comparison gcc/config/pa/pa.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 enum cmp_type /* comparison type */
25 {
26 CMP_SI, /* compare integers */
27 CMP_SF, /* compare single precision floats */
28 CMP_DF, /* compare double precision floats */
29 CMP_MAX /* max comparison type */
30 };
31
32 /* For long call handling. */
33 extern unsigned long total_code_bytes;
34
35 /* Which processor to schedule for. */
36
37 enum processor_type
38 {
39 PROCESSOR_700,
40 PROCESSOR_7100,
41 PROCESSOR_7100LC,
42 PROCESSOR_7200,
43 PROCESSOR_7300,
44 PROCESSOR_8000
45 };
46
47 /* For -mschedule= option. */
48 extern enum processor_type pa_cpu;
49
50 /* For -munix= option. */
51 extern int flag_pa_unix;
52
53 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
54
55 /* Print subsidiary information on the compiler version in use. */
56
57 #define TARGET_VERSION fputs (" (hppa)", stderr);
58
59 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
60
61 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
62 #ifndef TARGET_64BIT
63 #define TARGET_64BIT 0
64 #endif
65
66 /* Generate code for ELF32 ABI. */
67 #ifndef TARGET_ELF32
68 #define TARGET_ELF32 0
69 #endif
70
71 /* Generate code for SOM 32bit ABI. */
72 #ifndef TARGET_SOM
73 #define TARGET_SOM 0
74 #endif
75
76 /* HP-UX UNIX features. */
77 #ifndef TARGET_HPUX
78 #define TARGET_HPUX 0
79 #endif
80
81 /* HP-UX 10.10 UNIX 95 features. */
82 #ifndef TARGET_HPUX_10_10
83 #define TARGET_HPUX_10_10 0
84 #endif
85
86 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
87 #ifndef TARGET_HPUX_11
88 #define TARGET_HPUX_11 0
89 #endif
90
91 /* HP-UX 11i multibyte and UNIX 98 extensions. */
92 #ifndef TARGET_HPUX_11_11
93 #define TARGET_HPUX_11_11 0
94 #endif
95
96 /* The following three defines are potential target switches. The current
97 defines are optimal given the current capabilities of GAS and GNU ld. */
98
99 /* Define to a C expression evaluating to true to use long absolute calls.
100 Currently, only the HP assembler and SOM linker support long absolute
101 calls. They are used only in non-pic code. */
102 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
103
104 /* Define to a C expression evaluating to true to use long PIC symbol
105 difference calls. Long PIC symbol difference calls are only used with
106 the HP assembler and linker. The HP assembler detects this instruction
107 sequence and treats it as long pc-relative call. Currently, GAS only
108 allows a difference of two symbols in the same subspace, and it doesn't
109 detect the sequence as a pc-relative call. */
110 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
111
112 /* Define to a C expression evaluating to true to use long PIC
113 pc-relative calls. Long PIC pc-relative calls are only used with
114 GAS. Currently, they are usable for calls which bind local to a
115 module but not for external calls. */
116 #define TARGET_LONG_PIC_PCREL_CALL 0
117
118 /* Define to a C expression evaluating to true to use SOM secondary
119 definition symbols for weak support. Linker support for secondary
120 definition symbols is buggy prior to HP-UX 11.X. */
121 #define TARGET_SOM_SDEF 0
122
123 /* Define to a C expression evaluating to true to save the entry value
124 of SP in the current frame marker. This is normally unnecessary.
125 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
126 HP compilers don't use this flag but it is supported by the assembler.
127 We set this flag to indicate that register %r3 has been saved at the
128 start of the frame. Thus, when the HP unwind library is used, we
129 need to generate additional code to save SP into the frame marker. */
130 #define TARGET_HPUX_UNWIND_LIBRARY 0
131
132 #ifndef TARGET_DEFAULT
133 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
134 #endif
135
136 #ifndef TARGET_CPU_DEFAULT
137 #define TARGET_CPU_DEFAULT 0
138 #endif
139
140 #ifndef TARGET_SCHED_DEFAULT
141 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
142 #endif
143
144 /* Support for a compile-time default CPU, et cetera. The rules are:
145 --with-schedule is ignored if -mschedule is specified.
146 --with-arch is ignored if -march is specified. */
147 #define OPTION_DEFAULT_SPECS \
148 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
149 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
150
151 /* Specify the dialect of assembler to use. New mnemonics is dialect one
152 and the old mnemonics are dialect zero. */
153 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
154
155 #define OVERRIDE_OPTIONS override_options ()
156
157 /* Override some settings from dbxelf.h. */
158
159 /* We do not have to be compatible with dbx, so we enable gdb extensions
160 by default. */
161 #define DEFAULT_GDB_EXTENSIONS 1
162
163 /* This used to be zero (no max length), but big enums and such can
164 cause huge strings which killed gas.
165
166 We also have to avoid lossage in dbxout.c -- it does not compute the
167 string size accurately, so we are real conservative here. */
168 #undef DBX_CONTIN_LENGTH
169 #define DBX_CONTIN_LENGTH 3000
170
171 /* GDB always assumes the current function's frame begins at the value
172 of the stack pointer upon entry to the current function. Accessing
173 local variables and parameters passed on the stack is done using the
174 base of the frame + an offset provided by GCC.
175
176 For functions which have frame pointers this method works fine;
177 the (frame pointer) == (stack pointer at function entry) and GCC provides
178 an offset relative to the frame pointer.
179
180 This loses for functions without a frame pointer; GCC provides an offset
181 which is relative to the stack pointer after adjusting for the function's
182 frame size. GDB would prefer the offset to be relative to the value of
183 the stack pointer at the function's entry. Yuk! */
184 #define DEBUGGER_AUTO_OFFSET(X) \
185 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
186 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
187
188 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
189 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
190 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
191
192 #define TARGET_CPU_CPP_BUILTINS() \
193 do { \
194 builtin_assert("cpu=hppa"); \
195 builtin_assert("machine=hppa"); \
196 builtin_define("__hppa"); \
197 builtin_define("__hppa__"); \
198 if (TARGET_PA_20) \
199 builtin_define("_PA_RISC2_0"); \
200 else if (TARGET_PA_11) \
201 builtin_define("_PA_RISC1_1"); \
202 else \
203 builtin_define("_PA_RISC1_0"); \
204 } while (0)
205
206 /* An old set of OS defines for various BSD-like systems. */
207 #define TARGET_OS_CPP_BUILTINS() \
208 do \
209 { \
210 builtin_define_std ("REVARGV"); \
211 builtin_define_std ("hp800"); \
212 builtin_define_std ("hp9000"); \
213 builtin_define_std ("hp9k8"); \
214 if (!c_dialect_cxx () && !flag_iso) \
215 builtin_define ("hppa"); \
216 builtin_define_std ("spectrum"); \
217 builtin_define_std ("unix"); \
218 builtin_assert ("system=bsd"); \
219 builtin_assert ("system=unix"); \
220 } \
221 while (0)
222
223 #define CC1_SPEC "%{pg:} %{p:}"
224
225 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
226
227 /* We don't want -lg. */
228 #ifndef LIB_SPEC
229 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
230 #endif
231
232 /* This macro defines command-line switches that modify the default
233 target name.
