comparison gcc/config/mn10300/mn10300.h @ 67:f6334be47118

update gcc from gcc-4.6-20100522 to gcc-4.6-20110318
author nobuyasu <dimolto@cr.ie.u-ryukyu.ac.jp>
date Tue, 22 Mar 2011 17:18:12 +0900
parents b7f97abdc517
children 04ced10e8804
comparison
equal deleted inserted replaced
65:65488c3d617d 67:f6334be47118
2 Matsushita MN10300 series 2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008, 2009, 2010 Free Software Foundation, Inc. 4 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com). 5 Contributed by Jeff Law (law@cygnus.com).
6 6
7 This file is part of GCC. 7 This file is part of GCC.
8 8
9 GCC is free software; you can redistribute it and/or modify 9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by 10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option) 11 the Free Software Foundation; either version 3, or (at your option)
12 any later version. 12 any later version.
13 13
14 GCC is distributed in the hope that it will be useful, 14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details. 17 GNU General Public License for more details.
18 18
19 You should have received a copy of the GNU General Public License 19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see 20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */ 21 <http://www.gnu.org/licenses/>. */
22
23 22
24 #undef ASM_SPEC 23 #undef ASM_SPEC
25 #undef LIB_SPEC 24 #undef LIB_SPEC
26 #undef ENDFILE_SPEC 25 #undef ENDFILE_SPEC
27 #undef LINK_SPEC 26 #undef LINK_SPEC
28 #define LINK_SPEC "%{mrelax:--relax}" 27 #define LINK_SPEC "%{mrelax:--relax}"
29 #undef STARTFILE_SPEC 28 #undef STARTFILE_SPEC
30 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}" 29 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
31 30
32 /* Names to predefine in the preprocessor for this target machine. */ 31 /* Names to predefine in the preprocessor for this target machine. */
33 32
34 #define TARGET_CPU_CPP_BUILTINS() \ 33 #define TARGET_CPU_CPP_BUILTINS() \
36 { \ 35 { \
37 builtin_define ("__mn10300__"); \ 36 builtin_define ("__mn10300__"); \
38 builtin_define ("__MN10300__"); \ 37 builtin_define ("__MN10300__"); \
39 builtin_assert ("cpu=mn10300"); \ 38 builtin_assert ("cpu=mn10300"); \
40 builtin_assert ("machine=mn10300"); \ 39 builtin_assert ("machine=mn10300"); \
40 \
41 if (TARGET_AM34) \
42 { \
43 builtin_define ("__AM33__=4"); \
44 builtin_define ("__AM34__"); \
45 } \
46 else if (TARGET_AM33_2) \
47 { \
48 builtin_define ("__AM33__=2"); \
49 builtin_define ("__AM33_2__"); \
50 } \
51 else if (TARGET_AM33) \
52 builtin_define ("__AM33__=1"); \
53 \
54 builtin_define (TARGET_ALLOW_LIW ? \
55 "__LIW__" : "__NO_LIW__");\
56 \
41 } \ 57 } \
42 while (0) 58 while (0)
43 59
44 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}" 60 enum processor_type
45 61 {
46 extern GTY(()) int mn10300_unspec_int_label_counter;
47
48 enum processor_type {
49 PROCESSOR_MN10300, 62 PROCESSOR_MN10300,
50 PROCESSOR_AM33, 63 PROCESSOR_AM33,
51 PROCESSOR_AM33_2 64 PROCESSOR_AM33_2,
65 PROCESSOR_AM34
52 }; 66 };
53 67
54 extern enum processor_type mn10300_processor; 68 extern enum processor_type mn10300_processor;
69 extern enum processor_type mn10300_tune_cpu;
55 70
56 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33) 71 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
57 #define TARGET_AM33_2 (mn10300_processor == PROCESSOR_AM33_2) 72 #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
73 #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
