram.
+
+                 or else Is_Expanded_Priority_Attribute (Ent)
+               then
+                  --  The enclosing subprogram cannot be a protected function
+
+                  S := Current_Scope;
+                  while not (Is_Subprogram (S)
+                              and then Convention (S) = Convention_Protected)
+                     and then S /= Standard_Standard
+                  loop
+                     S := Scope (S);
+                  end loop;
+
+                  if Ekind (S) = E_Function
+                    and then Convention (S) = Convention_Protected
+                  then
+                     Error_Msg_N
+                       ("protected function cannot modify protected object",
+                        Lhs);
+                  end if;
+
+                  --  Changes of the ceiling priority of the protected object
+                  --  are only effective if the Ceiling_Locking policy is in
+                  --  effect (AARM D.5.2 (5/2)).
+
+                  if Locking_Policy /= 'C' then
+                     Error_Msg_N
+                       ("assignment to the attribute PRIORITY has no effect??",
+                        Lhs);
+                     Error_Msg_N
+                       ("\since no Locking_Policy has been specified??", Lhs);
+                  end if;
+
+                  goto Leave;
+               end if;
+            end if;
+         end;
+
+         Diagnose_Non_Variable_Lhs (Lhs);
+         goto Leave;
+
+      --  Error of assigning to limited type. We do however allow this in
+      --  certain cases where the front end generates the assignments.
+
+      elsif Is_Limited_Type (T1)
+        and then not Assignment_OK (Lhs)
+        and then not Assignment_OK (Original_Node (Lhs))
+      then
+         --  CPP constructors can only be called in declarations
+
+         if Is_CPP_Constructor_Call (Rhs) then
+            Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
+         else
+            Error_Msg_N
+              ("left hand of assignment must not be limited type", Lhs);
+            Explain_Limited_Type (T1, Lhs);
+         end if;
+
+         goto Leave;
+
+      --  A class-wide type may be a limited view. This illegal case is not
+      --  caught by previous checks.
+
+      elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
+         Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
+         goto Leave;
+
+      --  Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
+      --  abstract. This is only checked when the assignment Comes_From_Source,
+      --  because in some cases the expander generates such assignments (such
+      --  in the _assign operation for an abstract type).
+
+      elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
+         Error_Msg_N
+           ("target of assignment operation must not be abstract", Lhs);
+      end if;
+
+      --  Resolution may have updated the subtype, in case the left-hand side
+      --  is a private protected component. Use the correct subtype to avoid
+      --  scoping issues in the back-end.
+
+      T1 := Etype (Lhs);
+
+      --  Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
+      --  type. For example:
+
+      --    limited with P;
+      --    package Pkg is
+      --      type Acc is access P.T;
+      --    end Pkg;
+
+      --    with Pkg; use Acc;
+      --    procedure Example is
+      --       A, B : Acc;
+      --    begin
+      --       A.all := B.all;  -- ERROR
+      --    end Example;
+
+      if Nkind (Lhs) = N_Explicit_Dereference
+        and then Ekind (T1) = E_Incomplete_Type
+      then
+         Error_Msg_N ("invalid use of incomplete type", Lhs);
+         Kill_Lhs;
+         goto Leave;
+      end if;
+
+      --  Now we can complete the resolution of the right hand side
+
+      Set_Assignment_Type (Lhs, T1);
+
+      --  If the target of the assignment is an entity of a mutable type and
+      --  the expression is a conditional expression, its alternatives can be
+      --  of different subtypes of the nominal type of the LHS, so they must be
+      --  resolved with the base type, given that their subtype may differ from
+      --  that of the target mutable object.
+
+      if Is_Entity_Name (Lhs)
+        and then Ekind_In (Entity (Lhs), E_In_Out_Parameter,
+                                         E_Out_Parameter,
+                                         E_Variable)
+        and then Is_Composite_Type (T1)
+        and then not Is_Constrained (Etype (Entity (Lhs)))
+        and then Nkind_In (Rhs, N_If_Expression, N_Case_Expression)
+      then
+         Resolve (Rhs, Base_Type (T1));
+
+      else
+         Resolve (Rhs, T1);
+      end if;
+
+      --  This is the point at which we check for an unset reference
+
+      Check_Unset_Reference (Rhs);
+      Check_Unprotected_Access (Lhs, Rhs);
+
+      --  Remaining steps are skipped if Rhs was syntactically in error
+
+      if Rhs = Error then
+         Kill_Lhs;
+         goto Leave;
+      end if;
+
+      T2 := Etype (Rhs);
+
+      if not Covers (T1, T2) then
+         Wrong_Type (Rhs, Etype (Lhs));
+         Kill_Lhs;
+         goto Leave;
+      end if;
+
+      --  Ada 2005 (AI-326): In case of explicit dereference of incomplete
+      --  types, use the non-limited view if available
+
+      if Nkind (Rhs) = N_Explicit_Dereference
+        and then Is_Tagged_Type (T2)
+        and then Has_Non_Limited_View (T2)
+      then
+         T2 := Non_Limited_View (T2);
+      end if;
+
+      Set_Assignment_Type (Rhs, T2);
+
+      if Total_Errors_Detected /= 0 then
+         if No (T1) then
+            T1 := Any_Type;
+         end if;
+
+         if No (T2) then
+            T2 := Any_Type;
+         end if;
+      end if;
+
+      if T1 = Any_Type or else T2 = Any_Type then
+         Kill_Lhs;
+         goto Leave;
+      end if;
+
+      --  If the rhs is class-wide or dynamically tagged, then require the lhs
+      --  to be class-wide. The case where the rhs is a dynamically tagged call
+      --  to a dispatching operation with a controlling access result is
+      --  excluded from this check, since the target has an access type (and
+      --  no tag propagation occurs in that case).
+
+      if (Is_Class_Wide_Type (T2)
+           or else (Is_Dynamically_Tagged (Rhs)
+                     and then not Is_Access_Type (T1)))
+        and then not Is_Class_Wide_Type (T1)
+      then
+         Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
+
+      elsif Is_Class_Wide_Type (T1)
+        and then not Is_Class_Wide_Type (T2)
+        and then not Is_Tag_Indeterminate (Rhs)
+        and then not Is_Dynamically_Tagged (Rhs)
+      then
+         Error_Msg_N ("dynamically tagged expression required!", Rhs);
+      end if;
+
+      --  Propagate the tag from a class-wide target to the rhs when the rhs
+      --  is a tag-indeterminate call.
+
+      if Is_Tag_Indeterminate (Rhs) then
+         if Is_Class_Wide_Type (T1) then
+            Propagate_Tag (Lhs, Rhs);
+
+         elsif Nkind (Rhs) = N_Function_Call
+           and then Is_Entity_Name (Name (Rhs))
+           and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
+         then
+            Error_Msg_N
+              ("call to abstract function must be dispatching", Name (Rhs));
+
+         elsif Nkind (Rhs) = N_Qualified_Expression
+           and then Nkind (Expression (Rhs)) = N_Function_Call
+              and then Is_Entity_Name (Name (Expression (Rhs)))
+              and then
+                Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
+         then
+            Error_Msg_N
+              ("call to abstract function must be dispatching",
+                Name (Expression (Rhs)));
+         end if;
+      end if;
+
+      --  Ada 2005 (AI-385): When the lhs type is an anonymous access type,
+      --  apply an implicit conversion of the rhs to that type to force
+      --  appropriate static and run-time accessibility checks. This applies
+      --  as well to anonymous access-to-subprogram types that are component
+      --  subtypes or formal parameters.
+
+      if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
+         if Is_Local_Anonymous_Access (T1)
+           or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
+
+           --  Handle assignment to an Ada 2012 stand-alone object
+           --  of an anonymous access type.
+
+           or else (Ekind (T1) = E_Anonymous_Access_Type
+                     and then Nkind (Associated_Node_For_Itype (T1)) =
+                                                       N_Object_Declaration)
+
+         then
+            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
+            Analyze_And_Resolve (Rhs, T1);
+         end if;
+      end if;
+
+      --  Ada 2005 (AI-231): Assignment to not null variable
+
+      if Ada_Version >= Ada_2005
+        and then Can_Never_Be_Null (T1)
+        and then not Assignment_OK (Lhs)
+      then
+         --  Case where we know the right hand side is null
+
+         if Known_Null (Rhs) then
+            Apply_Compile_Time_Constraint_Error
+              (N      => Rhs,
+               Msg    =>
+                 "(Ada 2005) null not allowed in null-excluding objects??",
+               Reason => CE_Null_Not_Allowed);
+
+            --  We still mark this as a possible modification, that's necessary
+            --  to reset Is_True_Constant, and desirable for xref purposes.
+
+            Note_Possible_Modification (Lhs, Sure => True);
+            goto Leave;
+
+         --  If we know the right hand side is non-null, then we convert to the
+         --  target type, since we don't need a run time check in that case.
+
+         elsif not Can_Never_Be_Null (T2) then
+            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
+            Analyze_And_Resolve (Rhs, T1);
+         end if;
+      end if;
+
+      if Is_Scalar_Type (T1) then
+         Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
+
+      --  For array types, verify that lengths match. If the right hand side
+      --  is a function call that has been inlined, the assignment has been
+      --  rewritten as a block, and the constraint check will be applied to the
+      --  assignment within the block.
+
+      elsif Is_Array_Type (T1)
+        and then (Nkind (Rhs) /= N_Type_Conversion
+                   or else Is_Constrained (Etype (Rhs)))
+        and then (Nkind (Rhs) /= N_Function_Call
+                   or else Nkind (N) /= N_Block_Statement)
+      then
+         --  Assignment verifies that the length of the Lsh and Rhs are equal,
+         --  but of course the indexes do not have to match. If the right-hand
+         --  side is a type conversion to an unconstrained type, a length check
+         --  is performed on the expression itself during expansion. In rare
+         --  cases, the redundant length check is computed on an index type
+         --  with a different representation, triggering incorrect code in the
+         --  back end.
+
+         Apply_Length_Check (Rhs, Etype (Lhs));
+
+      else
+         --  Discriminant checks are applied in the course of expansion
+
+         null;
+      end if;
+
+      --  Note: modifications of the Lhs may only be recorded after
+      --  checks have been applied.
+
+      Note_Possible_Modification (Lhs, Sure => True);
+
+      --  ??? a real accessibility check is needed when ???
+
+      --  Post warning for redundant assignment or variable to itself
+
+      if Warn_On_Redundant_Constructs
+
+         --  We only warn for source constructs
+
+         and then Comes_From_Source (N)
+
+         --  Where the object is the same on both sides
+
+         and then Same_Object (Lhs, Original_Node (Rhs))
+
+         --  But exclude the case where the right side was an operation that
+         --  got rewritten (e.g. JUNK + K, where K was known to be zero). We
+         --  don't want to warn in such a case, since it is reasonable to write
+         --  such expressions especially when K is defined symbolically in some
+         --  other package.
+
+        and then Nkind (Original_Node (Rhs)) not in N_Op
+      then
+         if Nkind (Lhs) in N_Has_Entity then
+            Error_Msg_NE -- CODEFIX
+              ("?r?useless assignment of & to itself!", N, Entity (Lhs));
+         else
+            Error_Msg_N -- CODEFIX
+              ("?r?useless assignment of object to itself!", N);
+         end if;
+      end if;
+
+      --  Check for non-allowed composite assignment
+
+      if not Support_Composite_Assign_On_Target
+        and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
+        and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
+      then
+         Error_Msg_CRT ("composite assignment", N);
+      end if;
+
+      --  Save the scenario for later examination by the ABE Processing phase
+
+      Record_Elaboration_Scenario (N);
+
+      --  Set Referenced_As_LHS if appropriate. We only set this flag if the
+      --  assignment is a source assignment in the extended main source unit.
+      --  We are not interested in any reference information outside this
+      --  context, or in compiler generated assignment statements.
+
+      if Comes_From_Source (N)
+        and then In_Extended_Main_Source_Unit (Lhs)
+      then
+         Set_Referenced_Modified (Lhs, Out_Param => False);
+      end if;
+
+      --  RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
+      --  one of its ancestors) requires an invariant check. Apply check only
+      --  if expression comes from source, otherwise it will be applied when
+      --  value is assigned to source entity. This is not done in GNATprove
+      --  mode, as GNATprove handles invariant checks itself.
+
+      if Nkind (Lhs) = N_Type_Conversion
+        and then Has_Invariants (Etype (Expression (Lhs)))
+        and then Comes_From_Source (Expression (Lhs))
+        and then not GNATprove_Mode
+      then
+         Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
+      end if;
+
+      --  Final step. If left side is an entity, then we may be able to reset
+      --  the current tracked values to new safe values. We only have something
+      --  to do if the left side is an entity name, and expansion has not
+      --  modified the node into something other than an assignment, and of
+      --  course we only capture values if it is safe to do so.
+
+      if Is_Entity_Name (Lhs)
+        and then Nkind (N) = N_Assignment_Statement
+      then
+         declare
+            Ent : constant Entity_Id := Entity (Lhs);
+
+         begin
+            if Safe_To_Capture_Value (N, Ent) then
+
+               --  If simple variable on left side, warn if this assignment
+               --  blots out another one (rendering it useless). We only do
+               --  this for source assignments, otherwise we can generate bogus
+               --  warnings when an assignment is rewritten as another
+               --  assignment, and gets tied up with itself.
+
+               --  There may have been a previous reference to a component of
+               --  the variable, which in general removes the Last_Assignment
+               --  field of the variable to indicate a relevant use of the
+               --  previous assignment. However, if the assignment is to a
+               --  subcomponent the reference may not have registered, because
+               --  it is not possible to determine whether the context is an
+               --  assignment. In those cases we generate a Deferred_Reference,
+               --  to be used at the end of compilation to generate the right
+               --  kind of reference, and we suppress a potential warning for
+               --  a useless assignment, which might be premature. This may
+               --  lose a warning in rare cases, but seems preferable to a
+               --  misleading warning.