234
235 The definition is be an initializer for an array of structures. Each
236 array element has have three elements: the switch name, one of the
237 enumeration codes ADD or DELETE to indicate whether the string should be
238 inserted or deleted, and the string to be inserted or deleted. */
239 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
240
241 /* Make gcc agree with <machine/ansi.h> */
242
243 #define SIZE_TYPE "unsigned int"
244 #define PTRDIFF_TYPE "int"
245 #define WCHAR_TYPE "unsigned int"
246 #define WCHAR_TYPE_SIZE 32
247
248 /* Show we can debug even without a frame pointer. */
249 #define CAN_DEBUG_WITHOUT_FP
250
251 /* target machine storage layout */
252 typedef struct machine_function GTY(())
253 {
254 /* Flag indicating that a .NSUBSPA directive has been output for
255 this function. */
256 int in_nsubspa;
257 } machine_function;
258
259 /* Define this macro if it is advisable to hold scalars in registers
260 in a wider mode than that declared by the program. In such cases,
261 the value is constrained to be within the bounds of the declared
262 type, but kept valid in the wider mode. The signedness of the
263 extension may differ from that of the type. */
264
265 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
266 if (GET_MODE_CLASS (MODE) == MODE_INT \
267 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
268 (MODE) = word_mode;
269
270 /* Define this if most significant bit is lowest numbered
271 in instructions that operate on numbered bit-fields. */
272 #define BITS_BIG_ENDIAN 1
273
274 /* Define this if most significant byte of a word is the lowest numbered. */
275 /* That is true on the HP-PA. */
276 #define BYTES_BIG_ENDIAN 1
277
278 /* Define this if most significant word of a multiword number is lowest
279 numbered. */
280 #define WORDS_BIG_ENDIAN 1
281
282 #define MAX_BITS_PER_WORD 64
283
284 /* Width of a word, in units (bytes). */
285 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
286
287 /* Minimum number of units in a word. If this is undefined, the default
288 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
289 smallest value that UNITS_PER_WORD can have at run-time.
290
291 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
292 building of various TImode routines in libgcc. The HP runtime
293 specification doesn't provide the alignment requirements and calling
294 conventions for TImode variables. */
295 #define MIN_UNITS_PER_WORD 4
296
297 /* The widest floating point format supported by the hardware. Note that
298 setting this influences some Ada floating point type sizes, currently
299 required for GNAT to operate properly. */
300 #define WIDEST_HARDWARE_FP_SIZE 64
301
302 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
303 #define PARM_BOUNDARY BITS_PER_WORD
304
305 /* Largest alignment required for any stack parameter, in bits.
306 Don't define this if it is equal to PARM_BOUNDARY */
307 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
308
309 /* Boundary (in *bits*) on which stack pointer is always aligned;
310 certain optimizations in combine depend on this.
311
312 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
313 the stack on the 32 and 64-bit ports, respectively. However, we
314 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
315 in main. Thus, we treat the former as the preferred alignment. */
316 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
317 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
318
319 /* Allocation boundary (in *bits*) for the code of a function. */
320 #define FUNCTION_BOUNDARY BITS_PER_WORD
321
322 /* Alignment of field after `int : 0' in a structure. */
323 #define EMPTY_FIELD_BOUNDARY 32
324
325 /* Every structure's size must be a multiple of this. */
326 #define STRUCTURE_SIZE_BOUNDARY 8
327
328 /* A bit-field declared as `int' forces `int' alignment for the struct. */
329 #define PCC_BITFIELD_TYPE_MATTERS 1
330
331 /* No data type wants to be aligned rounder than this. */
332 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
333
334 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
335 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
336 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
337
338 /* Make arrays of chars word-aligned for the same reasons. */
339 #define DATA_ALIGNMENT(TYPE, ALIGN) \
340 (TREE_CODE (TYPE) == ARRAY_TYPE \
341 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
342 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
343
344 /* Set this nonzero if move instructions will actually fail to work
345 when given unaligned data. */
346 #define STRICT_ALIGNMENT 1
347
348 /* Value is 1 if it is a good idea to tie two pseudo registers
349 when one has mode MODE1 and one has mode MODE2.
350 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
351 for any hard reg, then this must be 0 for correct output. */
352 #define MODES_TIEABLE_P(MODE1, MODE2) \
353 pa_modes_tieable_p (MODE1, MODE2)
354
355 /* Specify the registers used for certain standard purposes.
356 The values of these macros are register numbers. */
357
358 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
359 /* #define PC_REGNUM */
360
361 /* Register to use for pushing function arguments. */
362 #define STACK_POINTER_REGNUM 30
363
364 /* Base register for access to local variables of the function. */
365 #define FRAME_POINTER_REGNUM 3
366
367 /* Value should be nonzero if functions must have frame pointers. */
368 #define FRAME_POINTER_REQUIRED \
369 (cfun->calls_alloca)
370
371 /* Don't allow hard registers to be renamed into r2 unless r2
372 is already live or already being saved (due to eh). */
373
374 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
375 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
376
377 /* C statement to store the difference between the frame pointer
378 and the stack pointer values immediately after the function prologue.
379
380 Note, we always pretend that this is a leaf function because if
381 it's not, there's no point in trying to eliminate the
382 frame pointer. If it is a leaf function, we guessed right! */
383 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
384 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
385
386 /* Base register for access to arguments of the function. */
387 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
388
389 /* Register in which static-chain is passed to a function. */
390 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
391
392 /* Register used to address the offset table for position-independent
393 data references. */
394 #define PIC_OFFSET_TABLE_REGNUM \
395 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
396
397 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
398
399 /* Function to return the rtx used to save the pic offset table register
400 across function calls. */
401 extern struct rtx_def *hppa_pic_save_rtx (void);
402
403 #define DEFAULT_PCC_STRUCT_RETURN 0
404
405 /* Register in which address to store a structure value
406 is passed to a function. */
407 #define PA_STRUCT_VALUE_REGNUM 28
408
409 /* Describe how we implement __builtin_eh_return. */
410 #define EH_RETURN_DATA_REGNO(N) \
411 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
412 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
413 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
414
415 /* Offset from the frame pointer register value to the top of stack. */
416 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
417
418 /* A C expression whose value is RTL representing the location of the
419 incoming return address at the beginning of any function, before the
420 prologue. You only need to define this macro if you want to support
421 call frame debugging information like that provided by DWARF 2. */
422 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
423 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
424
425 /* A C expression whose value is an integer giving a DWARF 2 column
426 number that may be used as an alternate return column. This should
427 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
428 register, but an alternate column needs to be used for signal frames.
429
430 Column 0 is not used but unfortunately its register size is set to
431 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
432 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
433
434 /* This macro chooses the encoding of pointers embedded in the exception
435 handling sections. If at all possible, this should be defined such
436 that the exception handling section will not require dynamic relocations,
437 and so may be read-only.
438
439 Because the HP assembler auto aligns, it is necessary to use
440 DW_EH_PE_aligned. It's not possible to make the data read-only
441 on the HP-UX SOM port since the linker requires fixups for label
442 differences in different sections to be word aligned. However,
443 the SOM linker can do unaligned fixups for absolute pointers.
444 We also need aligned pointers for global and function pointers.
445
446 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
447 fixups, the runtime doesn't have a consistent relationship between
448 text and data for dynamically loaded objects. Thus, it's not possible
449 to use pc-relative encoding for pointers on this target. It may be
450 possible to use segment relative encodings but GAS doesn't currently
451 have a mechanism to generate these encodings. For other targets, we
452 use pc-relative encoding for pointers. If the pointer might require
453 dynamic relocation, we make it indirect. */
454 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
455 (TARGET_GAS && !TARGET_HPUX \
456 ? (DW_EH_PE_pcrel \
457 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
458 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
459 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
460 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
461
462 /* Handle special EH pointer encodings. Absolute, pc-relative, and
463 indirect are handled automatically. We output pc-relative, and
464 indirect pc-relative ourself since we need some special magic to
465 generate pc-relative relocations, and to handle indirect function
466 pointers. */
467 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
468 do { \
469 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
470 { \
471 fputs (integer_asm_op (SIZE, FALSE), FILE); \
472 if ((ENCODING) & DW_EH_PE_indirect) \
473 output_addr_const (FILE, get_deferred_plabel (ADDR)); \
474 else \
475 assemble_name (FILE, XSTR ((ADDR), 0)); \
476 fputs ("+8-$PIC_pcrel$0", FILE); \
477 goto DONE; \
478 } \
479 } while (0)
480
481
482 /* The class value for index registers, and the one for base regs. */
483 #define INDEX_REG_CLASS GENERAL_REGS
484 #define BASE_REG_CLASS GENERAL_REGS
485
486 #define FP_REG_CLASS_P(CLASS) \
487 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
488
489 /* True if register is floating-point. */
490 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
491
492 /* Given an rtx X being reloaded into a reg required to be
493 in class CLASS, return the class of reg to actually use.