58 74
59 #ifndef PROCESSOR_DEFAULT 75 #ifndef PROCESSOR_DEFAULT
60 #define PROCESSOR_DEFAULT PROCESSOR_MN10300 76 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
61 #endif 77 #endif
62
63 #define OVERRIDE_OPTIONS mn10300_override_options ()
64 78
65 /* Print subsidiary information on the compiler version in use. */ 79 /* Print subsidiary information on the compiler version in use. */
66 80
67 #define TARGET_VERSION fprintf (stderr, " (MN10300)"); 81 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
68 82
99 113
100 /* No data type wants to be aligned rounder than this. */ 114 /* No data type wants to be aligned rounder than this. */
101 #define BIGGEST_ALIGNMENT 32 115 #define BIGGEST_ALIGNMENT 32
102 116
103 /* Alignment of field after `int : 0' in a structure. */ 117 /* Alignment of field after `int : 0' in a structure. */
104 #define EMPTY_FIELD_BOUNDARY 32 118 #define EMPTY_FIELD_BOUNDARY 32
105 119
106 /* Define this if move instructions will actually fail to work 120 /* Define this if move instructions will actually fail to work
107 when given unaligned data. */ 121 when given unaligned data. */
108 #define STRICT_ALIGNMENT 1 122 #define STRICT_ALIGNMENT 1
109 123
110 /* Define this as 1 if `char' should by default be signed; else as 0. */ 124 /* Define this as 1 if `char' should by default be signed; else as 0. */
111 #define DEFAULT_SIGNED_CHAR 0 125 #define DEFAULT_SIGNED_CHAR 0
126
127 #undef SIZE_TYPE
128 #define SIZE_TYPE "unsigned int"
129
130 #undef PTRDIFF_TYPE
131 #define PTRDIFF_TYPE "int"
132
133 #undef WCHAR_TYPE
134 #define WCHAR_TYPE "long int"
135
136 #undef WCHAR_TYPE_SIZE
137 #define WCHAR_TYPE_SIZE BITS_PER_WORD
112 138
113 /* Standard register usage. */ 139 /* Standard register usage. */
114 140
115 /* Number of actual hardware registers. 141 /* Number of actual hardware registers.
116 The hardware registers are assigned numbers for the compiler 142 The hardware registers are assigned numbers for the compiler
117 from 0 to just below FIRST_PSEUDO_REGISTER. 143 from 0 to just below FIRST_PSEUDO_REGISTER.
118 144
119 All registers that the compiler knows about must be given numbers, 145 All registers that the compiler knows about must be given numbers,
120 even those that are not normally considered general registers. */ 146 even those that are not normally considered general registers. */
121 147
122 #define FIRST_PSEUDO_REGISTER 50 148 #define FIRST_PSEUDO_REGISTER 52
123 149
124 /* Specify machine-specific register numbers. */ 150 /* Specify machine-specific register numbers. The commented out entries
125 #define FIRST_DATA_REGNUM 0 151 are defined in mn10300.md. */
126 #define LAST_DATA_REGNUM 3 152 #define FIRST_DATA_REGNUM 0
127 #define FIRST_ADDRESS_REGNUM 4 153 #define LAST_DATA_REGNUM 3
128 #define LAST_ADDRESS_REGNUM 8 154 #define FIRST_ADDRESS_REGNUM 4
155 /* #define PIC_REG 6 */
156 #define LAST_ADDRESS_REGNUM 8
157 /* #define SP_REG 9 */
129 #define FIRST_EXTENDED_REGNUM 10 158 #define FIRST_EXTENDED_REGNUM 10
130 #define LAST_EXTENDED_REGNUM 17 159 #define LAST_EXTENDED_REGNUM 17
131 #define FIRST_FP_REGNUM 18 160 #define FIRST_FP_REGNUM 18
132 #define LAST_FP_REGNUM 49 161 #define LAST_FP_REGNUM 49
133 #define FIRST_ARGUMENT_REGNUM 0 162 /* #define MDR_REG 50 */
163 /* #define CC_REG 51 */
164 #define FIRST_ARGUMENT_REGNUM 0
134 165
135 /* Specify the registers used for certain standard purposes. 166 /* Specify the registers used for certain standard purposes.