+
+               if Warn_On_Modified_Unread
+                 and then Is_Assignable (Ent)
+                 and then Comes_From_Source (N)
+                 and then In_Extended_Main_Source_Unit (Ent)
+                 and then not Has_Deferred_Reference (Ent)
+               then
+                  Warn_On_Useless_Assignment (Ent, N);
+               end if;
+
+               --  If we are assigning an access type and the left side is an
+               --  entity, then make sure that the Is_Known_[Non_]Null flags
+               --  properly reflect the state of the entity after assignment.
+
+               if Is_Access_Type (T1) then
+                  if Known_Non_Null (Rhs) then
+                     Set_Is_Known_Non_Null (Ent, True);
+
+                  elsif Known_Null (Rhs)
+                    and then not Can_Never_Be_Null (Ent)
+                  then
+                     Set_Is_Known_Null (Ent, True);
+
+                  else
+                     Set_Is_Known_Null (Ent, False);
+
+                     if not Can_Never_Be_Null (Ent) then
+                        Set_Is_Known_Non_Null (Ent, False);
+                     end if;
+                  end if;
+
+               --  For discrete types, we may be able to set the current value
+               --  if the value is known at compile time.
+
+               elsif Is_Discrete_Type (T1)
+                 and then Compile_Time_Known_Value (Rhs)
+               then
+                  Set_Current_Value (Ent, Rhs);
+               else
+                  Set_Current_Value (Ent, Empty);
+               end if;
+
+            --  If not safe to capture values, kill them
+
+            else
+               Kill_Lhs;
+            end if;
+         end;
+      end if;
+
+      --  If assigning to an object in whole or in part, note location of
+      --  assignment in case no one references value. We only do this for
+      --  source assignments, otherwise we can generate bogus warnings when an
+      --  assignment is rewritten as another assignment, and gets tied up with
+      --  itself.
+
+      declare
+         Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
+      begin
+         if Present (Ent)
+           and then Safe_To_Capture_Value (N, Ent)
+           and then Nkind (N) = N_Assignment_Statement
+           and then Warn_On_Modified_Unread
+           and then Is_Assignable (Ent)
+           and then Comes_From_Source (N)
+           and then In_Extended_Main_Source_Unit (Ent)
+         then
+            Set_Last_Assignment (Ent, Lhs);
+         end if;
+      end;
+
+      Analyze_Dimension (N);
+
+   <<Leave>>
+      Restore_Ghost_Mode (Saved_GM);
+
+      --  If the right-hand side contains target names, expansion has been
+      --  disabled to prevent expansion that might move target names out of
+      --  the context of the assignment statement. Restore the expander mode
+      --  now so that assignment statement can be properly expanded.
+
+      if Nkind (N) = N_Assignment_Statement then
+         if Has_Target_Names (N) then
+            Expander_Mode_Restore;
+            Full_Analysis := Save_Full_Analysis;
+         end if;
+
+         pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
+      end if;
+   end Analyze_Assignment;
+
+   -----------------------------
+   -- Analyze_Block_Statement --
+   -----------------------------
+
+   procedure Analyze_Block_Statement (N : Node_Id) is
+      procedure Install_Return_Entities (Scop : Entity_Id);
+      --  Install all entities of return statement scope Scop in the visibility
+      --  chain except for the return object since its entity is reused in a
+      --  renaming.
+
+      -----------------------------
+      -- Install_Return_Entities --
+      -----------------------------
+
+      procedure Install_Return_Entities (Scop : Entity_Id) is
+         Id : Entity_Id;
+
+      begin
+         Id := First_Entity (Scop);
+         while Present (Id) loop
+
+            --  Do not install the return object
+
+            if not Ekind_In (Id, E_Constant, E_Variable)
+              or else not Is_Return_Object (Id)
+            then
+               Install_Entity (Id);
+            end if;
+
+            Next_Entity (Id);
+         end loop;
+      end Install_Return_Entities;
+
+      --  Local constants and variables
+
+      Decls : constant List_Id := Declarations (N);
+      Id    : constant Node_Id := Identifier (N);
+      HSS   : constant Node_Id := Handled_Statement_Sequence (N);
+
+      Is_BIP_Return_Statement : Boolean;
+
+   --  Start of processing for Analyze_Block_Statement
+
+   begin
+      --  In SPARK mode, we reject block statements. Note that the case of
+      --  block statements generated by the expander is fine.
+
+      if Nkind (Original_Node (N)) = N_Block_Statement then
+         Check_SPARK_05_Restriction ("block statement is not allowed", N);
+      end if;
+
+      --  If no handled statement sequence is present, things are really messed
+      --  up, and we just return immediately (defence against previous errors).
+
+      if No (HSS) then
+         Check_Error_Detected;
+         return;
+      end if;
+
+      --  Detect whether the block is actually a rewritten return statement of
+      --  a build-in-place function.
+
+      Is_BIP_Return_Statement :=
+        Present (Id)
+          and then Present (Entity (Id))
+          and then Ekind (Entity (Id)) = E_Return_Statement
+          and then Is_Build_In_Place_Function
+                     (Return_Applies_To (Entity (Id)));
+
+      --  Normal processing with HSS present
+
+      declare
+         EH  : constant List_Id := Exception_Handlers (HSS);
+         Ent : Entity_Id        := Empty;
+         S   : Entity_Id;
+
+         Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+         --  Recursively save value of this global, will be restored on exit
+
+      begin
+         --  Initialize unblocked exit count for statements of begin block
+         --  plus one for each exception handler that is present.
+
+         Unblocked_Exit_Count := 1;
+
+         if Present (EH) then
+            Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
+         end if;
+
+         --  If a label is present analyze it and mark it as referenced
+
+         if Present (Id) then
+            Analyze (Id);
+            Ent := Entity (Id);
+
+            --  An error defense. If we have an identifier, but no entity, then
+            --  something is wrong. If previous errors, then just remove the
+            --  identifier and continue, otherwise raise an exception.
+
+            if No (Ent) then
+               Check_Error_Detected;
+               Set_Identifier (N, Empty);
+
+            else
+               Set_Ekind (Ent, E_Block);
+               Generate_Reference (Ent, N, ' ');
+               Generate_Definition (Ent);
+
+               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
+                  Set_Label_Construct (Parent (Ent), N);
+               end if;
+            end if;
+         end if;
+
+         --  If no entity set, create a label entity
+
+         if No (Ent) then
+            Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
+            Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
+            Set_Parent (Ent, N);
+         end if;
+
+         Set_Etype (Ent, Standard_Void_Type);
+         Set_Block_Node (Ent, Identifier (N));
+         Push_Scope (Ent);
+
+         --  The block served as an extended return statement. Ensure that any
+         --  entities created during the analysis and expansion of the return
+         --  object declaration are once again visible.
+
+         if Is_BIP_Return_Statement then
+            Install_Return_Entities (Ent);
+         end if;
+
+         if Present (Decls) then
+            Analyze_Declarations (Decls);
+            Check_Completion;
+            Inspect_Deferred_Constant_Completion (Decls);
+         end if;
+
+         Analyze (HSS);
+         Process_End_Label (HSS, 'e', Ent);
+
+         --  If exception handlers are present, then we indicate that enclosing
+         --  scopes contain a block with handlers. We only need to mark non-
+         --  generic scopes.
+
+         if Present (EH) then
+            S := Scope (Ent);
+            loop
+               Set_Has_Nested_Block_With_Handler (S);
+               exit when Is_Overloadable (S)
+                 or else Ekind (S) = E_Package
+                 or else Is_Generic_Unit (S);
+               S := Scope (S);
+            end loop;
+         end if;
+
+         Check_References (Ent);
+         Update_Use_Clause_Chain;
+         End_Scope;
+
+         if Unblocked_Exit_Count = 0 then
+            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+            Check_Unreachable_Code (N);
+         else
+            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+         end if;
+      end;
+   end Analyze_Block_Statement;
+
+   --------------------------------
+   -- Analyze_Compound_Statement --
+   --------------------------------
+
+   procedure Analyze_Compound_Statement (N : Node_Id) is
+   begin
+      Analyze_List (Actions (N));
+   end Analyze_Compound_Statement;
+
+   ----------------------------
+   -- Analyze_Case_Statement --
+   ----------------------------
+
+   procedure Analyze_Case_Statement (N : Node_Id) is
+      Exp            : Node_Id;
+      Exp_Type       : Entity_Id;
+      Exp_Btype      : Entity_Id;
+      Last_Choice    : Nat;
+
+      Others_Present : Boolean;
+      --  Indicates if Others was present
+
+      pragma Warnings (Off, Last_Choice);
+      --  Don't care about assigned value
+
+      Statements_Analyzed : Boolean := False;
+      --  Set True if at least some statement sequences get analyzed. If False
+      --  on exit, means we had a serious error that prevented full analysis of
+      --  the case statement, and as a result it is not a good idea to output
+      --  warning messages about unreachable code.
+
+      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+      --  Recursively save value of this global, will be restored on exit
+
+      procedure Non_Static_Choice_Error (Choice : Node_Id);
+      --  Error routine invoked by the generic instantiation below when the
+      --  case statement has a non static choice.
+
+      procedure Process_Statements (Alternative : Node_Id);
+      --  Analyzes the statements associated with a case alternative. Needed
+      --  by instantiation below.
+
+      package Analyze_Case_Choices is new
+        Generic_Analyze_Choices
+          (Process_Associated_Node   => Process_Statements);
+      use Analyze_Case_Choices;
+      --  Instantiation of the generic choice analysis package
+
+      package Check_Case_Choices is new
+        Generic_Check_Choices
+          (Process_Empty_Choice      => No_OP,
+           Process_Non_Static_Choice => Non_Static_Choice_Error,
+           Process_Associated_Node   => No_OP);
+      use Check_Case_Choices;
+      --  Instantiation of the generic choice processing package
+
+      -----------------------------
+      -- Non_Static_Choice_Error --
+      -----------------------------
+
+      procedure Non_Static_Choice_Error (Choice : Node_Id) is
+      begin
+         Flag_Non_Static_Expr
+           ("choice given in case statement is not static!", Choice);
+      end Non_Static_Choice_Error;
+
+      ------------------------
+      -- Process_Statements --
+      ------------------------
+
+      procedure Process_Statements (Alternative : Node_Id) is
+         Choices : constant List_Id := Discrete_Choices (Alternative);
+         Ent     : Entity_Id;
+
+      begin
+         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
+         Statements_Analyzed := True;
+
+         --  An interesting optimization. If the case statement expression
+         --  is a simple entity, then we can set the current value within an
+         --  alternative if the alternative has one possible value.
+
+         --    case N is
+         --      when 1      => alpha
+         --      when 2 | 3  => beta
+         --      when others => gamma
+
+         --  Here we know that N is initially 1 within alpha, but for beta and
+         --  gamma, we do not know anything more about the initial value.
+
+         if Is_Entity_Name (Exp) then
+            Ent := Entity (Exp);
+
+            if Ekind_In (Ent, E_Variable,
+                              E_In_Out_Parameter,
+                              E_Out_Parameter)
+            then
+               if List_Length (Choices) = 1
+                 and then Nkind (First (Choices)) in N_Subexpr
+                 and then Compile_Time_Known_Value (First (Choices))
+               then
+                  Set_Current_Value (Entity (Exp), First (Choices));
+               end if;
+
+               Analyze_Statements (Statements (Alternative));
+
+               --  After analyzing the case, set the current value to empty
+               --  since we won't know what it is for the next alternative
+               --  (unless reset by this same circuit), or after the case.
+
+               Set_Current_Value (Entity (Exp), Empty);
+               return;
+            end if;
+         end if;
+
+         --  Case where expression is not an entity name of a variable
+
+         Analyze_Statements (Statements (Alternative));
+      end Process_Statements;
+
+   --  Start of processing for Analyze_Case_Statement
+
+   begin
+      Unblocked_Exit_Count := 0;
+      Exp := Expression (N);
+      Analyze (Exp);
+
+      --  The expression must be of any discrete type. In rare cases, the
+      --  expander constructs a case statement whose expression has a private
+      --  type whose full view is discrete. This can happen when generating
+      --  a stream operation for a variant type after the type is frozen,
+      --  when the partial of view of the type of the discriminant is private.
+      --  In that case, use the full view to analyze case alternatives.
+
+      if not Is_Overloaded (Exp)
+        and then not Comes_From_Source (N)
+        and then Is_Private_Type (Etype (Exp))
+        and then Present (Full_View (Etype (Exp)))
+        and then Is_Discrete_Type (Full_View (Etype (Exp)))
+      then
+         Resolve (Exp, Etype (Exp));
+         Exp_Type := Full_View (Etype (Exp));
+
+      else
+         Analyze_And_Resolve (Exp, Any_Discrete);
+         Exp_Type := Etype (Exp);
+      end if;
+
+      Check_Unset_Reference (Exp);
+      Exp_Btype := Base_Type (Exp_Type);
+
+      --  The expression must be of a discrete type which must be determinable
+      --  independently of the context in which the expression occurs, but
+      --  using the fact that the expression must be of a discrete type.
+      --  Moreover, the type this expression must not be a character literal
+      --  (which is always ambiguous) or, for Ada-83, a generic formal type.
+
+      --  If error already reported by Resolve, nothing more to do
+
+      if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
+         return;
+
+      elsif Exp_Btype = Any_Character then
+         Error_Msg_N
+           ("character literal as case expression is ambiguous", Exp);
+         return;
+
+      elsif Ada_Version = Ada_83
+        and then (Is_Generic_Type (Exp_Btype)
+                   or else Is_Generic_Type (Root_Type (Exp_Btype)))
+      then
+         Error_Msg_N
+           ("(Ada 83) case expression cannot be of a generic type", Exp);
+         return;
+      end if;
+
+      --  If the case expression is a formal object of mode in out, then treat
+      --  it as having a nonstatic subtype by forcing use of the base type
+      --  (which has to get passed to Check_Case_Choices below). Also use base
+      --  type when the case expression is parenthesized.