494 In general this is just CLASS; but on some machines
495 in some cases it is preferable to use a more restrictive class. */
496 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
497
498 #define MAYBE_FP_REG_CLASS_P(CLASS) \
499 reg_classes_intersect_p ((CLASS), FP_REGS)
500
501
502 /* Stack layout; function entry, exit and calling. */
503
504 /* Define this if pushing a word on the stack
505 makes the stack pointer a smaller address. */
506 /* #define STACK_GROWS_DOWNWARD */
507
508 /* Believe it or not. */
509 #define ARGS_GROW_DOWNWARD
510
511 /* Define this to nonzero if the nominal address of the stack frame
512 is at the high-address end of the local variables;
513 that is, each additional local variable allocated
514 goes at a more negative offset in the frame. */
515 #define FRAME_GROWS_DOWNWARD 0
516
517 /* Offset within stack frame to start allocating local variables at.
518 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
519 first local allocated. Otherwise, it is the offset to the BEGINNING
520 of the first local allocated.
521
522 On the 32-bit ports, we reserve one slot for the previous frame
523 pointer and one fill slot. The fill slot is for compatibility
524 with HP compiled programs. On the 64-bit ports, we reserve one
525 slot for the previous frame pointer. */
526 #define STARTING_FRAME_OFFSET 8
527
528 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
529 of the stack. The default is to align it to STACK_BOUNDARY. */
530 #define STACK_ALIGNMENT_NEEDED 0
531
532 /* If we generate an insn to push BYTES bytes,
533 this says how many the stack pointer really advances by.
534 On the HP-PA, don't define this because there are no push insns. */
535 /* #define PUSH_ROUNDING(BYTES) */
536
537 /* Offset of first parameter from the argument pointer register value.
538 This value will be negated because the arguments grow down.
539 Also note that on STACK_GROWS_UPWARD machines (such as this one)
540 this is the distance from the frame pointer to the end of the first
541 argument, not it's beginning. To get the real offset of the first
542 argument, the size of the argument must be added. */
543
544 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
545
546 /* When a parameter is passed in a register, stack space is still
547 allocated for it. */
548 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
549
550 /* Define this if the above stack space is to be considered part of the
551 space allocated by the caller. */
552 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
553
554 /* Keep the stack pointer constant throughout the function.
555 This is both an optimization and a necessity: longjmp
556 doesn't behave itself when the stack pointer moves within
557 the function! */
558 #define ACCUMULATE_OUTGOING_ARGS 1
559
560 /* The weird HPPA calling conventions require a minimum of 48 bytes on
561 the stack: 16 bytes for register saves, and 32 bytes for magic.
562 This is the difference between the logical top of stack and the
563 actual sp.
564
565 On the 64-bit port, the HP C compiler allocates a 48-byte frame
566 marker, although the runtime documentation only describes a 16
567 byte marker. For compatibility, we allocate 48 bytes. */
568 #define STACK_POINTER_OFFSET \
569 (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
570
571 #define STACK_DYNAMIC_OFFSET(FNDECL) \
572 (TARGET_64BIT \
573 ? (STACK_POINTER_OFFSET) \
574 : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
575
576 /* Value is 1 if returning from a function call automatically
577 pops the arguments described by the number-of-args field in the call.
578 FUNDECL is the declaration node of the function (as a tree),
579 FUNTYPE is the data type of the function (as a tree),
580 or for a library call it is an identifier node for the subroutine name. */
581
582 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
583
584 /* Define how to find the value returned by a function.
585 VALTYPE is the data type of the value (as a tree).
586 If the precise function being called is known, FUNC is its FUNCTION_DECL;
587 otherwise, FUNC is 0. */
588
589 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
590
591 /* Define how to find the value returned by a library function
592 assuming the value has mode MODE. */
593
594 #define LIBCALL_VALUE(MODE) \
595 gen_rtx_REG (MODE, \
596 (! TARGET_SOFT_FLOAT \
597 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
598
599 /* 1 if N is a possible register number for a function value
600 as seen by the caller. */
601
602 #define FUNCTION_VALUE_REGNO_P(N) \
603 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
604
605
606 /* Define a data type for recording info about an argument list
607 during the scan of that argument list. This data type should
608 hold all necessary information about the function itself
609 and about the args processed so far, enough to enable macros
610 such as FUNCTION_ARG to determine where the next arg should go.
611
612 On the HP-PA, the WORDS field holds the number of words
613 of arguments scanned so far (including the invisible argument,
614 if any, which holds the structure-value-address). Thus, 4 or
615 more means all following args should go on the stack.
616
617 The INCOMING field tracks whether this is an "incoming" or
618 "outgoing" argument.
619
620 The INDIRECT field indicates whether this is is an indirect
621 call or not.
622
623 The NARGS_PROTOTYPE field indicates that an argument does not
624 have a prototype when it less than or equal to 0. */
625
626 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
627
628 #define CUMULATIVE_ARGS struct hppa_args
629
630 /* Initialize a variable CUM of type CUMULATIVE_ARGS
631 for a call to a function whose data type is FNTYPE.
632 For a library call, FNTYPE is 0. */
633
634 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
635 (CUM).words = 0, \
636 (CUM).incoming = 0, \
637 (CUM).indirect = (FNTYPE) && !(FNDECL), \
638 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
639 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
640 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
641 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
642 : 0)
643
644
645
646 /* Similar, but when scanning the definition of a procedure. We always
647 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
648
649 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
650 (CUM).words = 0, \
651 (CUM).incoming = 1, \
652 (CUM).indirect = 0, \
653 (CUM).nargs_prototype = 1000
654
655 /* Figure out the size in words of the function argument. The size
656 returned by this macro should always be greater than zero because
657 we pass variable and zero sized objects by reference. */
658
659 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
660 ((((MODE) != BLKmode \
661 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
662 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
663
664 /* Update the data in CUM to advance over an argument
665 of mode MODE and data type TYPE.
666 (TYPE is null for libcalls where that information may not be available.) */
667
668 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
669 { (CUM).nargs_prototype--; \
670 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
671 + (((CUM).words & 01) && (TYPE) != 0 \
672 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
673 }
674
675 /* Determine where to put an argument to a function.
676 Value is zero to push the argument on the stack,
677 or a hard register in which to store the argument.
678
679 MODE is the argument's machine mode.
680 TYPE is the data type of the argument (as a tree).
681 This is null for libcalls where that information may
682 not be available.
683 CUM is a variable of type CUMULATIVE_ARGS which gives info about
684 the preceding args and about the function being called.
685 NAMED is nonzero if this argument is a named parameter
686 (otherwise it is an extra parameter matching an ellipsis).
687
688 On the HP-PA the first four words of args are normally in registers
689 and the rest are pushed. But any arg that won't entirely fit in regs
690 is pushed.
691
692 Arguments passed in registers are either 1 or 2 words long.
693
694 The caller must make a distinction between calls to explicitly named
695 functions and calls through pointers to functions -- the conventions
696 are different! Calls through pointers to functions only use general
697 registers for the first four argument words.
698
699 Of course all this is different for the portable runtime model
700 HP wants everyone to use for ELF. Ugh. Here's a quick description
701 of how it's supposed to work.
702
703 1) callee side remains unchanged. It expects integer args to be
704 in the integer registers, float args in the float registers and
705 unnamed args in integer registers.
706
707 2) caller side now depends on if the function being called has
708 a prototype in scope (rather than if it's being called indirectly).
709
710 2a) If there is a prototype in scope, then arguments are passed
711 according to their type (ints in integer registers, floats in float
712 registers, unnamed args in integer registers.
713
714 2b) If there is no prototype in scope, then floating point arguments
715 are passed in both integer and float registers. egad.
716
717 FYI: The portable parameter passing conventions are almost exactly like
718 the standard parameter passing conventions on the RS6000. That's why
719 you'll see lots of similar code in rs6000.h. */
720
721 /* If defined, a C expression which determines whether, and in which
722 direction, to pad out an argument with extra space. */
723 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
724
725 /* Specify padding for the last element of a block move between registers
726 and memory.
727
728 The 64-bit runtime specifies that objects need to be left justified
729 (i.e., the normal justification for a big endian target). The 32-bit
730 runtime specifies right justification for objects smaller than 64 bits.
731 We use a DImode register in the parallel for 5 to 7 byte structures
732 so that there is only one element. This allows the object to be
733 correctly padded. */
734 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
735 function_arg_padding ((MODE), (TYPE))
736
737 /* Do not expect to understand this without reading it several times. I'm
738 tempted to try and simply it, but I worry about breaking something. */
739
740 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
741 function_arg (&CUM, MODE, TYPE, NAMED)
742
743 /* If defined, a C expression that gives the alignment boundary, in
744 bits, of an argument with the specified mode and type. If it is
745 not defined, `PARM_BOUNDARY' is used for all arguments. */
746
747 /* Arguments larger than one word are double word aligned. */
748
749 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
750 (((TYPE) \
751 ? (integer_zerop (TYPE_SIZE (TYPE)) \
752 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
753 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
754 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
755 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
756
757
758 extern GTY(()) rtx hppa_compare_op0;
759 extern GTY(()) rtx hppa_compare_op1;
760 extern enum cmp_type hppa_branch_type;
761
762 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
763 as assembly via FUNCTION_PROFILER. Just output a local label.
764 We can't use the function label because the GAS SOM target can't
765 handle the difference of a global symbol and a local symbol. */
766
767 #ifndef FUNC_BEGIN_PROLOG_LABEL
768 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
769 #endif
770
771 #define FUNCTION_PROFILER(FILE, LABEL) \
772 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
773
774 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
775 void hppa_profile_hook (int label_no);
776
777 /* The profile counter if emitted must come before the prologue. */
778 #define PROFILE_BEFORE_PROLOGUE 1
779
780 /* We never want final.c to emit profile counters. When profile
781 counters are required, we have to defer emitting them to the end
782 of the current file. */
783 #define NO_PROFILE_COUNTERS 1
784
785 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
786 the stack pointer does not matter. The value is tested only in
787 functions that have frame pointers.
788 No definition is equivalent to always zero. */
789
790 extern int may_call_alloca;
791
792 #define EXIT_IGNORE_STACK \
793 (get_frame_size () != 0 \
794 || cfun->calls_alloca || crtl->outgoing_args_size)
795
796 /* Output assembler code for a block containing the constant parts
797 of a trampoline, leaving space for the variable parts.\
798
799 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
800 and then branches to the specified routine.
801
802 This code template is copied from text segment to stack location
803 and then patched with INITIALIZE_TRAMPOLINE to contain
804 valid values, and then entered as a subroutine.
805
806 It is best to keep this as small as possible to avoid having to
807 flush multiple lines in the cache. */
808
809 #define TRAMPOLINE_TEMPLATE(FILE) \
810 { \
811 if (!TARGET_64BIT) \
812 { \
813 fputs ("\tldw 36(%r22),%r21\n", FILE); \
814 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
815 if (ASSEMBLER_DIALECT == 0) \
816 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
817 else \
818 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
819 fputs ("\tldw 4(%r21),%r19\n", FILE); \
820 fputs ("\tldw 0(%r21),%r21\n", FILE); \
821 if (TARGET_PA_20) \
822 { \
823 fputs ("\tbve (%r21)\n", FILE); \
824 fputs ("\tldw 40(%r22),%r29\n", FILE); \
825 fputs ("\t.word 0\n", FILE); \
826 fputs ("\t.word 0\n", FILE); \
827 } \
828 else \
829 { \
830 fputs ("\tldsid (%r21),%r1\n", FILE); \
831 fputs ("\tmtsp %r1,%sr0\n", FILE); \
832 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
833 fputs ("\tldw 40(%r22),%r29\n", FILE); \
834 } \
835 fputs ("\t.word 0\n", FILE); \
836 fputs ("\t.word 0\n", FILE); \
837 fputs ("\t.word 0\n", FILE); \
838 fputs ("\t.word 0\n", FILE); \
839 } \
840 else \
841 { \
842 fputs ("\t.dword 0\n", FILE); \
843 fputs ("\t.dword 0\n", FILE); \
844 fputs ("\t.dword 0\n", FILE); \
845 fputs ("\t.dword 0\n", FILE); \
846 fputs ("\tmfia %r31\n", FILE); \
847 fputs ("\tldd 24(%r31),%r1\n", FILE); \
848 fputs ("\tldd 24(%r1),%r27\n", FILE); \
849 fputs ("\tldd 16(%r1),%r1\n", FILE); \
850 fputs ("\tbve (%r1)\n", FILE); \
851 fputs ("\tldd 32(%r31),%r31\n", FILE); \
852 fputs ("\t.dword 0 ; fptr\n", FILE); \
853 fputs ("\t.dword 0 ; static link\n", FILE); \
854 } \
855 }
856
857 /* Length in units of the trampoline for entering a nested function. */
858
859 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
860
861 /* Length in units of the trampoline instruction code. */
862
863 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
864
865 /* Minimum length of a cache line. A length of 16 will work on all
866 PA-RISC processors. All PA 1.1 processors have a cache line of
867 32 bytes. Most but not all PA 2.0 processors have a cache line
868 of 64 bytes. As cache flushes are expensive and we don't support
869 PA 1.0, we use a minimum length of 32. */
870
871 #define MIN_CACHELINE_SIZE 32
872
873 /* Emit RTL insns to initialize the variable parts of a trampoline.
874 FNADDR is an RTX for the address of the function's pure code.
875 CXT is an RTX for the static chain value for the function.
876
877 Move the function address to the trampoline template at offset 36.
878 Move the static chain value to trampoline template at offset 40.
879 Move the trampoline address to trampoline template at offset 44.
880 Move r19 to trampoline template at offset 48. The latter two
881 words create a plabel for the indirect call to the trampoline.
882
883 A similar sequence is used for the 64-bit port but the plabel is
884 at the beginning of the trampoline.
885
886 Finally, the cache entries for the trampoline code are flushed.
887 This is necessary to ensure that the trampoline instruction sequence
888 is written to memory prior to any attempts at prefetching the code
889 sequence. */
890
891 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
892 { \
893 rtx start_addr = gen_reg_rtx (Pmode); \
894 rtx end_addr = gen_reg_rtx (Pmode); \
895 rtx line_length = gen_reg_rtx (Pmode); \
896 rtx tmp; \
897 \
898 if (!TARGET_64BIT) \
899 { \
900 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
901 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
902 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
903 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
904 \
905 /* Create a fat pointer for the trampoline. */ \
906 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
907 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \
908 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
909 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
910 gen_rtx_REG (Pmode, 19)); \
911 \
912 /* fdc and fic only use registers for the address to flush, \
913 they do not accept integer displacements. We align the \
914 start and end addresses to the beginning of their respective \
915 cache lines to minimize the number of lines flushed. */ \
916 tmp = force_reg (Pmode, (TRAMP)); \
917 emit_insn (gen_andsi3 (start_addr, tmp, \
918 GEN_INT (-MIN_CACHELINE_SIZE))); \
919 tmp = force_reg (Pmode, \
920 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
921 emit_insn (gen_andsi3 (end_addr, tmp, \
922 GEN_INT (-MIN_CACHELINE_SIZE))); \
923 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
924 emit_insn (gen_dcacheflushsi (start_addr, end_addr, line_length));\
925 emit_insn (gen_icacheflushsi (start_addr, end_addr, line_length, \
926 gen_reg_rtx (Pmode), \
927 gen_reg_rtx (Pmode))); \
928 } \
929 else \
930 { \
931 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
932 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
933 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
934 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
935 \
936 /* Create a fat pointer for the trampoline. */ \
937 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
938 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
939 force_reg (Pmode, plus_constant ((TRAMP), 32))); \
940 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
941 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
942 gen_rtx_REG (Pmode, 27)); \
943 \
944 /* fdc and fic only use registers for the address to flush, \
945 they do not accept integer displacements. We align the \
946 start and end addresses to the beginning of their respective \
947 cache lines to minimize the number of lines flushed. */ \
948 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
949 emit_insn (gen_anddi3 (start_addr, tmp, \
950 GEN_INT (-MIN_CACHELINE_SIZE))); \
951 tmp = force_reg (Pmode, \
952 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
953 emit_insn (gen_anddi3 (end_addr, tmp, \
954 GEN_INT (-MIN_CACHELINE_SIZE))); \
955 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
956 emit_insn (gen_dcacheflushdi (start_addr, end_addr, line_length));\
957 emit_insn (gen_icacheflushdi (start_addr, end_addr, line_length, \
958 gen_reg_rtx (Pmode), \
959 gen_reg_rtx (Pmode))); \
960 } \
961 }
962
963 /* Perform any machine-specific adjustment in the address of the trampoline.