+
+      if Paren_Count (Exp) > 0
+        or else (Is_Entity_Name (Exp)
+                  and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
+      then
+         Exp_Type := Exp_Btype;
+      end if;
+
+      --  Call instantiated procedures to analyzwe and check discrete choices
+
+      Analyze_Choices (Alternatives (N), Exp_Type);
+      Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
+
+      --  Case statement with single OTHERS alternative not allowed in SPARK
+
+      if Others_Present and then List_Length (Alternatives (N)) = 1 then
+         Check_SPARK_05_Restriction
+           ("OTHERS as unique case alternative is not allowed", N);
+      end if;
+
+      if Exp_Type = Universal_Integer and then not Others_Present then
+         Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
+      end if;
+
+      --  If all our exits were blocked by unconditional transfers of control,
+      --  then the entire CASE statement acts as an unconditional transfer of
+      --  control, so treat it like one, and check unreachable code. Skip this
+      --  test if we had serious errors preventing any statement analysis.
+
+      if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
+         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+         Check_Unreachable_Code (N);
+      else
+         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+      end if;
+
+      --  If the expander is active it will detect the case of a statically
+      --  determined single alternative and remove warnings for the case, but
+      --  if we are not doing expansion, that circuit won't be active. Here we
+      --  duplicate the effect of removing warnings in the same way, so that
+      --  we will get the same set of warnings in -gnatc mode.
+
+      if not Expander_Active
+        and then Compile_Time_Known_Value (Expression (N))
+        and then Serious_Errors_Detected = 0
+      then
+         declare
+            Chosen : constant Node_Id := Find_Static_Alternative (N);
+            Alt    : Node_Id;
+
+         begin
+            Alt := First (Alternatives (N));
+            while Present (Alt) loop
+               if Alt /= Chosen then
+                  Remove_Warning_Messages (Statements (Alt));
+               end if;
+
+               Next (Alt);
+            end loop;
+         end;
+      end if;
+   end Analyze_Case_Statement;
+
+   ----------------------------
+   -- Analyze_Exit_Statement --
+   ----------------------------
+
+   --  If the exit includes a name, it must be the name of a currently open
+   --  loop. Otherwise there must be an innermost open loop on the stack, to
+   --  which the statement implicitly refers.
+
+   --  Additionally, in SPARK mode:
+
+   --    The exit can only name the closest enclosing loop;
+
+   --    An exit with a when clause must be directly contained in a loop;
+
+   --    An exit without a when clause must be directly contained in an
+   --    if-statement with no elsif or else, which is itself directly contained
+   --    in a loop. The exit must be the last statement in the if-statement.
+
+   procedure Analyze_Exit_Statement (N : Node_Id) is
+      Target   : constant Node_Id := Name (N);
+      Cond     : constant Node_Id := Condition (N);
+      Scope_Id : Entity_Id := Empty;  -- initialize to prevent warning
+      U_Name   : Entity_Id;
+      Kind     : Entity_Kind;
+
+   begin
+      if No (Cond) then
+         Check_Unreachable_Code (N);
+      end if;
+
+      if Present (Target) then
+         Analyze (Target);
+         U_Name := Entity (Target);
+
+         if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
+            Error_Msg_N ("invalid loop name in exit statement", N);
+            return;
+
+         else
+            if Has_Loop_In_Inner_Open_Scopes (U_Name) then
+               Check_SPARK_05_Restriction
+                 ("exit label must name the closest enclosing loop", N);
+            end if;
+
+            Set_Has_Exit (U_Name);
+         end if;
+
+      else
+         U_Name := Empty;
+      end if;
+
+      for J in reverse 0 .. Scope_Stack.Last loop
+         Scope_Id := Scope_Stack.Table (J).Entity;
+         Kind := Ekind (Scope_Id);
+
+         if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
+            Set_Has_Exit (Scope_Id);
+            exit;
+
+         elsif Kind = E_Block
+           or else Kind = E_Loop
+           or else Kind = E_Return_Statement
+         then
+            null;
+
+         else
+            Error_Msg_N
+              ("cannot exit from program unit or accept statement", N);
+            return;
+         end if;
+      end loop;
+
+      --  Verify that if present the condition is a Boolean expression
+
+      if Present (Cond) then
+         Analyze_And_Resolve (Cond, Any_Boolean);
+         Check_Unset_Reference (Cond);
+      end if;
+
+      --  In SPARK mode, verify that the exit statement respects the SPARK
+      --  restrictions.
+
+      if Present (Cond) then
+         if Nkind (Parent (N)) /= N_Loop_Statement then
+            Check_SPARK_05_Restriction
+              ("exit with when clause must be directly in loop", N);
+         end if;
+
+      else
+         if Nkind (Parent (N)) /= N_If_Statement then
+            if Nkind (Parent (N)) = N_Elsif_Part then
+               Check_SPARK_05_Restriction
+                 ("exit must be in IF without ELSIF", N);
+            else
+               Check_SPARK_05_Restriction ("exit must be directly in IF", N);
+            end if;
+
+         elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
+            Check_SPARK_05_Restriction
+              ("exit must be in IF directly in loop", N);
+
+         --  First test the presence of ELSE, so that an exit in an ELSE leads
+         --  to an error mentioning the ELSE.
+
+         elsif Present (Else_Statements (Parent (N))) then
+            Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
+
+         --  An exit in an ELSIF does not reach here, as it would have been
+         --  detected in the case (Nkind (Parent (N)) /= N_If_Statement).
+
+         elsif Present (Elsif_Parts (Parent (N))) then
+            Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
+         end if;
+      end if;
+
+      --  Chain exit statement to associated loop entity
+
+      Set_Next_Exit_Statement  (N, First_Exit_Statement (Scope_Id));
+      Set_First_Exit_Statement (Scope_Id, N);
+
+      --  Since the exit may take us out of a loop, any previous assignment
+      --  statement is not useless, so clear last assignment indications. It
+      --  is OK to keep other current values, since if the exit statement
+      --  does not exit, then the current values are still valid.
+
+      Kill_Current_Values (Last_Assignment_Only => True);
+   end Analyze_Exit_Statement;
+
+   ----------------------------
+   -- Analyze_Goto_Statement --
+   ----------------------------
+
+   procedure Analyze_Goto_Statement (N : Node_Id) is
+      Label       : constant Node_Id := Name (N);
+      Scope_Id    : Entity_Id;
+      Label_Scope : Entity_Id;
+      Label_Ent   : Entity_Id;
+
+   begin
+      Check_SPARK_05_Restriction ("goto statement is not allowed", N);
+
+      --  Actual semantic checks
+
+      Check_Unreachable_Code (N);
+      Kill_Current_Values (Last_Assignment_Only => True);
+
+      Analyze (Label);
+      Label_Ent := Entity (Label);
+
+      --  Ignore previous error
+
+      if Label_Ent = Any_Id then
+         Check_Error_Detected;
+         return;
+
+      --  We just have a label as the target of a goto
+
+      elsif Ekind (Label_Ent) /= E_Label then
+         Error_Msg_N ("target of goto statement must be a label", Label);
+         return;
+
+      --  Check that the target of the goto is reachable according to Ada
+      --  scoping rules. Note: the special gotos we generate for optimizing
+      --  local handling of exceptions would violate these rules, but we mark
+      --  such gotos as analyzed when built, so this code is never entered.
+
+      elsif not Reachable (Label_Ent) then
+         Error_Msg_N ("target of goto statement is not reachable", Label);
+         return;
+      end if;
+
+      --  Here if goto passes initial validity checks
+
+      Label_Scope := Enclosing_Scope (Label_Ent);
+
+      for J in reverse 0 .. Scope_Stack.Last loop
+         Scope_Id := Scope_Stack.Table (J).Entity;
+
+         if Label_Scope = Scope_Id
+           or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
+         then
+            if Scope_Id /= Label_Scope then
+               Error_Msg_N
+                 ("cannot exit from program unit or accept statement", N);
+            end if;
+
+            return;
+         end if;
+      end loop;
+
+      raise Program_Error;
+   end Analyze_Goto_Statement;
+
+   --------------------------
+   -- Analyze_If_Statement --
+   --------------------------
+
+   --  A special complication arises in the analysis of if statements
+
+   --  The expander has circuitry to completely delete code that it can tell
+   --  will not be executed (as a result of compile time known conditions). In
+   --  the analyzer, we ensure that code that will be deleted in this manner
+   --  is analyzed but not expanded. This is obviously more efficient, but
+   --  more significantly, difficulties arise if code is expanded and then
+   --  eliminated (e.g. exception table entries disappear). Similarly, itypes
+   --  generated in deleted code must be frozen from start, because the nodes
+   --  on which they depend will not be available at the freeze point.
+
+   procedure Analyze_If_Statement (N : Node_Id) is
+      E : Node_Id;
+
+      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+      --  Recursively save value of this global, will be restored on exit
+
+      Save_In_Deleted_Code : Boolean;
+
+      Del : Boolean := False;
+      --  This flag gets set True if a True condition has been found, which
+      --  means that remaining ELSE/ELSIF parts are deleted.
+
+      procedure Analyze_Cond_Then (Cnode : Node_Id);
+      --  This is applied to either the N_If_Statement node itself or to an
+      --  N_Elsif_Part node. It deals with analyzing the condition and the THEN
+      --  statements associated with it.
+
+      -----------------------
+      -- Analyze_Cond_Then --
+      -----------------------
+
+      procedure Analyze_Cond_Then (Cnode : Node_Id) is
+         Cond : constant Node_Id := Condition (Cnode);
+         Tstm : constant List_Id := Then_Statements (Cnode);
+
+      begin
+         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
+         Analyze_And_Resolve (Cond, Any_Boolean);
+         Check_Unset_Reference (Cond);
+         Set_Current_Value_Condition (Cnode);
+
+         --  If already deleting, then just analyze then statements
+
+         if Del then
+            Analyze_Statements (Tstm);
+
+         --  Compile time known value, not deleting yet
+
+         elsif Compile_Time_Known_Value (Cond) then
+            Save_In_Deleted_Code := In_Deleted_Code;
+
+            --  If condition is True, then analyze the THEN statements and set
+            --  no expansion for ELSE and ELSIF parts.
+
+            if Is_True (Expr_Value (Cond)) then
+               Analyze_Statements (Tstm);
+               Del := True;
+               Expander_Mode_Save_And_Set (False);
+               In_Deleted_Code := True;
+
+            --  If condition is False, analyze THEN with expansion off
+
+            else -- Is_False (Expr_Value (Cond))
+               Expander_Mode_Save_And_Set (False);
+               In_Deleted_Code := True;
+               Analyze_Statements (Tstm);
+               Expander_Mode_Restore;
+               In_Deleted_Code := Save_In_Deleted_Code;
+            end if;
+
+         --  Not known at compile time, not deleting, normal analysis
+
+         else
+            Analyze_Statements (Tstm);
+         end if;
+      end Analyze_Cond_Then;
+
+   --  Start of processing for Analyze_If_Statement
+
+   begin
+      --  Initialize exit count for else statements. If there is no else part,
+      --  this count will stay non-zero reflecting the fact that the uncovered
+      --  else case is an unblocked exit.
+
+      Unblocked_Exit_Count := 1;
+      Analyze_Cond_Then (N);
+
+      --  Now to analyze the elsif parts if any are present
+
+      if Present (Elsif_Parts (N)) then
+         E := First (Elsif_Parts (N));
+         while Present (E) loop
+            Analyze_Cond_Then (E);
+            Next (E);
+         end loop;
+      end if;
+
+      if Present (Else_Statements (N)) then
+         Analyze_Statements (Else_Statements (N));
+      end if;
+
+      --  If all our exits were blocked by unconditional transfers of control,
+      --  then the entire IF statement acts as an unconditional transfer of
+      --  control, so treat it like one, and check unreachable code.
+
+      if Unblocked_Exit_Count = 0 then
+         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+         Check_Unreachable_Code (N);
+      else
+         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+      end if;
+
+      if Del then
+         Expander_Mode_Restore;
+         In_Deleted_Code := Save_In_Deleted_Code;
+      end if;
+
+      if not Expander_Active
+        and then Compile_Time_Known_Value (Condition (N))
+        and then Serious_Errors_Detected = 0
+      then
+         if Is_True (Expr_Value (Condition (N))) then
+            Remove_Warning_Messages (Else_Statements (N));
+
+            if Present (Elsif_Parts (N)) then
+               E := First (Elsif_Parts (N));
+               while Present (E) loop
+                  Remove_Warning_Messages (Then_Statements (E));
+                  Next (E);
+               end loop;
+            end if;
+
+         else
+            Remove_Warning_Messages (Then_Statements (N));
+         end if;
+      end if;
+
+      --  Warn on redundant if statement that has no effect
+
+      --  Note, we could also check empty ELSIF parts ???
+
+      if Warn_On_Redundant_Constructs
+
+        --  If statement must be from source
+
+        and then Comes_From_Source (N)
+
+        --  Condition must not have obvious side effect
+
+        and then Has_No_Obvious_Side_Effects (Condition (N))
+
+        --  No elsif parts of else part
+
+        and then No (Elsif_Parts (N))
+        and then No (Else_Statements (N))
+
+        --  Then must be a single null statement
+
+        and then List_Length (Then_Statements (N)) = 1
+      then
+         --  Go to original node, since we may have rewritten something as
+         --  a null statement (e.g. a case we could figure the outcome of).
+
+         declare
+            T : constant Node_Id := First (Then_Statements (N));
+            S : constant Node_Id := Original_Node (T);
+
+         begin
+            if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
+               Error_Msg_N ("if statement has no effect?r?", N);
+            end if;
+         end;
+      end if;
+   end Analyze_If_Statement;
+
+   ----------------------------------------
+   -- Analyze_Implicit_Label_Declaration --
+   ----------------------------------------
+
+   --  An implicit label declaration is generated in the innermost enclosing
+   --  declarative part. This is done for labels, and block and loop names.
+
+   --  Note: any changes in this routine may need to be reflected in
+   --  Analyze_Label_Entity.