964 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
965 Adjust the trampoline address to point to the plabel at offset 44. */
966
967 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
968 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
969
970 /* Addressing modes, and classification of registers for them.
971
972 Using autoincrement addressing modes on PA8000 class machines is
973 not profitable. */
974
975 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
976 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
977
978 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
979 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
980
981 /* Macros to check register numbers against specific register classes. */
982
983 /* The following macros assume that X is a hard or pseudo reg number.
984 They give nonzero only if X is a hard reg of the suitable class
985 or a pseudo reg currently allocated to a suitable hard reg.
986 Since they use reg_renumber, they are safe only once reg_renumber
987 has been allocated, which happens in local-alloc.c. */
988
989 #define REGNO_OK_FOR_INDEX_P(X) \
990 ((X) && ((X) < 32 \
991 || (X >= FIRST_PSEUDO_REGISTER \
992 && reg_renumber \
993 && (unsigned) reg_renumber[X] < 32)))
994 #define REGNO_OK_FOR_BASE_P(X) \
995 ((X) && ((X) < 32 \
996 || (X >= FIRST_PSEUDO_REGISTER \
997 && reg_renumber \
998 && (unsigned) reg_renumber[X] < 32)))
999 #define REGNO_OK_FOR_FP_P(X) \
1000 (FP_REGNO_P (X) \
1001 || (X >= FIRST_PSEUDO_REGISTER \
1002 && reg_renumber \
1003 && FP_REGNO_P (reg_renumber[X])))
1004
1005 /* Now macros that check whether X is a register and also,
1006 strictly, whether it is in a specified class.
1007
1008 These macros are specific to the HP-PA, and may be used only
1009 in code for printing assembler insns and in conditions for
1010 define_optimization. */
1011
1012 /* 1 if X is an fp register. */
1013
1014 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1015
1016 /* Maximum number of registers that can appear in a valid memory address. */
1017
1018 #define MAX_REGS_PER_ADDRESS 2
1019
1020 /* Non-TLS symbolic references. */
1021 #define PA_SYMBOL_REF_TLS_P(RTX) \
1022 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1023
1024 /* Recognize any constant value that is a valid address except
1025 for symbolic addresses. We get better CSE by rejecting them
1026 here and allowing hppa_legitimize_address to break them up. We
1027 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1028
1029 #define CONSTANT_ADDRESS_P(X) \
1030 ((GET_CODE (X) == LABEL_REF \
1031 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
1032 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1033 || GET_CODE (X) == HIGH) \
1034 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1035
1036 /* A C expression that is nonzero if we are using the new HP assembler. */
1037
1038 #ifndef NEW_HP_ASSEMBLER
1039 #define NEW_HP_ASSEMBLER 0
1040 #endif
1041
1042 /* The macros below define the immediate range for CONST_INTS on
1043 the 64-bit port. Constants in this range can be loaded in three
1044 instructions using a ldil/ldo/depdi sequence. Constants outside
1045 this range are forced to the constant pool prior to reload. */
1046
1047 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1048 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1049 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1050 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1051
1052 /* A C expression that is nonzero if X is a legitimate constant for an
1053 immediate operand.
1054
1055 We include all constant integers and constant doubles, but not
1056 floating-point, except for floating-point zero. We reject LABEL_REFs
1057 if we're not using gas or the new HP assembler.
1058
1059 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
1060 that need more than three instructions to load prior to reload. This
1061 limit is somewhat arbitrary. It takes three instructions to load a
1062 CONST_INT from memory but two are memory accesses. It may be better
1063 to increase the allowed range for CONST_INTS. We may also be able
1064 to handle CONST_DOUBLES. */
1065
1066 #define LEGITIMATE_CONSTANT_P(X) \
1067 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1068 || (X) == CONST0_RTX (GET_MODE (X))) \
1069 && (NEW_HP_ASSEMBLER \
1070 || TARGET_GAS \
1071 || GET_CODE (X) != LABEL_REF) \
1072 && (!TARGET_64BIT \
1073 || GET_CODE (X) != CONST_DOUBLE) \
1074 && (!TARGET_64BIT \
1075 || HOST_BITS_PER_WIDE_INT <= 32 \
1076 || GET_CODE (X) != CONST_INT \
1077 || reload_in_progress \
1078 || reload_completed \
1079 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
1080 || cint_ok_for_move (INTVAL (X))) \
1081 && !function_label_operand (X, VOIDmode))
1082
1083 /* Target flags set on a symbol_ref. */
1084
1085 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
1086 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1087 #define SYMBOL_REF_REFERENCED_P(RTX) \
1088 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1089
1090 /* Defines for constraints.md. */
1091
1092 /* Return 1 iff OP is a scaled or unscaled index address. */
1093 #define IS_INDEX_ADDR_P(OP) \
1094 (GET_CODE (OP) == PLUS \
1095 && GET_MODE (OP) == Pmode \
1096 && (GET_CODE (XEXP (OP, 0)) == MULT \
1097 || GET_CODE (XEXP (OP, 1)) == MULT \
1098 || (REG_P (XEXP (OP, 0)) \
1099 && REG_P (XEXP (OP, 1)))))
1100
1101 /* Return 1 iff OP is a LO_SUM DLT address. */
1102 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1103 (GET_CODE (OP) == LO_SUM \
1104 && GET_MODE (OP) == Pmode \
1105 && REG_P (XEXP (OP, 0)) \
1106 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
1107 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1108
1109 /* Nonzero if 14-bit offsets can be used for all loads and stores.
1110 This is not possible when generating PA 1.x code as floating point
1111 loads and stores only support 5-bit offsets. Note that we do not
1112 forbid the use of 14-bit offsets in GO_IF_LEGITIMATE_ADDRESS.
1113 Instead, we use pa_secondary_reload() to reload integer mode
1114 REG+D memory addresses used in floating point loads and stores.
1115
1116 FIXME: the ELF32 linker clobbers the LSB of the FP register number
1117 in PA 2.0 floating-point insns with long displacements. This is
1118 because R_PARISC_DPREL14WR and other relocations like it are not
1119 yet supported by GNU ld. For now, we reject long displacements
1120 on this target. */
1121
1122 #define INT14_OK_STRICT \
1123 (TARGET_SOFT_FLOAT \
1124 || TARGET_DISABLE_FPREGS \
1125 || (TARGET_PA_20 && !TARGET_ELF32))
1126
1127 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1128 and check its validity for a certain class.
1129 We have two alternate definitions for each of them.
1130 The usual definition accepts all pseudo regs; the other rejects
1131 them unless they have been allocated suitable hard regs.
1132 The symbol REG_OK_STRICT causes the latter definition to be used.
1133
1134 Most source files want to accept pseudo regs in the hope that
1135 they will get allocated to the class that the insn wants them to be in.
1136 Source files for reload pass need to be strict.
1137 After reload, it makes no difference, since pseudo regs have
1138 been eliminated by then. */
1139
1140 #ifndef REG_OK_STRICT
1141
1142 /* Nonzero if X is a hard reg that can be used as an index
1143 or if it is a pseudo reg. */
1144 #define REG_OK_FOR_INDEX_P(X) \
1145 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1146
1147 /* Nonzero if X is a hard reg that can be used as a base reg
1148 or if it is a pseudo reg. */
1149 #define REG_OK_FOR_BASE_P(X) \
1150 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1151
1152 #else
1153
1154 /* Nonzero if X is a hard reg that can be used as an index. */
1155 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1156
1157 /* Nonzero if X is a hard reg that can be used as a base reg. */
1158 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1159
1160 #endif
1161
1162 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1163 valid memory address for an instruction. The MODE argument is the
1164 machine mode for the MEM expression that wants to use this address.
1165
1166 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1167 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
1168 available with floating point loads and stores, and integer loads.
1169 We get better code by allowing indexed addresses in the initial
1170 RTL generation.
1171
1172 The acceptance of indexed addresses as legitimate implies that we
1173 must provide patterns for doing indexed integer stores, or the move
1174 expanders must force the address of an indexed store to a register.
1175 We have adopted the latter approach.
1176
1177 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1178 the base register is a valid pointer for indexed instructions.
1179 On targets that have non-equivalent space registers, we have to
1180 know at the time of assembler output which register in a REG+REG
1181 pair is the base register. The REG_POINTER flag is sometimes lost
1182 in reload and the following passes, so it can't be relied on during
1183 code generation. Thus, we either have to canonicalize the order
1184 of the registers in REG+REG indexed addresses, or treat REG+REG
1185 addresses separately and provide patterns for both permutations.
1186
1187 The latter approach requires several hundred additional lines of
1188 code in pa.md. The downside to canonicalizing is that a PLUS
1189 in the wrong order can't combine to form to make a scaled indexed
1190 memory operand. As we won't need to canonicalize the operands if
1191 the REG_POINTER lossage can be fixed, it seems better canonicalize.
1192
1193 We initially break out scaled indexed addresses in canonical order
1194 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
1195 scaled indexed addresses during RTL generation. However, fold_rtx
1196 has its own opinion on how the operands of a PLUS should be ordered.
1197 If one of the operands is equivalent to a constant, it will make
1198 that operand the second operand. As the base register is likely to
1199 be equivalent to a SYMBOL_REF, we have made it the second operand.
1200
1201 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1202 operands are in the order INDEX+BASE on targets with non-equivalent
1203 space registers, and in any order on targets with equivalent space
1204 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1205
1206 We treat a SYMBOL_REF as legitimate if it is part of the current
1207 function's constant-pool, because such addresses can actually be
1208 output as REG+SMALLINT. */
1209
1210 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1211 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1212
1213 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1214 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1215
1216 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1217 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1218
1219 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1220 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1221
1222 #if HOST_BITS_PER_WIDE_INT > 32
1223 #define VAL_32_BITS_P(X) \
1224 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1225 < (unsigned HOST_WIDE_INT) 2 << 31)
1226 #else
1227 #define VAL_32_BITS_P(X) 1
1228 #endif
1229 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1230
1231 /* These are the modes that we allow for scaled indexing. */
1232 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1233 ((TARGET_64BIT && (MODE) == DImode) \
1234 || (MODE) == SImode \
1235 || (MODE) == HImode \
1236 || (MODE) == SFmode \
1237 || (MODE) == DFmode)
1238
1239 /* These are the modes that we allow for unscaled indexing. */
1240 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1241 ((TARGET_64BIT && (MODE) == DImode) \
1242 || (MODE) == SImode \
1243 || (MODE) == HImode \
1244 || (MODE) == QImode \
1245 || (MODE) == SFmode \
1246 || (MODE) == DFmode)
1247
1248 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1249 { \
1250 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1251 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1252 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1253 && REG_P (XEXP (X, 0)) \
1254 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1255 goto ADDR; \
1256 else if (GET_CODE (X) == PLUS) \
1257 { \
1258 rtx base = 0, index = 0; \
1259 if (REG_P (XEXP (X, 1)) \
1260 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1261 base = XEXP (X, 1), index = XEXP (X, 0); \
1262 else if (REG_P (XEXP (X, 0)) \
1263 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1264 base = XEXP (X, 0), index = XEXP (X, 1); \
1265 if (base \
1266 && GET_CODE (index) == CONST_INT \
1267 && ((INT_14_BITS (index) \
1268 && (((MODE) != DImode \
1269 && (MODE) != SFmode \
1270 && (MODE) != DFmode) \
1271 /* The base register for DImode loads and stores \
1272 with long displacements must be aligned because \
1273 the lower three bits in the displacement are \
1274 assumed to be zero. */ \
1275 || ((MODE) == DImode \
1276 && (!TARGET_64BIT \
1277 || (INTVAL (index) % 8) == 0)) \
1278 /* Similarly, the base register for SFmode/DFmode \
1279 loads and stores with long displacements must \
1280 be aligned. */ \
1281 || (((MODE) == SFmode || (MODE) == DFmode) \
1282 && INT14_OK_STRICT \
1283 && (INTVAL (index) % GET_MODE_SIZE (MODE)) == 0))) \
1284 || INT_5_BITS (index))) \
1285 goto ADDR; \
1286 if (!TARGET_DISABLE_INDEXING \
1287 /* Only accept the "canonical" INDEX+BASE operand order \
1288 on targets with non-equivalent space registers. */ \
1289 && (TARGET_NO_SPACE_REGS \
1290 ? (base && REG_P (index)) \
1291 : (base == XEXP (X, 1) && REG_P (index) \
1292 && (reload_completed \
1293 || (reload_in_progress && HARD_REGISTER_P (base)) \
1294 || REG_POINTER (base)) \
1295 && (reload_completed \
1296 || (reload_in_progress && HARD_REGISTER_P (index)) \
1297 || !REG_POINTER (index)))) \
1298 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1299 && REG_OK_FOR_INDEX_P (index) \
1300 && borx_reg_operand (base, Pmode) \
1301 && borx_reg_operand (index, Pmode)) \
1302 goto ADDR; \
1303 if (!TARGET_DISABLE_INDEXING \
1304 && base \
1305 && GET_CODE (index) == MULT \
1306 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1307 && REG_P (XEXP (index, 0)) \
1308 && GET_MODE (XEXP (index, 0)) == Pmode \
1309 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1310 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1311 && INTVAL (XEXP (index, 1)) \
1312 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1313 && borx_reg_operand (base, Pmode)) \
1314 goto ADDR; \
1315 } \
1316 else if (GET_CODE (X) == LO_SUM \
1317 && GET_CODE (XEXP (X, 0)) == REG \
1318 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1319 && CONSTANT_P (XEXP (X, 1)) \
1320 && (TARGET_SOFT_FLOAT \
1321 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1322 || (TARGET_PA_20 \
1323 && !TARGET_ELF32 \
1324 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1325 || ((MODE) != SFmode \
1326 && (MODE) != DFmode))) \
1327 goto ADDR; \
1328 else if (GET_CODE (X) == LO_SUM \
1329 && GET_CODE (XEXP (X, 0)) == SUBREG \
1330 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1331 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1332 && CONSTANT_P (XEXP (X, 1)) \
1333 && (TARGET_SOFT_FLOAT \
1334 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1335 || (TARGET_PA_20 \
1336 && !TARGET_ELF32 \
1337 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1338 || ((MODE) != SFmode \
1339 && (MODE) != DFmode))) \
1340 goto ADDR; \
1341 else if (GET_CODE (X) == LABEL_REF \
1342 || (GET_CODE (X) == CONST_INT \
1343 && INT_5_BITS (X))) \
1344 goto ADDR; \
1345 /* Needed for -fPIC */ \
1346 else if (GET_CODE (X) == LO_SUM \
1347 && GET_CODE (XEXP (X, 0)) == REG \
1348 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1349 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1350 && (TARGET_SOFT_FLOAT \
1351 || (TARGET_PA_20 && !TARGET_ELF32) \
1352 || ((MODE) != SFmode \
1353 && (MODE) != DFmode))) \
1354 goto ADDR; \
1355 }
1356
1357 /* Look for machine dependent ways to make the invalid address AD a
1358 valid address.