+
+   procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
+      Id : constant Node_Id := Defining_Identifier (N);
+   begin
+      Enter_Name          (Id);
+      Set_Ekind           (Id, E_Label);
+      Set_Etype           (Id, Standard_Void_Type);
+      Set_Enclosing_Scope (Id, Current_Scope);
+   end Analyze_Implicit_Label_Declaration;
+
+   ------------------------------
+   -- Analyze_Iteration_Scheme --
+   ------------------------------
+
+   procedure Analyze_Iteration_Scheme (N : Node_Id) is
+      Cond      : Node_Id;
+      Iter_Spec : Node_Id;
+      Loop_Spec : Node_Id;
+
+   begin
+      --  For an infinite loop, there is no iteration scheme
+
+      if No (N) then
+         return;
+      end if;
+
+      Cond      := Condition (N);
+      Iter_Spec := Iterator_Specification (N);
+      Loop_Spec := Loop_Parameter_Specification (N);
+
+      if Present (Cond) then
+         Analyze_And_Resolve (Cond, Any_Boolean);
+         Check_Unset_Reference (Cond);
+         Set_Current_Value_Condition (N);
+
+      elsif Present (Iter_Spec) then
+         Analyze_Iterator_Specification (Iter_Spec);
+
+      else
+         Analyze_Loop_Parameter_Specification (Loop_Spec);
+      end if;
+   end Analyze_Iteration_Scheme;
+
+   ------------------------------------
+   -- Analyze_Iterator_Specification --
+   ------------------------------------
+
+   procedure Analyze_Iterator_Specification (N : Node_Id) is
+      procedure Check_Reverse_Iteration (Typ : Entity_Id);
+      --  For an iteration over a container, if the loop carries the Reverse
+      --  indicator, verify that the container type has an Iterate aspect that
+      --  implements the reversible iterator interface.
+
+      function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
+      --  For containers with Iterator and related aspects, the cursor is
+      --  obtained by locating an entity with the proper name in the scope
+      --  of the type.
+
+      -----------------------------
+      -- Check_Reverse_Iteration --
+      -----------------------------
+
+      procedure Check_Reverse_Iteration (Typ : Entity_Id) is
+      begin
+         if Reverse_Present (N) then
+            if Is_Array_Type (Typ)
+              or else Is_Reversible_Iterator (Typ)
+              or else
+                (Present (Find_Aspect (Typ, Aspect_Iterable))
+                  and then
+                    Present
+                      (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
+            then
+               null;
+            else
+               Error_Msg_NE
+                 ("container type does not support reverse iteration", N, Typ);
+            end if;
+         end if;
+      end Check_Reverse_Iteration;
+
+      ---------------------
+      -- Get_Cursor_Type --
+      ---------------------
+
+      function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
+         Ent : Entity_Id;
+
+      begin
+         --  If iterator type is derived, the cursor is declared in the scope
+         --  of the parent type.
+
+         if Is_Derived_Type (Typ) then
+            Ent := First_Entity (Scope (Etype (Typ)));
+         else
+            Ent := First_Entity (Scope (Typ));
+         end if;
+
+         while Present (Ent) loop
+            exit when Chars (Ent) = Name_Cursor;
+            Next_Entity (Ent);
+         end loop;
+
+         if No (Ent) then
+            return Any_Type;
+         end if;
+
+         --  The cursor is the target of generated assignments in the
+         --  loop, and cannot have a limited type.
+
+         if Is_Limited_Type (Etype (Ent)) then
+            Error_Msg_N ("cursor type cannot be limited", N);
+         end if;
+
+         return Etype (Ent);
+      end Get_Cursor_Type;
+
+      --  Local variables
+
+      Def_Id    : constant Node_Id    := Defining_Identifier (N);
+      Iter_Name : constant Node_Id    := Name (N);
+      Loc       : constant Source_Ptr := Sloc (N);
+      Subt      : constant Node_Id    := Subtype_Indication (N);
+
+      Bas : Entity_Id := Empty;  -- initialize to prevent warning
+      Typ : Entity_Id;
+
+   --   Start of processing for Analyze_Iterator_Specification
+
+   begin
+      Enter_Name (Def_Id);
+
+      --  AI12-0151 specifies that when the subtype indication is present, it
+      --  must statically match the type of the array or container element.
+      --  To simplify this check, we introduce a subtype declaration with the
+      --  given subtype indication when it carries a constraint, and rewrite
+      --  the original as a reference to the created subtype entity.
+
+      if Present (Subt) then
+         if Nkind (Subt) = N_Subtype_Indication then
+            declare
+               S    : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
+               Decl : constant Node_Id :=
+                        Make_Subtype_Declaration (Loc,
+                          Defining_Identifier => S,
+                          Subtype_Indication  => New_Copy_Tree (Subt));
+            begin
+               Insert_Before (Parent (Parent (N)), Decl);
+               Analyze (Decl);
+               Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
+            end;
+         else
+            Analyze (Subt);
+         end if;
+
+         --  Save entity of subtype indication for subsequent check
+
+         Bas := Entity (Subt);
+      end if;
+
+      Preanalyze_Range (Iter_Name);
+
+      --  Set the kind of the loop variable, which is not visible within the
+      --  iterator name.
+
+      Set_Ekind (Def_Id, E_Variable);
+
+      --  Provide a link between the iterator variable and the container, for
+      --  subsequent use in cross-reference and modification information.
+
+      if Of_Present (N) then
+         Set_Related_Expression (Def_Id, Iter_Name);
+
+         --  For a container, the iterator is specified through the aspect
+
+         if not Is_Array_Type (Etype (Iter_Name)) then
+            declare
+               Iterator : constant Entity_Id :=
+                            Find_Value_Of_Aspect
+                              (Etype (Iter_Name), Aspect_Default_Iterator);
+
+               I  : Interp_Index;
+               It : Interp;
+
+            begin
+               if No (Iterator) then
+                  null;  --  error reported below
+
+               elsif not Is_Overloaded (Iterator) then
+                  Check_Reverse_Iteration (Etype (Iterator));
+
+               --  If Iterator is overloaded, use reversible iterator if one is
+               --  available.
+
+               elsif Is_Overloaded (Iterator) then
+                  Get_First_Interp (Iterator, I, It);
+                  while Present (It.Nam) loop
+                     if Ekind (It.Nam) = E_Function
+                       and then Is_Reversible_Iterator (Etype (It.Nam))
+                     then
+                        Set_Etype (Iterator, It.Typ);
+                        Set_Entity (Iterator, It.Nam);
+                        exit;
+                     end if;
+
+                     Get_Next_Interp (I, It);
+                  end loop;
+
+                  Check_Reverse_Iteration (Etype (Iterator));
+               end if;
+            end;
+         end if;
+      end if;
+
+      --  If the domain of iteration is an expression, create a declaration for
+      --  it, so that finalization actions are introduced outside of the loop.
+      --  The declaration must be a renaming because the body of the loop may
+      --  assign to elements.
+
+      if not Is_Entity_Name (Iter_Name)
+
+        --  When the context is a quantified expression, the renaming
+        --  declaration is delayed until the expansion phase if we are
+        --  doing expansion.
+
+        and then (Nkind (Parent (N)) /= N_Quantified_Expression
+                   or else Operating_Mode = Check_Semantics)
+
+        --  Do not perform this expansion for ASIS and when expansion is
+        --  disabled, where the temporary may hide the transformation of a
+        --  selected component into a prefixed function call, and references
+        --  need to see the original expression.
+
+        and then Expander_Active
+      then
+         declare
+            Id    : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
+            Decl  : Node_Id;
+            Act_S : Node_Id;
+
+         begin
+
+            --  If the domain of iteration is an array component that depends
+            --  on a discriminant, create actual subtype for it. Pre-analysis
+            --  does not generate the actual subtype of a selected component.
+
+            if Nkind (Iter_Name) = N_Selected_Component
+              and then Is_Array_Type (Etype (Iter_Name))
+            then
+               Act_S :=
+                 Build_Actual_Subtype_Of_Component
+                   (Etype (Selector_Name (Iter_Name)), Iter_Name);
+               Insert_Action (N, Act_S);
+
+               if Present (Act_S) then
+                  Typ := Defining_Identifier (Act_S);
+               else
+                  Typ := Etype (Iter_Name);
+               end if;
+
+            else
+               Typ := Etype (Iter_Name);
+
+               --  Verify that the expression produces an iterator
+
+               if not Of_Present (N) and then not Is_Iterator (Typ)
+                 and then not Is_Array_Type (Typ)
+                 and then No (Find_Aspect (Typ, Aspect_Iterable))
+               then
+                  Error_Msg_N
+                    ("expect object that implements iterator interface",
+                     Iter_Name);
+               end if;
+            end if;
+
+            --  Protect against malformed iterator
+
+            if Typ = Any_Type then
+               Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
+               return;
+            end if;
+
+            if not Of_Present (N) then
+               Check_Reverse_Iteration (Typ);
+            end if;
+
+            --  The name in the renaming declaration may be a function call.
+            --  Indicate that it does not come from source, to suppress
+            --  spurious warnings on renamings of parameterless functions,
+            --  a common enough idiom in user-defined iterators.
+
+            Decl :=
+              Make_Object_Renaming_Declaration (Loc,
+                Defining_Identifier => Id,
+                Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
+                Name                =>
+                  New_Copy_Tree (Iter_Name, New_Sloc => Loc));
+
+            Insert_Actions (Parent (Parent (N)), New_List (Decl));
+            Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
+            Set_Etype (Id, Typ);
+            Set_Etype (Name (N), Typ);
+         end;
+
+      --  Container is an entity or an array with uncontrolled components, or
+      --  else it is a container iterator given by a function call, typically
+      --  called Iterate in the case of predefined containers, even though
+      --  Iterate is not a reserved name. What matters is that the return type
+      --  of the function is an iterator type.
+
+      elsif Is_Entity_Name (Iter_Name) then
+         Analyze (Iter_Name);
+
+         if Nkind (Iter_Name) = N_Function_Call then
+            declare
+               C  : constant Node_Id := Name (Iter_Name);
+               I  : Interp_Index;
+               It : Interp;
+
+            begin
+               if not Is_Overloaded (Iter_Name) then
+                  Resolve (Iter_Name, Etype (C));
+
+               else
+                  Get_First_Interp (C, I, It);
+                  while It.Typ /= Empty loop
+                     if Reverse_Present (N) then
+                        if Is_Reversible_Iterator (It.Typ) then
+                           Resolve (Iter_Name, It.Typ);
+                           exit;
+                        end if;
+
+                     elsif Is_Iterator (It.Typ) then
+                        Resolve (Iter_Name, It.Typ);
+                        exit;
+                     end if;
+
+                     Get_Next_Interp (I, It);
+                  end loop;
+               end if;
+            end;
+
+         --  Domain of iteration is not overloaded
+
+         else
+            Resolve (Iter_Name, Etype (Iter_Name));
+         end if;
+
+         if not Of_Present (N) then
+            Check_Reverse_Iteration (Etype (Iter_Name));
+         end if;
+      end if;
+
+      --  Get base type of container, for proper retrieval of Cursor type
+      --  and primitive operations.
+
+      Typ := Base_Type (Etype (Iter_Name));
+
+      if Is_Array_Type (Typ) then
+         if Of_Present (N) then
+            Set_Etype (Def_Id, Component_Type (Typ));
+
+            --  The loop variable is aliased if the array components are
+            --  aliased.
+
+            Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
+
+            --  AI12-0047 stipulates that the domain (array or container)
+            --  cannot be a component that depends on a discriminant if the
+            --  enclosing object is mutable, to prevent a modification of the
+            --  dowmain of iteration in the course of an iteration.
+
+            --  If the object is an expression it has been captured in a
+            --  temporary, so examine original node.
+
+            if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
+              and then Is_Dependent_Component_Of_Mutable_Object
+                         (Original_Node (Iter_Name))
+            then
+               Error_Msg_N
+                 ("iterable name cannot be a discriminant-dependent "
+                  & "component of a mutable object", N);
+            end if;
+
+            if Present (Subt)
+              and then
+                (Base_Type (Bas) /= Base_Type (Component_Type (Typ))
+                  or else
+                    not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
+            then
+               Error_Msg_N
+                 ("subtype indication does not match component type", Subt);
+            end if;
+
+         --  Here we have a missing Range attribute
+
+         else
+            Error_Msg_N
+              ("missing Range attribute in iteration over an array", N);
+
+            --  In Ada 2012 mode, this may be an attempt at an iterator
+
+            if Ada_Version >= Ada_2012 then
+               Error_Msg_NE
+                 ("\if& is meant to designate an element of the array, use OF",
+                  N, Def_Id);
+            end if;
+
+            --  Prevent cascaded errors
+
+            Set_Ekind (Def_Id, E_Loop_Parameter);
+            Set_Etype (Def_Id, Etype (First_Index (Typ)));
+         end if;
+
+         --  Check for type error in iterator
+
+      elsif Typ = Any_Type then
+         return;
+
+      --  Iteration over a container
+
+      else
+         Set_Ekind (Def_Id, E_Loop_Parameter);
+         Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
+
+         --  OF present
+
+         if Of_Present (N) then
+            if Has_Aspect (Typ, Aspect_Iterable) then
+               declare
+                  Elt : constant Entity_Id :=
+                          Get_Iterable_Type_Primitive (Typ, Name_Element);
+               begin
+                  if No (Elt) then
+                     Error_Msg_N
+                       ("missing Element primitive for iteration", N);
+                  else
+                     Set_Etype (Def_Id, Etype (Elt));
+                     Check_Reverse_Iteration (Typ);
+                  end if;
+               end;
+
+            --  For a predefined container, The type of the loop variable is
+            --  the Iterator_Element aspect of the container type.
+
+            else
+               declare
+                  Element        : constant Entity_Id :=
+                                     Find_Value_Of_Aspect
+                                       (Typ, Aspect_Iterator_Element);
+                  Iterator       : constant Entity_Id :=
+                                     Find_Value_Of_Aspect
+                                       (Typ, Aspect_Default_Iterator);
+                  Orig_Iter_Name : constant Node_Id :=
+                                     Original_Node (Iter_Name);
+                  Cursor_Type    : Entity_Id;
+
+               begin
+                  if No (Element) then
+                     Error_Msg_NE ("cannot iterate over&", N, Typ);
+                     return;
+
+                  else
+                     Set_Etype (Def_Id, Entity (Element));
+                     Cursor_Type := Get_Cursor_Type (Typ);
+                     pragma Assert (Present (Cursor_Type));
+
+                     --  If subtype indication was given, verify that it covers
+                     --  the element type of the container.
+
+                     if Present (Subt)
+                       and then (not Covers (Bas, Etype (Def_Id))
+                                  or else not Subtypes_Statically_Match
+                                                (Bas, Etype (Def_Id)))
+                     then
+                        Error_Msg_N
+                          ("subtype indication does not match element type",
+                           Subt);
+                     end if;
+
+                     --  If the container has a variable indexing aspect, the
+                     --  element is a variable and is modifiable in the loop.
+
+                     if Has_Aspect (Typ, Aspect_Variable_Indexing) then
+                        Set_Ekind (Def_Id, E_Variable);
+                     end if;
+
+                     --  If the container is a constant, iterating over it
+                     --  requires a Constant_Indexing operation.
+
+                     if not Is_Variable (Iter_Name)
+                       and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
+                     then
+                        Error_Msg_N
+                          ("iteration over constant container require "
+                           & "constant_indexing aspect", N);
+
+                     --  The Iterate function may have an in_out parameter,
+                     --  and a constant container is thus illegal.
+
+                     elsif Present (Iterator)
+                       and then Ekind (Entity (Iterator)) = E_Function
+                       and then Ekind (First_Formal (Entity (Iterator))) /=
+                                  E_In_Parameter
+                       and then not Is_Variable (Iter_Name)
+                     then
+                        Error_Msg_N ("variable container expected", N);
+                     end if;
+
+                     --  Detect a case where the iterator denotes a component
+                     --  of a mutable object which depends on a discriminant.
+                     --  Note that the iterator may denote a function call in
+                     --  qualified form, in which case this check should not
+                     --  be performed.
+
+                     if Nkind (Orig_Iter_Name) = N_Selected_Component
+                       and then
+                         Present (Entity (Selector_Name (Orig_Iter_Name)))
+                       and then Ekind_In
+                                  (Entity (Selector_Name (Orig_Iter_Name)),
+                                   E_Component,
+                                   E_Discriminant)
+                       and then Is_Dependent_Component_Of_Mutable_Object
+                                  (Orig_Iter_Name)
+                     then
+                        Error_Msg_N
+                          ("container cannot be a discriminant-dependent "
+                           & "component of a mutable object", N);
+                     end if;
+                  end if;
+               end;
+            end if;
+
+         --  IN iterator, domain is a range, or a call to Iterate function
+
+         else
+            --  For an iteration of the form IN, the name must denote an
+            --  iterator, typically the result of a call to Iterate. Give a
+            --  useful error message when the name is a container by itself.
+
+            --  The type may be a formal container type, which has to have
+            --  an Iterable aspect detailing the required primitives.
+
+            if Is_Entity_Name (Original_Node (Name (N)))
+              and then not Is_Iterator (Typ)
+            then
+               if Has_Aspect (Typ, Aspect_Iterable) then
+                  null;
+
+               elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
+                  Error_Msg_NE
+                    ("cannot iterate over&", Name (N), Typ);
+               else
+                  Error_Msg_N
+                    ("name must be an iterator, not a container", Name (N));
+               end if;
+
+               if Has_Aspect (Typ, Aspect_Iterable) then
+                  null;
+               else
+                  Error_Msg_NE
+                    ("\to iterate directly over the elements of a container, "
+                     & "write `of &`", Name (N), Original_Node (Name (N)));
+
+                  --  No point in continuing analysis of iterator spec
+
+                  return;
+               end if;
+            end if;
+
+            --  If the name is a call (typically prefixed) to some Iterate
+            --  function, it has been rewritten as an object declaration.
+            --  If that object is a selected component, verify that it is not
+            --  a component of an unconstrained mutable object.
+
+            if Nkind (Iter_Name) = N_Identifier
+              or else (not Expander_Active and Comes_From_Source (Iter_Name))
+            then
+               declare
+                  Orig_Node : constant Node_Id   := Original_Node (Iter_Name);
+                  Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
+                  Obj       : Node_Id;
+
+               begin
+                  if Iter_Kind = N_Selected_Component then
+                     Obj  := Prefix (Orig_Node);
+
+                  elsif Iter_Kind = N_Function_Call then
+                     Obj  := First_Actual (Orig_Node);
+
+                  --  If neither, the name comes from source
+
+                  else
+                     Obj := Iter_Name;
+                  end if;
+
+                  if Nkind (Obj) = N_Selected_Component
+                    and then Is_Dependent_Component_Of_Mutable_Object (Obj)
+                  then
+                     Error_Msg_N
+                       ("container cannot be a discriminant-dependent "
+                        & "component of a mutable object", N);
+                  end if;
+               end;
+            end if;
+
+            --  The result type of Iterate function is the classwide type of
+            --  the interface parent. We need the specific Cursor type defined
+            --  in the container package. We obtain it by name for a predefined
+            --  container, or through the Iterable aspect for a formal one.
+
+            if Has_Aspect (Typ, Aspect_Iterable) then
+               Set_Etype (Def_Id,
+                 Get_Cursor_Type
+                   (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
+                    Typ));
+
+            else
+               Set_Etype (Def_Id, Get_Cursor_Type (Typ));
+               Check_Reverse_Iteration (Etype (Iter_Name));
+            end if;
+
+         end if;
+      end if;
+   end Analyze_Iterator_Specification;
+
+   -------------------
+   -- Analyze_Label --
+   -------------------
+
+   --  Note: the semantic work required for analyzing labels (setting them as
+   --  reachable) was done in a prepass through the statements in the block,
+   --  so that forward gotos would be properly handled. See Analyze_Statements
+   --  for further details. The only processing required here is to deal with
+   --  optimizations that depend on an assumption of sequential control flow,
+   --  since of course the occurrence of a label breaks this assumption.
+
+   procedure Analyze_Label (N : Node_Id) is
+      pragma Warnings (Off, N);
+   begin
+      Kill_Current_Values;
+   end Analyze_Label;
+
+   --------------------------
+   -- Analyze_Label_Entity --
+   --------------------------
+
+   procedure Analyze_Label_Entity (E : Entity_Id) is
+   begin
+      Set_Ekind           (E, E_Label);
+      Set_Etype           (E, Standard_Void_Type);
+      Set_Enclosing_Scope (E, Current_Scope);
+      Set_Reachable       (E, True);
+   end Analyze_Label_Entity;
+
+   ------------------------------------------
+   -- Analyze_Loop_Parameter_Specification --
+   ------------------------------------------
+
+   procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
+      Loop_Nod : constant Node_Id := Parent (Parent (N));
+
+      procedure Check_Controlled_Array_Attribute (DS : Node_Id);
+      --  If the bounds are given by a 'Range reference on a function call
+      --  that returns a controlled array, introduce an explicit declaration
+      --  to capture the bounds, so that the function result can be finalized
+      --  in timely fashion.
+
+      procedure Check_Predicate_Use (T : Entity_Id);
+      --  Diagnose Attempt to iterate through non-static predicate. Note that
+      --  a type with inherited predicates may have both static and dynamic
+      --  forms. In this case it is not sufficent to check the static predicate
+      --  function only, look for a dynamic predicate aspect as well.
+
+      function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
+      --  N is the node for an arbitrary construct. This function searches the
+      --  construct N to see if any expressions within it contain function
+      --  calls that use the secondary stack, returning True if any such call
+      --  is found, and False otherwise.
+
+      procedure Process_Bounds (R : Node_Id);
+      --  If the iteration is given by a range, create temporaries and
+      --  assignment statements block to capture the bounds and perform
+      --  required finalization actions in case a bound includes a function
+      --  call that uses the temporary stack. We first pre-analyze a copy of
+      --  the range in order to determine the expected type, and analyze and
+      --  resolve the original bounds.
+
+      --------------------------------------
+      -- Check_Controlled_Array_Attribute --
+      --------------------------------------
+
+      procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
+      begin
+         if Nkind (DS) = N_Attribute_Reference
+           and then Is_Entity_Name (Prefix (DS))
+           and then Ekind (Entity (Prefix (DS))) = E_Function
+           and then Is_Array_Type (Etype (Entity (Prefix (DS))))
+           and then
+             Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
+           and then Expander_Active
+         then
+            declare
+               Loc  : constant Source_Ptr := Sloc (N);
+               Arr  : constant Entity_Id := Etype (Entity (Prefix (DS)));
+               Indx : constant Entity_Id :=
+                        Base_Type (Etype (First_Index (Arr)));
+               Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
+               Decl : Node_Id;
+
+            begin
+               Decl :=
+                 Make_Subtype_Declaration (Loc,
+                   Defining_Identifier => Subt,
+                   Subtype_Indication  =>
+                      Make_Subtype_Indication (Loc,
+                        Subtype_Mark => New_Occurrence_Of (Indx, Loc),
+                        Constraint   =>
+                          Make_Range_Constraint (Loc, Relocate_Node (DS))));
+               Insert_Before (Loop_Nod, Decl);
+               Analyze (Decl);
+
+               Rewrite (DS,
+                 Make_Attribute_Reference (Loc,
+                   Prefix         => New_Occurrence_Of (Subt, Loc),
+                   Attribute_Name => Attribute_Name (DS)));
+
+               Analyze (DS);
+            end;
+         end if;
+      end Check_Controlled_Array_Attribute;
+
+      -------------------------
+      -- Check_Predicate_Use --
+      -------------------------
+
+      procedure Check_Predicate_Use (T : Entity_Id) is
+      begin
+         --  A predicated subtype is illegal in loops and related constructs
+         --  if the predicate is not static, or if it is a non-static subtype
+         --  of a statically predicated subtype.
+
+         if Is_Discrete_Type (T)
+           and then Has_Predicates (T)
+           and then (not Has_Static_Predicate (T)
+                      or else not Is_Static_Subtype (T)
+                      or else Has_Dynamic_Predicate_Aspect (T))
+         then
+            --  Seems a confusing message for the case of a static predicate
+            --  with a non-static subtype???
+
+            Bad_Predicated_Subtype_Use
+              ("cannot use subtype& with non-static predicate for loop "
+               & "iteration", Discrete_Subtype_Definition (N),
+               T, Suggest_Static => True);
+
+         elsif Inside_A_Generic
+           and then Is_Generic_Formal (T)
+           and then Is_Discrete_Type (T)
+         then
+            Set_No_Dynamic_Predicate_On_Actual (T);
+         end if;
+      end Check_Predicate_Use;
+
+      ------------------------------------
+      -- Has_Call_Using_Secondary_Stack --
+      ------------------------------------
+
+      function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
+
+         function Check_Call (N : Node_Id) return Traverse_Result;
+         --  Check if N is a function call which uses the secondary stack
+
+         ----------------
+         -- Check_Call --
+         ----------------
+
+         function Check_Call (N : Node_Id) return Traverse_Result is
+            Nam        : Node_Id;
+            Subp       : Entity_Id;
+            Return_Typ : Entity_Id;
+
+         begin
+            if Nkind (N) = N_Function_Call then
+               Nam := Name (N);
+
+               --  Call using access to subprogram with explicit dereference
+
+               if Nkind (Nam) = N_Explicit_Dereference then
+                  Subp := Etype (Nam);
+
+               --  Call using a selected component notation or Ada 2005 object
+               --  operation notation
+
+               elsif Nkind (Nam) = N_Selected_Component then
+                  Subp := Entity (Selector_Name (Nam));
+
+               --  Common case
+
+               else
+                  Subp := Entity (Nam);
+               end if;
+
+               Return_Typ := Etype (Subp);
+
+               if Is_Composite_Type (Return_Typ)
+                 and then not Is_Constrained (Return_Typ)
+               then
+                  return Abandon;
+
+               elsif Sec_Stack_Needed_For_Return (Subp) then
+                  return Abandon;
+               end if;
+            end if;
+
+            --  Continue traversing the tree
+
+            return OK;
+         end Check_Call;
+
+         function Check_Calls is new Traverse_Func (Check_Call);
+
+      --  Start of processing for Has_Call_Using_Secondary_Stack
+
+      begin
+         return Check_Calls (N) = Abandon;
+      end Has_Call_Using_Secondary_Stack;
+
+      --------------------
+      -- Process_Bounds --
+      --------------------
+
+      procedure Process_Bounds (R : Node_Id) is
+         Loc : constant Source_Ptr := Sloc (N);
+
+         function One_Bound
+           (Original_Bound : Node_Id;
+            Analyzed_Bound : Node_Id;
+            Typ            : Entity_Id) return Node_Id;
+         --  Capture value of bound and return captured value
+
+         ---------------
+         -- One_Bound --
+         ---------------
+
+         function One_Bound
+           (Original_Bound : Node_Id;
+            Analyzed_Bound : Node_Id;
+            Typ            : Entity_Id) return Node_Id
+         is
+            Assign : Node_Id;
+            Decl   : Node_Id;
+            Id     : Entity_Id;
+
+         begin
+            --  If the bound is a constant or an object, no need for a separate
+            --  declaration. If the bound is the result of previous expansion
+            --  it is already analyzed and should not be modified. Note that
+            --  the Bound will be resolved later, if needed, as part of the
+            --  call to Make_Index (literal bounds may need to be resolved to
+            --  type Integer).
+
+            if Analyzed (Original_Bound) then
+               return Original_Bound;
+
+            elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
+                                            N_Character_Literal)
+              or else Is_Entity_Name (Analyzed_Bound)
+            then
+               Analyze_And_Resolve (Original_Bound, Typ);
+               return Original_Bound;
+            end if;
+
+            --  Normally, the best approach is simply to generate a constant
+            --  declaration that captures the bound. However, there is a nasty
+            --  case where this is wrong. If the bound is complex, and has a
+            --  possible use of the secondary stack, we need to generate a
+            --  separate assignment statement to ensure the creation of a block
+            --  which will release the secondary stack.