1359
1360 For the PA, transform:
1361
1362 memory(X + <large int>)
1363
1364 into:
1365
1366 if (<large int> & mask) >= 16
1367 Y = (<large int> & ~mask) + mask + 1 Round up.
1368 else
1369 Y = (<large int> & ~mask) Round down.
1370 Z = X + Y
1371 memory (Z + (<large int> - Y));
1372
1373 This makes reload inheritance and reload_cse work better since Z
1374 can be reused.
1375
1376 There may be more opportunities to improve code with this hook. */
1377 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1378 do { \
1379 long offset, newoffset, mask; \
1380 rtx new_rtx, temp = NULL_RTX; \
1381 \
1382 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1383 ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff); \
1384 \
1385 if (optimize && GET_CODE (AD) == PLUS) \
1386 temp = simplify_binary_operation (PLUS, Pmode, \
1387 XEXP (AD, 0), XEXP (AD, 1)); \
1388 \
1389 new_rtx = temp ? temp : AD; \
1390 \
1391 if (optimize \
1392 && GET_CODE (new_rtx) == PLUS \
1393 && GET_CODE (XEXP (new_rtx, 0)) == REG \
1394 && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT) \
1395 { \
1396 offset = INTVAL (XEXP ((new_rtx), 1)); \
1397 \
1398 /* Choose rounding direction. Round up if we are >= halfway. */ \
1399 if ((offset & mask) >= ((mask + 1) / 2)) \
1400 newoffset = (offset & ~mask) + mask + 1; \
1401 else \
1402 newoffset = offset & ~mask; \
1403 \
1404 /* Ensure that long displacements are aligned. */ \
1405 if (mask == 0x3fff \
1406 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1407 || (TARGET_64BIT && (MODE) == DImode))) \
1408 newoffset &= ~(GET_MODE_SIZE (MODE) - 1); \
1409 \
1410 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1411 { \
1412 temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0), \
1413 GEN_INT (newoffset)); \
1414 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1415 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1416 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1417 (OPNUM), (TYPE)); \
1418 goto WIN; \
1419 } \
1420 } \
1421 } while (0)
1422
1423
1424
1425
1426 /* Try machine-dependent ways of modifying an illegitimate address
1427 to be legitimate. If we find one, return the new, valid address.
1428 This macro is used in only one place: `memory_address' in explow.c.
1429
1430 OLDX is the address as it was before break_out_memory_refs was called.
1431 In some cases it is useful to look at this to decide what needs to be done.
1432
1433 MODE and WIN are passed so that this macro can use
1434 GO_IF_LEGITIMATE_ADDRESS.
1435
1436 It is always safe for this macro to do nothing. It exists to recognize
1437 opportunities to optimize the output. */
1438
1439 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1440 { rtx orig_x = (X); \
1441 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1442 if ((X) != orig_x && memory_address_p (MODE, X)) \
1443 goto WIN; }
1444
1445 /* Go to LABEL if ADDR (a legitimate address expression)
1446 has an effect that depends on the machine mode it is used for. */
1447
1448 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1449
1450 #define TARGET_ASM_SELECT_SECTION pa_select_section
1451
1452 /* Return a nonzero value if DECL has a section attribute. */
1453 #define IN_NAMED_SECTION_P(DECL) \
1454 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1455 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1456
1457 /* Define this macro if references to a symbol must be treated
1458 differently depending on something about the variable or
1459 function named by the symbol (such as what section it is in).
1460
1461 The macro definition, if any, is executed immediately after the
1462 rtl for DECL or other node is created.
1463 The value of the rtl will be a `mem' whose address is a
1464 `symbol_ref'.
1465
1466 The usual thing for this macro to do is to a flag in the
1467 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1468 name string in the `symbol_ref' (if one bit is not enough
1469 information).
1470
1471 On the HP-PA we use this to indicate if a symbol is in text or
1472 data space. Also, function labels need special treatment. */
1473
1474 #define TEXT_SPACE_P(DECL)\
1475 (TREE_CODE (DECL) == FUNCTION_DECL \
1476 || (TREE_CODE (DECL) == VAR_DECL \
1477 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1478 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1479 && !flag_pic) \
1480 || CONSTANT_CLASS_P (DECL))
1481
1482 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1483
1484 /* Specify the machine mode that this machine uses for the index in the
1485 tablejump instruction. For small tables, an element consists of a
1486 ia-relative branch and its delay slot. When -mbig-switch is specified,
1487 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1488 for both 32 and 64-bit pic code. */
1489 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1490
1491 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1492 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1493
1494 /* Define this as 1 if `char' should by default be signed; else as 0. */
1495 #define DEFAULT_SIGNED_CHAR 1
1496
1497 /* Max number of bytes we can move from memory to memory
1498 in one reasonably fast instruction. */
1499 #define MOVE_MAX 8
1500
1501 /* Higher than the default as we prefer to use simple move insns
1502 (better scheduling and delay slot filling) and because our
1503 built-in block move is really a 2X unrolled loop.
1504
1505 Believe it or not, this has to be big enough to allow for copying all
1506 arguments passed in registers to avoid infinite recursion during argument
1507 setup for a function call. Why? Consider how we copy the stack slots
1508 reserved for parameters when they may be trashed by a call. */
1509 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1510
1511 /* Define if operations between registers always perform the operation
1512 on the full register even if a narrower mode is specified. */
1513 #define WORD_REGISTER_OPERATIONS
1514
1515 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1516 will either zero-extend or sign-extend. The value of this macro should
1517 be the code that says which one of the two operations is implicitly
1518 done, UNKNOWN if none. */
1519 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1520
1521 /* Nonzero if access to memory by bytes is slow and undesirable. */
1522 #define SLOW_BYTE_ACCESS 1
1523
1524 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1525 is done just by pretending it is already truncated. */
1526 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1527
1528 /* Specify the machine mode that pointers have.
1529 After generation of rtl, the compiler makes no further distinction
1530 between pointers and any other objects of this machine mode. */
1531 #define Pmode word_mode
1532
1533 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1534 return the mode to be used for the comparison. For floating-point, CCFPmode
1535 should be used. CC_NOOVmode should be used when the first operand is a
1536 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1537 needed. */
1538 #define SELECT_CC_MODE(OP,X,Y) \
1539 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1540
1541 /* A function address in a call instruction
1542 is a byte address (for indexing purposes)
1543 so give the MEM rtx a byte's mode. */
1544 #define FUNCTION_MODE SImode
1545
1546 /* Define this if addresses of constant functions
1547 shouldn't be put through pseudo regs where they can be cse'd.
1548 Desirable on machines where ordinary constants are expensive
1549 but a CALL with constant address is cheap. */
1550 #define NO_FUNCTION_CSE
1551
1552 /* Define this to be nonzero if shift instructions ignore all but the low-order
1553 few bits. */
1554 #define SHIFT_COUNT_TRUNCATED 1
1555
1556 /* Compute extra cost of moving data between one register class
1557 and another.
1558
1559 Make moves from SAR so expensive they should never happen. We used to
1560 have 0xffff here, but that generates overflow in rare cases.
1561
1562 Copies involving a FP register and a non-FP register are relatively
1563 expensive because they must go through memory.