+
+            --  We prefer the constant declaration, since it leaves us with a
+            --  proper trace of the value, useful in optimizations that get rid
+            --  of junk range checks.
+
+            if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
+               Analyze_And_Resolve (Original_Bound, Typ);
+
+               --  Ensure that the bound is valid. This check should not be
+               --  generated when the range belongs to a quantified expression
+               --  as the construct is still not expanded into its final form.
+
+               if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
+                 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
+               then
+                  Ensure_Valid (Original_Bound);
+               end if;
+
+               Force_Evaluation (Original_Bound);
+               return Original_Bound;
+            end if;
+
+            Id := Make_Temporary (Loc, 'R', Original_Bound);
+
+            --  Here we make a declaration with a separate assignment
+            --  statement, and insert before loop header.
+
+            Decl :=
+              Make_Object_Declaration (Loc,
+                Defining_Identifier => Id,
+                Object_Definition   => New_Occurrence_Of (Typ, Loc));
+
+            Assign :=
+              Make_Assignment_Statement (Loc,
+                Name        => New_Occurrence_Of (Id, Loc),
+                Expression  => Relocate_Node (Original_Bound));
+
+            Insert_Actions (Loop_Nod, New_List (Decl, Assign));
+
+            --  Now that this temporary variable is initialized we decorate it
+            --  as safe-to-reevaluate to inform to the backend that no further
+            --  asignment will be issued and hence it can be handled as side
+            --  effect free. Note that this decoration must be done when the
+            --  assignment has been analyzed because otherwise it will be
+            --  rejected (see Analyze_Assignment).
+
+            Set_Is_Safe_To_Reevaluate (Id);
+
+            Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
+
+            if Nkind (Assign) = N_Assignment_Statement then
+               return Expression (Assign);
+            else
+               return Original_Bound;
+            end if;
+         end One_Bound;
+
+         Hi     : constant Node_Id := High_Bound (R);
+         Lo     : constant Node_Id := Low_Bound  (R);
+         R_Copy : constant Node_Id := New_Copy_Tree (R);
+         New_Hi : Node_Id;
+         New_Lo : Node_Id;
+         Typ    : Entity_Id;
+
+      --  Start of processing for Process_Bounds
+
+      begin
+         Set_Parent (R_Copy, Parent (R));
+         Preanalyze_Range (R_Copy);
+         Typ := Etype (R_Copy);
+
+         --  If the type of the discrete range is Universal_Integer, then the
+         --  bound's type must be resolved to Integer, and any object used to
+         --  hold the bound must also have type Integer, unless the literal
+         --  bounds are constant-folded expressions with a user-defined type.
+
+         if Typ = Universal_Integer then
+            if Nkind (Lo) = N_Integer_Literal
+              and then Present (Etype (Lo))
+              and then Scope (Etype (Lo)) /= Standard_Standard
+            then
+               Typ := Etype (Lo);
+
+            elsif Nkind (Hi) = N_Integer_Literal
+              and then Present (Etype (Hi))
+              and then Scope (Etype (Hi)) /= Standard_Standard
+            then
+               Typ := Etype (Hi);
+
+            else
+               Typ := Standard_Integer;
+            end if;
+         end if;
+
+         Set_Etype (R, Typ);
+
+         New_Lo := One_Bound (Lo, Low_Bound  (R_Copy), Typ);
+         New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
+
+         --  Propagate staticness to loop range itself, in case the
+         --  corresponding subtype is static.
+
+         if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
+            Rewrite (Low_Bound (R), New_Copy (New_Lo));
+         end if;
+
+         if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
+            Rewrite (High_Bound (R), New_Copy (New_Hi));
+         end if;
+      end Process_Bounds;
+
+      --  Local variables
+
+      DS : constant Node_Id   := Discrete_Subtype_Definition (N);
+      Id : constant Entity_Id := Defining_Identifier (N);
+
+      DS_Copy : Node_Id;
+
+   --  Start of processing for Analyze_Loop_Parameter_Specification
+
+   begin
+      Enter_Name (Id);
+
+      --  We always consider the loop variable to be referenced, since the loop
+      --  may be used just for counting purposes.
+
+      Generate_Reference (Id, N, ' ');
+
+      --  Check for the case of loop variable hiding a local variable (used
+      --  later on to give a nice warning if the hidden variable is never
+      --  assigned).
+
+      declare
+         H : constant Entity_Id := Homonym (Id);
+      begin
+         if Present (H)
+           and then Ekind (H) = E_Variable
+           and then Is_Discrete_Type (Etype (H))
+           and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
+         then
+            Set_Hiding_Loop_Variable (H, Id);
+         end if;
+      end;
+
+      --  Loop parameter specification must include subtype mark in SPARK
+
+      if Nkind (DS) = N_Range then
+         Check_SPARK_05_Restriction
+           ("loop parameter specification must include subtype mark", N);
+      end if;
+
+      --  Analyze the subtype definition and create temporaries for the bounds.
+      --  Do not evaluate the range when preanalyzing a quantified expression
+      --  because bounds expressed as function calls with side effects will be
+      --  incorrectly replicated.
+
+      if Nkind (DS) = N_Range
+        and then Expander_Active
+        and then Nkind (Parent (N)) /= N_Quantified_Expression
+      then
+         Process_Bounds (DS);
+
+      --  Either the expander not active or the range of iteration is a subtype
+      --  indication, an entity, or a function call that yields an aggregate or
+      --  a container.
+
+      else
+         DS_Copy := New_Copy_Tree (DS);
+         Set_Parent (DS_Copy, Parent (DS));
+         Preanalyze_Range (DS_Copy);
+
+         --  Ada 2012: If the domain of iteration is:
+
+         --  a)  a function call,
+         --  b)  an identifier that is not a type,
+         --  c)  an attribute reference 'Old (within a postcondition),
+         --  d)  an unchecked conversion or a qualified expression with
+         --      the proper iterator type.
+
+         --  then it is an iteration over a container. It was classified as
+         --  a loop specification by the parser, and must be rewritten now
+         --  to activate container iteration. The last case will occur within
+         --  an expanded inlined call, where the expansion wraps an actual in
+         --  an unchecked conversion when needed. The expression of the
+         --  conversion is always an object.
+
+         if Nkind (DS_Copy) = N_Function_Call
+
+           or else (Is_Entity_Name (DS_Copy)
+                     and then not Is_Type (Entity (DS_Copy)))
+
+           or else (Nkind (DS_Copy) = N_Attribute_Reference
+                     and then Nam_In (Attribute_Name (DS_Copy),
+                                      Name_Loop_Entry, Name_Old))
+
+           or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
+
+           or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
+           or else (Nkind (DS_Copy) = N_Qualified_Expression
+                     and then Is_Iterator (Etype (DS_Copy)))
+         then
+            --  This is an iterator specification. Rewrite it as such and
+            --  analyze it to capture function calls that may require
+            --  finalization actions.
+
+            declare
+               I_Spec : constant Node_Id :=
+                          Make_Iterator_Specification (Sloc (N),
+                            Defining_Identifier => Relocate_Node (Id),
+                            Name                => DS_Copy,
+                            Subtype_Indication  => Empty,
+                            Reverse_Present     => Reverse_Present (N));
+               Scheme : constant Node_Id := Parent (N);
+
+            begin
+               Set_Iterator_Specification (Scheme, I_Spec);
+               Set_Loop_Parameter_Specification (Scheme, Empty);
+               Analyze_Iterator_Specification (I_Spec);
+
+               --  In a generic context, analyze the original domain of
+               --  iteration, for name capture.
+
+               if not Expander_Active then
+                  Analyze (DS);
+               end if;
+
+               --  Set kind of loop parameter, which may be used in the
+               --  subsequent analysis of the condition in a quantified
+               --  expression.
+
+               Set_Ekind (Id, E_Loop_Parameter);
+               return;
+            end;
+
+         --  Domain of iteration is not a function call, and is side-effect
+         --  free.
+
+         else
+            --  A quantified expression that appears in a pre/post condition
+            --  is pre-analyzed several times.  If the range is given by an
+            --  attribute reference it is rewritten as a range, and this is
+            --  done even with expansion disabled. If the type is already set
+            --  do not reanalyze, because a range with static bounds may be
+            --  typed Integer by default.
+
+            if Nkind (Parent (N)) = N_Quantified_Expression
+              and then Present (Etype (DS))
+            then
+               null;
+            else
+               Analyze (DS);
+            end if;
+         end if;
+      end if;
+
+      if DS = Error then
+         return;
+      end if;
+
+      --  Some additional checks if we are iterating through a type
+
+      if Is_Entity_Name (DS)
+        and then Present (Entity (DS))
+        and then Is_Type (Entity (DS))
+      then
+         --  The subtype indication may denote the completion of an incomplete
+         --  type declaration.
+
+         if Ekind (Entity (DS)) = E_Incomplete_Type then
+            Set_Entity (DS, Get_Full_View (Entity (DS)));
+            Set_Etype  (DS, Entity (DS));
+         end if;
+
+         Check_Predicate_Use (Entity (DS));
+      end if;
+
+      --  Error if not discrete type
+
+      if not Is_Discrete_Type (Etype (DS)) then
+         Wrong_Type (DS, Any_Discrete);
+         Set_Etype (DS, Any_Type);
+      end if;
+
+      Check_Controlled_Array_Attribute (DS);
+
+      if Nkind (DS) = N_Subtype_Indication then
+         Check_Predicate_Use (Entity (Subtype_Mark (DS)));
+      end if;
+
+      Make_Index (DS, N, In_Iter_Schm => True);
+      Set_Ekind (Id, E_Loop_Parameter);
+
+      --  A quantified expression which appears in a pre- or post-condition may
+      --  be analyzed multiple times. The analysis of the range creates several
+      --  itypes which reside in different scopes depending on whether the pre-
+      --  or post-condition has been expanded. Update the type of the loop
+      --  variable to reflect the proper itype at each stage of analysis.
+
+      if No (Etype (Id))
+        or else Etype (Id) = Any_Type
+        or else
+          (Present (Etype (Id))
+            and then Is_Itype (Etype (Id))
+            and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
+            and then Nkind (Original_Node (Parent (Loop_Nod))) =
+                                                   N_Quantified_Expression)
+      then
+         Set_Etype (Id, Etype (DS));
+      end if;
+
+      --  Treat a range as an implicit reference to the type, to inhibit
+      --  spurious warnings.
+
+      Generate_Reference (Base_Type (Etype (DS)), N, ' ');
+      Set_Is_Known_Valid (Id, True);
+
+      --  The loop is not a declarative part, so the loop variable must be
+      --  frozen explicitly. Do not freeze while preanalyzing a quantified
+      --  expression because the freeze node will not be inserted into the
+      --  tree due to flag Is_Spec_Expression being set.
+
+      if Nkind (Parent (N)) /= N_Quantified_Expression then
+         declare
+            Flist : constant List_Id := Freeze_Entity (Id, N);
+         begin
+            if Is_Non_Empty_List (Flist) then
+               Insert_Actions (N, Flist);
+            end if;
+         end;
+      end if;
+
+      --  Case where we have a range or a subtype, get type bounds
+
+      if Nkind_In (DS, N_Range, N_Subtype_Indication)
+        and then not Error_Posted (DS)
+        and then Etype (DS) /= Any_Type
+        and then Is_Discrete_Type (Etype (DS))
+      then
+         declare
+            L : Node_Id;
+            H : Node_Id;
+
+         begin
+            if Nkind (DS) = N_Range then
+               L := Low_Bound  (DS);
+               H := High_Bound (DS);
+            else
+               L :=
+                 Type_Low_Bound  (Underlying_Type (Etype (Subtype_Mark (DS))));
+               H :=
+                 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
+            end if;
+
+            --  Check for null or possibly null range and issue warning. We
+            --  suppress such messages in generic templates and instances,
+            --  because in practice they tend to be dubious in these cases. The
+            --  check applies as well to rewritten array element loops where a
+            --  null range may be detected statically.
+
+            if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
+
+               --  Suppress the warning if inside a generic template or
+               --  instance, since in practice they tend to be dubious in these
+               --  cases since they can result from intended parameterization.
+
+               if not Inside_A_Generic and then not In_Instance then
+
+                  --  Specialize msg if invalid values could make the loop
+                  --  non-null after all.
+
+                  if Compile_Time_Compare
+                       (L, H, Assume_Valid => False) = GT
+                  then
+                     --  Since we know the range of the loop is null, set the
+                     --  appropriate flag to remove the loop entirely during
+                     --  expansion.
+
+                     Set_Is_Null_Loop (Loop_Nod);
+
+                     if Comes_From_Source (N) then
+                        Error_Msg_N
+                          ("??loop range is null, loop will not execute", DS);
+                     end if;
+
+                     --  Here is where the loop could execute because of
+                     --  invalid values, so issue appropriate message and in
+                     --  this case we do not set the Is_Null_Loop flag since
+                     --  the loop may execute.
+
+                  elsif Comes_From_Source (N) then
+                     Error_Msg_N
+                       ("??loop range may be null, loop may not execute",
+                        DS);
+                     Error_Msg_N
+                       ("??can only execute if invalid values are present",
+                        DS);
+                  end if;
+               end if;
+
+               --  In either case, suppress warnings in the body of the loop,
+               --  since it is likely that these warnings will be inappropriate
+               --  if the loop never actually executes, which is likely.
+
+               Set_Suppress_Loop_Warnings (Loop_Nod);
+
+               --  The other case for a warning is a reverse loop where the
+               --  upper bound is the integer literal zero or one, and the
+               --  lower bound may exceed this value.
+
+               --  For example, we have
+
+               --     for J in reverse N .. 1 loop
+
+               --  In practice, this is very likely to be a case of reversing
+               --  the bounds incorrectly in the range.
+
+            elsif Reverse_Present (N)
+              and then Nkind (Original_Node (H)) = N_Integer_Literal
+              and then
+                (Intval (Original_Node (H)) = Uint_0
+                  or else
+                 Intval (Original_Node (H)) = Uint_1)
+            then
+               --  Lower bound may in fact be known and known not to exceed
+               --  upper bound (e.g. reverse 0 .. 1) and that's OK.
+
+               if Compile_Time_Known_Value (L)
+                 and then Expr_Value (L) <= Expr_Value (H)
+               then
+                  null;
+
+               --  Otherwise warning is warranted
+
+               else
+                  Error_Msg_N ("??loop range may be null", DS);
+                  Error_Msg_N ("\??bounds may be wrong way round", DS);
+               end if;
+            end if;
+
+            --  Check if either bound is known to be outside the range of the
+            --  loop parameter type, this is e.g. the case of a loop from
+            --  20..X where the type is 1..19.
+
+            --  Such a loop is dubious since either it raises CE or it executes
+            --  zero times, and that cannot be useful!
+
+            if Etype (DS) /= Any_Type
+              and then not Error_Posted (DS)
+              and then Nkind (DS) = N_Subtype_Indication
+              and then Nkind (Constraint (DS)) = N_Range_Constraint
+            then
+               declare
+                  LLo : constant Node_Id :=
+                          Low_Bound  (Range_Expression (Constraint (DS)));
+                  LHi : constant Node_Id :=
+                          High_Bound (Range_Expression (Constraint (DS)));
+
+                  Bad_Bound : Node_Id := Empty;
+                  --  Suspicious loop bound
+
+               begin
+                  --  At this stage L, H are the bounds of the type, and LLo
+                  --  Lhi are the low bound and high bound of the loop.
+
+                  if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
+                       or else
+                     Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
+                  then
+                     Bad_Bound := LLo;
+                  end if;
+
+                  if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
+                       or else
+                     Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
+                  then
+                     Bad_Bound := LHi;
+                  end if;
+
+                  if Present (Bad_Bound) then
+                     Error_Msg_N
+                       ("suspicious loop bound out of range of "
+                        & "loop subtype??", Bad_Bound);
+                     Error_Msg_N
+                       ("\loop executes zero times or raises "
+                        & "Constraint_Error??", Bad_Bound);
+                  end if;
+               end;
+            end if;
+
+         --  This declare block is about warnings, if we get an exception while
+         --  testing for warnings, we simply abandon the attempt silently. This
+         --  most likely occurs as the result of a previous error, but might
+         --  just be an obscure case we have missed. In either case, not giving
+         --  the warning is perfectly acceptable.
+
+         exception
+            when others => null;
+         end;
+      end if;
+
+      --  A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
+      --  This check is relevant only when SPARK_Mode is on as it is not a
+      --  standard Ada legality check.
+
+      if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
+         Error_Msg_N ("loop parameter cannot be volatile", Id);
+      end if;
+   end Analyze_Loop_Parameter_Specification;
+
+   ----------------------------
+   -- Analyze_Loop_Statement --
+   ----------------------------
+
+   procedure Analyze_Loop_Statement (N : Node_Id) is
+
+      function Is_Container_Iterator (Iter : Node_Id) return Boolean;
+      --  Given a loop iteration scheme, determine whether it is an Ada 2012
+      --  container iteration.
+
+      function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
+      --  Determine whether loop statement N has been wrapped in a block to
+      --  capture finalization actions that may be generated for container
+      --  iterators. Prevents infinite recursion when block is analyzed.
+      --  Routine is a noop if loop is single statement within source block.
+
+      ---------------------------
+      -- Is_Container_Iterator --
+      ---------------------------
+
+      function Is_Container_Iterator (Iter : Node_Id) return Boolean is
+      begin
+         --  Infinite loop
+
+         if No (Iter) then
+            return False;
+
+         --  While loop
+
+         elsif Present (Condition (Iter)) then
+            return False;
+
+         --  for Def_Id in [reverse] Name loop
+         --  for Def_Id [: Subtype_Indication] of [reverse] Name loop
+
+         elsif Present (Iterator_Specification (Iter)) then
+            declare
+               Nam : constant Node_Id := Name (Iterator_Specification (Iter));
+               Nam_Copy : Node_Id;
+
+            begin
+               Nam_Copy := New_Copy_Tree (Nam);
+               Set_Parent (Nam_Copy, Parent (Nam));
+               Preanalyze_Range (Nam_Copy);
+
+               --  The only two options here are iteration over a container or
+               --  an array.
+
+               return not Is_Array_Type (Etype (Nam_Copy));
+            end;
+
+         --  for Def_Id in [reverse] Discrete_Subtype_Definition loop
+
+         else
+            declare
+               LP : constant Node_Id := Loop_Parameter_Specification (Iter);
+               DS : constant Node_Id := Discrete_Subtype_Definition (LP);
+               DS_Copy : Node_Id;
+
+            begin
+               DS_Copy := New_Copy_Tree (DS);
+               Set_Parent (DS_Copy, Parent (DS));
+               Preanalyze_Range (DS_Copy);
+
+               --  Check for a call to Iterate () or an expression with
+               --  an iterator type.
+
+               return
+                 (Nkind (DS_Copy) = N_Function_Call
+                   and then Needs_Finalization (Etype (DS_Copy)))
+                 or else Is_Iterator (Etype (DS_Copy));
+            end;
+         end if;
+      end Is_Container_Iterator;
+
+      -------------------------
+      -- Is_Wrapped_In_Block --
+      -------------------------
+
+      function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
+         HSS  : Node_Id;
+         Stat : Node_Id;
+
+      begin
+
+         --  Check if current scope is a block that is not a transient block.
+
+         if Ekind (Current_Scope) /= E_Block
+           or else No (Block_Node (Current_Scope))
+         then
+            return False;
+
+         else
+            HSS  :=
+              Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
+
+            --  Skip leading pragmas that may be introduced for invariant and
+            --  predicate checks.
+
+            Stat := First (Statements (HSS));
+            while Present (Stat) and then Nkind (Stat) = N_Pragma loop
+               Stat := Next (Stat);
+            end loop;
+
+            return Stat = N and then No (Next (Stat));
+         end if;
+      end Is_Wrapped_In_Block;
+
+      --  Local declarations
+
+      Id   : constant Node_Id := Identifier (N);
+      Iter : constant Node_Id := Iteration_Scheme (N);
+      Loc  : constant Source_Ptr := Sloc (N);
+      Ent  : Entity_Id;
+      Stmt : Node_Id;
+
+   --  Start of processing for Analyze_Loop_Statement
+
+   begin
+      if Present (Id) then
+
+         --  Make name visible, e.g. for use in exit statements. Loop labels
+         --  are always considered to be referenced.
+
+         Analyze (Id);
+         Ent := Entity (Id);
+
+         --  Guard against serious error (typically, a scope mismatch when
+         --  semantic analysis is requested) by creating loop entity to
+         --  continue analysis.
+
+         if No (Ent) then
+            if Total_Errors_Detected /= 0 then
+               Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
+            else
+               raise Program_Error;
+            end if;
+
+         --  Verify that the loop name is hot hidden by an unrelated
+         --  declaration in an inner scope.
+
+         elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
+            Error_Msg_Sloc := Sloc (Ent);
+            Error_Msg_N ("implicit label declaration for & is hidden#", Id);
+
+            if Present (Homonym (Ent))
+              and then Ekind (Homonym (Ent)) = E_Label
+            then
+               Set_Entity (Id, Ent);
+               Set_Ekind (Ent, E_Loop);
+            end if;
+
+         else
+            Generate_Reference (Ent, N, ' ');
+            Generate_Definition (Ent);
+
+            --  If we found a label, mark its type. If not, ignore it, since it
+            --  means we have a conflicting declaration, which would already
+            --  have been diagnosed at declaration time. Set Label_Construct
+            --  of the implicit label declaration, which is not created by the
+            --  parser for generic units.
+
+            if Ekind (Ent) = E_Label then
+               Set_Ekind (Ent, E_Loop);
+
+               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
+                  Set_Label_Construct (Parent (Ent), N);
+               end if;
+            end if;
+         end if;
+
+      --  Case of no identifier present. Create one and attach it to the
+      --  loop statement for use as a scope and as a reference for later
+      --  expansions. Indicate that the label does not come from source,
+      --  and attach it to the loop statement so it is part of the tree,
+      --  even without a full declaration.
+
+      else
+         Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
+         Set_Etype  (Ent, Standard_Void_Type);
+         Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
+         Set_Parent (Ent, N);
+         Set_Has_Created_Identifier (N);
+      end if;
+
+      --  If the iterator specification has a syntactic error, transform
+      --  construct into an infinite loop to prevent a crash and perform
+      --  some analysis.
+
+      if Present (Iter)
+        and then Present (Iterator_Specification (Iter))
+        and then Error_Posted (Iterator_Specification (Iter))
+      then
+         Set_Iteration_Scheme (N, Empty);
+         Analyze (N);
+         return;
+      end if;
+
+      --  Iteration over a container in Ada 2012 involves the creation of a
+      --  controlled iterator object. Wrap the loop in a block to ensure the
+      --  timely finalization of the iterator and release of container locks.
+      --  The same applies to the use of secondary stack when obtaining an
+      --  iterator.
+
+      if Ada_Version >= Ada_2012
+        and then Is_Container_Iterator (Iter)
+        and then not Is_Wrapped_In_Block (N)
+      then
+         declare
+            Block_Nod : Node_Id;
+            Block_Id  : Entity_Id;
+
+         begin
+            Block_Nod :=
+              Make_Block_Statement (Loc,
+                Declarations               => New_List,
+                Handled_Statement_Sequence =>
+                  Make_Handled_Sequence_Of_Statements (Loc,
+                    Statements => New_List (Relocate_Node (N))));
+
+            Add_Block_Identifier (Block_Nod, Block_Id);
+
+            --  The expansion of iterator loops generates an iterator in order
+            --  to traverse the elements of a container:
+
+            --    Iter : <iterator type> := Iterate (Container)'reference;
+
+            --  The iterator is controlled and returned on the secondary stack.
+            --  The analysis of the call to Iterate establishes a transient
+            --  scope to deal with the secondary stack management, but never
+            --  really creates a physical block as this would kill the iterator
+            --  too early (see Wrap_Transient_Declaration). To address this
+            --  case, mark the generated block as needing secondary stack
+            --  management.
+
+            Set_Uses_Sec_Stack (Block_Id);
+
+            Rewrite (N, Block_Nod);
+            Analyze (N);
+            return;
+         end;
+      end if;
+
+      --  Kill current values on entry to loop, since statements in the body of
+      --  the loop may have been executed before the loop is entered. Similarly
+      --  we kill values after the loop, since we do not know that the body of
+      --  the loop was executed.
+
+      Kill_Current_Values;
+      Push_Scope (Ent);
+      Analyze_Iteration_Scheme (Iter);
+
+      --  Check for following case which merits a warning if the type E of is
+      --  a multi-dimensional array (and no explicit subscript ranges present).
+
+      --      for J in E'Range
+      --         for K in E'Range
+
+      if Present (Iter)
+        and then Present (Loop_Parameter_Specification (Iter))
+      then
+         declare
+            LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
+            DSD : constant Node_Id :=
+                    Original_Node (Discrete_Subtype_Definition (LPS));
+         begin
+            if Nkind (DSD) = N_Attribute_Reference
+              and then Attribute_Name (DSD) = Name_Range
+              and then No (Expressions (DSD))
+            then
+               declare
+                  Typ : constant Entity_Id := Etype (Prefix (DSD));
+               begin
+                  if Is_Array_Type (Typ)
+                    and then Number_Dimensions (Typ) > 1
+                    and then Nkind (Parent (N)) = N_Loop_Statement
+                    and then Present (Iteration_Scheme (Parent (N)))
+                  then
+                     declare
+                        OIter : constant Node_Id :=
+                          Iteration_Scheme (Parent (N));
+                        OLPS  : constant Node_Id :=
+                          Loop_Parameter_Specification (OIter);
+                        ODSD  : constant Node_Id :=
+                          Original_Node (Discrete_Subtype_Definition (OLPS));
+                     begin
+                        if Nkind (ODSD) = N_Attribute_Reference
+                          and then Attribute_Name (ODSD) = Name_Range
+                          and then No (Expressions (ODSD))
+                          and then Etype (Prefix (ODSD)) = Typ
+                        then
+                           Error_Msg_Sloc := Sloc (ODSD);
+                           Error_Msg_N
+                             ("inner range same as outer range#??", DSD);
+                        end if;
+                     end;
+                  end if;
+               end;
+            end if;
+         end;
+      end if;
+
+      --  Analyze the statements of the body except in the case of an Ada 2012
+      --  iterator with the expander active. In this case the expander will do
+      --  a rewrite of the loop into a while loop. We will then analyze the
+      --  loop body when we analyze this while loop.
+
+      --  We need to do this delay because if the container is for indefinite
+      --  types the actual subtype of the components will only be determined
+      --  when the cursor declaration is analyzed.
+
+      --  If the expander is not active then we want to analyze the loop body
+      --  now even in the Ada 2012 iterator case, since the rewriting will not
+      --  be done. Insert the loop variable in the current scope, if not done
+      --  when analysing the iteration scheme.  Set its kind properly to detect
+      --  improper uses in the loop body.
+
+      --  In GNATprove mode, we do one of the above depending on the kind of
+      --  loop. If it is an iterator over an array, then we do not analyze the
+      --  loop now. We will analyze it after it has been rewritten by the
+      --  special SPARK expansion which is activated in GNATprove mode. We need
+      --  to do this so that other expansions that should occur in GNATprove
+      --  mode take into account the specificities of the rewritten loop, in
+      --  particular the introduction of a renaming (which needs to be
+      --  expanded).
+
+      --  In other cases in GNATprove mode then we want to analyze the loop
+      --  body now, since no rewriting will occur. Within a generic the
+      --  GNATprove mode is irrelevant, we must analyze the generic for
+      --  non-local name capture.