1564
1565 Other copies are reasonably cheap. */
1566 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1567 (CLASS1 == SHIFT_REGS ? 0x100 \
1568 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1569 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1570 : 2)
1571
1572 /* Adjust the cost of branches. */
1573 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1574
1575 /* Handling the special cases is going to get too complicated for a macro,
1576 just call `pa_adjust_insn_length' to do the real work. */
1577 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1578 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1579
1580 /* Millicode insns are actually function calls with some special
1581 constraints on arguments and register usage.
1582
1583 Millicode calls always expect their arguments in the integer argument
1584 registers, and always return their result in %r29 (ret1). They
1585 are expected to clobber their arguments, %r1, %r29, and the return
1586 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1587
1588 This macro tells reorg that the references to arguments and
1589 millicode calls do not appear to happen until after the millicode call.
1590 This allows reorg to put insns which set the argument registers into the
1591 delay slot of the millicode call -- thus they act more like traditional
1592 CALL_INSNs.
1593
1594 Note we cannot consider side effects of the insn to be delayed because
1595 the branch and link insn will clobber the return pointer. If we happened
1596 to use the return pointer in the delay slot of the call, then we lose.
1597
1598 get_attr_type will try to recognize the given insn, so make sure to
1599 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1600 in particular. */
1601 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1602
1603
1604 /* Control the assembler format that we output. */
1605
1606 /* A C string constant describing how to begin a comment in the target
1607 assembler language. The compiler assumes that the comment will end at
1608 the end of the line. */
1609
1610 #define ASM_COMMENT_START ";"
1611
1612 /* Output to assembler file text saying following lines
1613 may contain character constants, extra white space, comments, etc. */
1614
1615 #define ASM_APP_ON ""
1616
1617 /* Output to assembler file text saying following lines
1618 no longer contain unusual constructs. */
1619
1620 #define ASM_APP_OFF ""
1621
1622 /* This is how to output the definition of a user-level label named NAME,
1623 such as the label on a static function or variable NAME. */
1624
1625 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1626 do { \
1627 assemble_name ((FILE), (NAME)); \
1628 if (TARGET_GAS) \
1629 fputs (":\n", (FILE)); \
1630 else \
1631 fputc ('\n', (FILE)); \
1632 } while (0)
1633
1634 /* This is how to output a reference to a user-level label named NAME.
1635 `assemble_name' uses this. */
1636
1637 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1638 do { \
1639 const char *xname = (NAME); \
1640 if (FUNCTION_NAME_P (NAME)) \
1641 xname += 1; \
1642 if (xname[0] == '*') \
1643 xname += 1; \
1644 else \
1645 fputs (user_label_prefix, FILE); \
1646 fputs (xname, FILE); \
1647 } while (0)
1648
1649 /* This how we output the symbol_ref X. */
1650
1651 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1652 do { \
1653 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1654 assemble_name (FILE, XSTR (X, 0)); \
1655 } while (0)
1656
1657 /* This is how to store into the string LABEL
1658 the symbol_ref name of an internal numbered label where
1659 PREFIX is the class of label and NUM is the number within the class.
1660 This is suitable for output with `assemble_name'. */
1661
1662 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1663 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1664
1665 /* Output the definition of a compiler-generated label named NAME. */
1666
1667 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1668 do { \
1669 assemble_name_raw ((FILE), (NAME)); \
1670 if (TARGET_GAS) \
1671 fputs (":\n", (FILE)); \
1672 else \
1673 fputc ('\n', (FILE)); \
1674 } while (0)
1675
1676 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1677
1678 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1679 output_ascii ((FILE), (P), (SIZE))
1680
1681 /* Jump tables are always placed in the text section. Technically, it
1682 is possible to put them in the readonly data section when -mbig-switch
1683 is specified. This has the benefit of getting the table out of .text
1684 and reducing branch lengths as a result. The downside is that an
1685 additional insn (addil) is needed to access the table when generating
1686 PIC code. The address difference table also has to use 32-bit
1687 pc-relative relocations. Currently, GAS does not support these
1688 relocations, although it is easily modified to do this operation.
1689 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1690 when using ELF GAS. A simple difference can be used when using
1691 SOM GAS or the HP assembler. The final downside is GDB complains
1692 about the nesting of the label for the table when debugging. */
1693
1694 #define JUMP_TABLES_IN_TEXT_SECTION 1
1695
1696 /* This is how to output an element of a case-vector that is absolute. */
1697
1698 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1699 if (TARGET_BIG_SWITCH) \
1700 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1701 else \
1702 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1703
1704 /* This is how to output an element of a case-vector that is relative.
1705 Since we always place jump tables in the text section, the difference
1706 is absolute and requires no relocation. */
1707
1708 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1709 if (TARGET_BIG_SWITCH) \
1710 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1711 else \
1712 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1713
1714 /* This is how to output an assembler line that says to advance the
1715 location counter to a multiple of 2**LOG bytes. */
1716
1717 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1718 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1719
1720 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1721 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1722 (unsigned HOST_WIDE_INT)(SIZE))
1723
1724 /* This says how to output an assembler line to define an uninitialized
1725 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1726 This macro exists to properly support languages like C++ which do not
1727 have common data. */
1728
1729 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1730 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1731
1732 /* This says how to output an assembler line to define a global common symbol
1733 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1734
1735 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1736 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1737
1738 /* This says how to output an assembler line to define a local common symbol
1739 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1740 controls how the assembler definitions of uninitialized static variables
1741 are output. */
1742
1743 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1744 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1745
1746 /* All HP assemblers use "!" to separate logical lines. */
1747 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1748
1749 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1750 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1751
1752 /* Print operand X (an rtx) in assembler syntax to file FILE.
1753 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1754 For `%' followed by punctuation, CODE is the punctuation and X is null.
1755
1756 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1757 and an immediate zero should be represented as `r0'.
1758
1759 Several % codes are defined:
1760 O an operation
1761 C compare conditions
1762 N extract conditions
1763 M modifier to handle preincrement addressing for memory refs.
1764 F modifier to handle preincrement addressing for fp memory refs */
1765
1766 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1767
1768
1769 /* Print a memory address as an operand to reference that memory location. */
1770
1771 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1772 { rtx addr = ADDR; \
1773 switch (GET_CODE (addr)) \
1774 { \
1775 case REG: \
1776 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1777 break; \
1778 case PLUS: \
1779 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1780 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1781 reg_names [REGNO (XEXP (addr, 0))]); \
1782 break; \
1783 case LO_SUM: \
1784 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1785 fputs ("R'", FILE); \
1786 else if (flag_pic == 0) \
1787 fputs ("RR'", FILE); \
1788 else \
1789 fputs ("RT'", FILE); \
1790 output_global_address (FILE, XEXP (addr, 1), 0); \
1791 fputs ("(", FILE); \
1792 output_operand (XEXP (addr, 0), 0); \
1793 fputs (")", FILE); \
1794 break; \
1795 case CONST_INT: \
1796 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1797 break; \
1798 default: \
1799 output_addr_const (FILE, addr); \
1800 }}
1801
1802
1803 /* Find the return address associated with the frame given by
1804 FRAMEADDR. */
1805 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1806 (return_addr_rtx (COUNT, FRAMEADDR))
1807
1808 /* Used to mask out junk bits from the return address, such as
1809 processor state, interrupt status, condition codes and the like. */
1810 #define MASK_RETURN_ADDR \
1811 /* The privilege level is in the two low order bits, mask em out \
1812 of the return address. */ \
1813 (GEN_INT (-4))
1814
1815 /* The number of Pmode words for the setjmp buffer. */
1816 #define JMP_BUF_SIZE 50
1817
1818 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1819 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1820 "__canonicalize_funcptr_for_compare"
1821
1822 #ifdef HAVE_AS_TLS
1823 #undef TARGET_HAVE_TLS
1824 #define TARGET_HAVE_TLS true
1825 #endif