+
+      if Present (Iter)
+        and then Present (Iterator_Specification (Iter))
+      then
+         if GNATprove_Mode
+           and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
+           and then not Inside_A_Generic
+         then
+            null;
+
+         elsif not Expander_Active then
+            declare
+               I_Spec : constant Node_Id   := Iterator_Specification (Iter);
+               Id     : constant Entity_Id := Defining_Identifier (I_Spec);
+
+            begin
+               if Scope (Id) /= Current_Scope then
+                  Enter_Name (Id);
+               end if;
+
+               --  In an element iterator, The loop parameter is a variable if
+               --  the domain of iteration (container or array) is a variable.
+
+               if not Of_Present (I_Spec)
+                 or else not Is_Variable (Name (I_Spec))
+               then
+                  Set_Ekind (Id, E_Loop_Parameter);
+               end if;
+            end;
+
+            Analyze_Statements (Statements (N));
+         end if;
+
+      else
+         --  Pre-Ada2012 for-loops and while loops
+
+         Analyze_Statements (Statements (N));
+      end if;
+
+      --  When the iteration scheme of a loop contains attribute 'Loop_Entry,
+      --  the loop is transformed into a conditional block. Retrieve the loop.
+
+      Stmt := N;
+
+      if Subject_To_Loop_Entry_Attributes (Stmt) then
+         Stmt := Find_Loop_In_Conditional_Block (Stmt);
+      end if;
+
+      --  Finish up processing for the loop. We kill all current values, since
+      --  in general we don't know if the statements in the loop have been
+      --  executed. We could do a bit better than this with a loop that we
+      --  know will execute at least once, but it's not worth the trouble and
+      --  the front end is not in the business of flow tracing.
+
+      Process_End_Label (Stmt, 'e', Ent);
+      End_Scope;
+      Kill_Current_Values;
+
+      --  Check for infinite loop. Skip check for generated code, since it
+      --  justs waste time and makes debugging the routine called harder.
+
+      --  Note that we have to wait till the body of the loop is fully analyzed
+      --  before making this call, since Check_Infinite_Loop_Warning relies on
+      --  being able to use semantic visibility information to find references.
+
+      if Comes_From_Source (Stmt) then
+         Check_Infinite_Loop_Warning (Stmt);
+      end if;
+
+      --  Code after loop is unreachable if the loop has no WHILE or FOR and
+      --  contains no EXIT statements within the body of the loop.
+
+      if No (Iter) and then not Has_Exit (Ent) then
+         Check_Unreachable_Code (Stmt);
+      end if;
+   end Analyze_Loop_Statement;
+
+   ----------------------------
+   -- Analyze_Null_Statement --
+   ----------------------------
+
+   --  Note: the semantics of the null statement is implemented by a single
+   --  null statement, too bad everything isn't as simple as this.
+
+   procedure Analyze_Null_Statement (N : Node_Id) is
+      pragma Warnings (Off, N);
+   begin
+      null;
+   end Analyze_Null_Statement;
+
+   -------------------------
+   -- Analyze_Target_Name --
+   -------------------------
+
+   procedure Analyze_Target_Name (N : Node_Id) is
+   begin
+      --  A target name has the type of the left-hand side of the enclosing
+      --  assignment.
+
+      Set_Etype (N, Etype (Name (Current_Assignment)));
+   end Analyze_Target_Name;
+
+   ------------------------
+   -- Analyze_Statements --
+   ------------------------
+
+   procedure Analyze_Statements (L : List_Id) is
+      Lab : Entity_Id;
+      S   : Node_Id;
+
+   begin
+      --  The labels declared in the statement list are reachable from
+      --  statements in the list. We do this as a prepass so that any goto
+      --  statement will be properly flagged if its target is not reachable.
+      --  This is not required, but is nice behavior.
+
+      S := First (L);
+      while Present (S) loop
+         if Nkind (S) = N_Label then
+            Analyze (Identifier (S));
+            Lab := Entity (Identifier (S));
+
+            --  If we found a label mark it as reachable
+
+            if Ekind (Lab) = E_Label then
+               Generate_Definition (Lab);
+               Set_Reachable (Lab);
+
+               if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
+                  Set_Label_Construct (Parent (Lab), S);
+               end if;
+
+            --  If we failed to find a label, it means the implicit declaration
+            --  of the label was hidden.  A for-loop parameter can do this to
+            --  a label with the same name inside the loop, since the implicit
+            --  label declaration is in the innermost enclosing body or block
+            --  statement.
+
+            else
+               Error_Msg_Sloc := Sloc (Lab);
+               Error_Msg_N
+                 ("implicit label declaration for & is hidden#",
+                  Identifier (S));
+            end if;
+         end if;
+
+         Next (S);
+      end loop;
+
+      --  Perform semantic analysis on all statements
+
+      Conditional_Statements_Begin;
+
+      S := First (L);
+      while Present (S) loop
+         Analyze (S);
+
+         --  Remove dimension in all statements
+
+         Remove_Dimension_In_Statement (S);
+         Next (S);
+      end loop;
+
+      Conditional_Statements_End;
+
+      --  Make labels unreachable. Visibility is not sufficient, because labels
+      --  in one if-branch for example are not reachable from the other branch,
+      --  even though their declarations are in the enclosing declarative part.
+
+      S := First (L);
+      while Present (S) loop
+         if Nkind (S) = N_Label then
+            Set_Reachable (Entity (Identifier (S)), False);
+         end if;
+
+         Next (S);
+      end loop;
+   end Analyze_Statements;
+
+   ----------------------------
+   -- Check_Unreachable_Code --
+   ----------------------------
+
+   procedure Check_Unreachable_Code (N : Node_Id) is
+      Error_Node : Node_Id;
+      P          : Node_Id;
+
+   begin
+      if Is_List_Member (N) and then Comes_From_Source (N) then
+         declare
+            Nxt : Node_Id;
+
+         begin
+            Nxt := Original_Node (Next (N));
+
+            --  Skip past pragmas
+
+            while Nkind (Nxt) = N_Pragma loop
+               Nxt := Original_Node (Next (Nxt));
+            end loop;
+
+            --  If a label follows us, then we never have dead code, since
+            --  someone could branch to the label, so we just ignore it, unless
+            --  we are in formal mode where goto statements are not allowed.
+
+            if Nkind (Nxt) = N_Label
+              and then not Restriction_Check_Required (SPARK_05)
+            then
+               return;
+
+            --  Otherwise see if we have a real statement following us
+
+            elsif Present (Nxt)
+              and then Comes_From_Source (Nxt)
+              and then Is_Statement (Nxt)
+            then
+               --  Special very annoying exception. If we have a return that
+               --  follows a raise, then we allow it without a warning, since
+               --  the Ada RM annoyingly requires a useless return here.
+
+               if Nkind (Original_Node (N)) /= N_Raise_Statement
+                 or else Nkind (Nxt) /= N_Simple_Return_Statement
+               then
+                  --  The rather strange shenanigans with the warning message
+                  --  here reflects the fact that Kill_Dead_Code is very good
+                  --  at removing warnings in deleted code, and this is one
+                  --  warning we would prefer NOT to have removed.
+
+                  Error_Node := Nxt;
+
+                  --  If we have unreachable code, analyze and remove the
+                  --  unreachable code, since it is useless and we don't
+                  --  want to generate junk warnings.
+
+                  --  We skip this step if we are not in code generation mode
+                  --  or CodePeer mode.
+
+                  --  This is the one case where we remove dead code in the
+                  --  semantics as opposed to the expander, and we do not want
+                  --  to remove code if we are not in code generation mode,
+                  --  since this messes up the ASIS trees or loses useful
+                  --  information in the CodePeer tree.
+
+                  --  Note that one might react by moving the whole circuit to
+                  --  exp_ch5, but then we lose the warning in -gnatc mode.
+
+                  if Operating_Mode = Generate_Code
+                    and then not CodePeer_Mode
+                  then
+                     loop
+                        Nxt := Next (N);
+
+                        --  Quit deleting when we have nothing more to delete
+                        --  or if we hit a label (since someone could transfer
+                        --  control to a label, so we should not delete it).
+
+                        exit when No (Nxt) or else Nkind (Nxt) = N_Label;
+
+                        --  Statement/declaration is to be deleted
+
+                        Analyze (Nxt);
+                        Remove (Nxt);
+                        Kill_Dead_Code (Nxt);
+                     end loop;
+                  end if;
+
+                  --  Now issue the warning (or error in formal mode)
+
+                  if Restriction_Check_Required (SPARK_05) then
+                     Check_SPARK_05_Restriction
+                       ("unreachable code is not allowed", Error_Node);
+                  else
+                     Error_Msg
+                       ("??unreachable code!", Sloc (Error_Node), Error_Node);
+                  end if;
+               end if;
+
+            --  If the unconditional transfer of control instruction is the
+            --  last statement of a sequence, then see if our parent is one of
+            --  the constructs for which we count unblocked exits, and if so,
+            --  adjust the count.
+
+            else
+               P := Parent (N);
+
+               --  Statements in THEN part or ELSE part of IF statement
+
+               if Nkind (P) = N_If_Statement then
+                  null;
+
+               --  Statements in ELSIF part of an IF statement
+
+               elsif Nkind (P) = N_Elsif_Part then
+                  P := Parent (P);
+                  pragma Assert (Nkind (P) = N_If_Statement);
+
+               --  Statements in CASE statement alternative
+
+               elsif Nkind (P) = N_Case_Statement_Alternative then
+                  P := Parent (P);
+                  pragma Assert (Nkind (P) = N_Case_Statement);
+
+               --  Statements in body of block
+
+               elsif Nkind (P) = N_Handled_Sequence_Of_Statements
+                 and then Nkind (Parent (P)) = N_Block_Statement
+               then
+                  --  The original loop is now placed inside a block statement
+                  --  due to the expansion of attribute 'Loop_Entry. Return as
+                  --  this is not a "real" block for the purposes of exit
+                  --  counting.
+
+                  if Nkind (N) = N_Loop_Statement
+                    and then Subject_To_Loop_Entry_Attributes (N)
+                  then
+                     return;
+                  end if;
+
+               --  Statements in exception handler in a block
+
+               elsif Nkind (P) = N_Exception_Handler
+                 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
+                 and then Nkind (Parent (Parent (P))) = N_Block_Statement
+               then
+                  null;
+
+               --  None of these cases, so return
+
+               else
+                  return;
+               end if;
+
+               --  This was one of the cases we are looking for (i.e. the
+               --  parent construct was IF, CASE or block) so decrement count.
+
+               Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
+            end if;
+         end;
+      end if;
+   end Check_Unreachable_Code;
+
+   ----------------------
+   -- Preanalyze_Range --
+   ----------------------
+
+   procedure Preanalyze_Range (R_Copy : Node_Id) is
+      Save_Analysis : constant Boolean := Full_Analysis;
+      Typ           : Entity_Id;
+
+   begin
+      Full_Analysis := False;
+      Expander_Mode_Save_And_Set (False);
+
+      Analyze (R_Copy);
+
+      if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
+
+         --  Apply preference rules for range of predefined integer types, or
+         --  check for array or iterable construct for "of" iterator, or
+         --  diagnose true ambiguity.
+
+         declare
+            I     : Interp_Index;
+            It    : Interp;
+            Found : Entity_Id := Empty;
+
+         begin
+            Get_First_Interp (R_Copy, I, It);
+            while Present (It.Typ) loop
+               if Is_Discrete_Type (It.Typ) then
+                  if No (Found) then
+                     Found := It.Typ;
+                  else
+                     if Scope (Found) = Standard_Standard then
+                        null;
+
+                     elsif Scope (It.Typ) = Standard_Standard then
+                        Found := It.Typ;
+
+                     else
+                        --  Both of them are user-defined
+
+                        Error_Msg_N
+                          ("ambiguous bounds in range of iteration", R_Copy);
+                        Error_Msg_N ("\possible interpretations:", R_Copy);
+                        Error_Msg_NE ("\\} ", R_Copy, Found);
+                        Error_Msg_NE ("\\} ", R_Copy, It.Typ);
+                        exit;
+                     end if;
+                  end if;
+
+               elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
+                 and then Of_Present (Parent (R_Copy))
+               then
+                  if Is_Array_Type (It.Typ)
+                    or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
+                    or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
+                    or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
+                  then
+                     if No (Found) then
+                        Found := It.Typ;
+                        Set_Etype (R_Copy, It.Typ);
+
+                     else
+                        Error_Msg_N ("ambiguous domain of iteration", R_Copy);
+                     end if;
+                  end if;
+               end if;
+
+               Get_Next_Interp (I, It);
+            end loop;
+         end;
+      end if;
+
+      --  Subtype mark in iteration scheme
+
+      if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
+         null;
+
+      --  Expression in range, or Ada 2012 iterator
+
+      elsif Nkind (R_Copy) in N_Subexpr then
+         Resolve (R_Copy);
+         Typ := Etype (R_Copy);
+
+         if Is_Discrete_Type (Typ) then
+            null;
+
+         --  Check that the resulting object is an iterable container
+
+         elsif Has_Aspect (Typ, Aspect_Iterator_Element)
+           or else Has_Aspect (Typ, Aspect_Constant_Indexing)
+           or else Has_Aspect (Typ, Aspect_Variable_Indexing)
+         then
+            null;
+
+         --  The expression may yield an implicit reference to an iterable
+         --  container. Insert explicit dereference so that proper type is
+         --  visible in the loop.
+
+         elsif Has_Implicit_Dereference (Etype (R_Copy)) then
+            declare
+               Disc : Entity_Id;
+
+            begin
+               Disc := First_Discriminant (Typ);
+               while Present (Disc) loop
+                  if Has_Implicit_Dereference (Disc) then
+                     Build_Explicit_Dereference (R_Copy, Disc);
+                     exit;
+                  end if;
+
+                  Next_Discriminant (Disc);
+               end loop;
+            end;
+
+         end if;
+      end if;
+
+      Expander_Mode_Restore;
+      Full_Analysis := Save_Analysis;
+   end Preanalyze_Range;
+
+end Sem_Ch5;