136 The values of these macros are register numbers. */ 167 The values of these macros are register numbers. */
137 168
138 /* Register to use for pushing function arguments. */ 169 /* Register to use for pushing function arguments. */
139 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1) 170 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
140 171
141 /* Base register for access to local variables of the function. */ 172 /* Base register for access to local variables of the function. */
142 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1) 173 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
143 174
144 /* Base register for access to arguments of the function. This 175 /* Base register for access to arguments of the function. This
145 is a fake register and will be eliminated into either the frame 176 is a fake register and will be eliminated into either the frame
146 pointer or stack pointer. */ 177 pointer or stack pointer. */
147 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM 178 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
148 179
149 /* Register in which static-chain is passed to a function. */ 180 /* Register in which static-chain is passed to a function. */
150 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1) 181 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
151 182
152 /* 1 for registers that have pervasive standard uses 183 /* 1 for registers that have pervasive standard uses
153 and are not available for the register allocator. */ 184 and are not available for the register allocator. */
154 185
155 #define FIXED_REGISTERS \ 186 #define FIXED_REGISTERS \
156 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \ 187 { 0, 0, 0, 0, /* data regs */ \
157 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \ 188 0, 0, 0, 0, /* addr regs */ \
158 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \ 189 1, /* arg reg */ \
190 1, /* sp reg */ \
191 0, 0, 0, 0, 0, 0, 0, 0, /* extended regs */ \
192 0, 0, /* fp regs (18-19) */ \
193 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
194 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (30-39) */ \
195 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (40-49) */ \
196 0, /* mdr reg */ \
197 1 /* cc reg */ \
159 } 198 }
160 199
161 /* 1 for registers not available across function calls. 200 /* 1 for registers not available across function calls.
162 These must include the FIXED_REGISTERS and also any 201 These must include the FIXED_REGISTERS and also any
163 registers that can be used without being saved. 202 registers that can be used without being saved.
165 and the register where structure-value addresses are passed. 204 and the register where structure-value addresses are passed.
166 Aside from that, you can include as many other registers as you 205 Aside from that, you can include as many other registers as you
167 like. */ 206 like. */
168 207
169 #define CALL_USED_REGISTERS \ 208 #define CALL_USED_REGISTERS \
170 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \ 209 { 1, 1, 0, 0, /* data regs */ \
171 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \ 210 1, 1, 0, 0, /* addr regs */ \
172 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \ 211 1, /* arg reg */ \
212 1, /* sp reg */ \
213 1, 1, 1, 1, 0, 0, 0, 0, /* extended regs */ \
214 1, 1, /* fp regs (18-19) */ \
215 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
216 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, /* fp regs (30-39) */ \
217 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* fp regs (40-49) */ \
218 1, /* mdr reg */ \
219 1 /* cc reg */ \
173 } 220 }
174 221
175 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not 222 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
176 redundant. It is needed when compiling in PIC mode because 223 redundant. It is needed when compiling in PIC mode because
177 the a2 register becomes fixed (and hence must be marked as 224 the a2 register becomes fixed (and hence must be marked as
180 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS 227 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
181 228
182 #define REG_ALLOC_ORDER \ 229 #define REG_ALLOC_ORDER \
183 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \ 230 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
184 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \ 231 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
185 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \ 232 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
186 } 233 }
187
188 #define CONDITIONAL_REGISTER_USAGE \
189 { \
190 unsigned int i; \
191 \
192 if (!TARGET_AM33) \
193 { \
194 for (i = FIRST_EXTENDED_REGNUM; \
195 i <= LAST_EXTENDED_REGNUM; i++) \
196 fixed_regs[i] = call_used_regs[i] = 1; \
197 } \
198 if (!TARGET_AM33_2) \
199 { \
200 for (i = FIRST_FP_REGNUM; \
201 i <= LAST_FP_REGNUM; \
202 i++) \
203 fixed_regs[i] = call_used_regs[i] = 1; \
204 } \
205 if (flag_pic) \
206 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
207 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
208 }
209 234
210 /* Return number of consecutive hard regs needed starting at reg REGNO 235 /* Return number of consecutive hard regs needed starting at reg REGNO
211 to hold something of mode MODE. 236 to hold something of mode MODE.
212 237
213 This is ordinarily the length in words of a value of mode MODE 238 This is ordinarily the length in words of a value of mode MODE
216 #define HARD_REGNO_NREGS(REGNO, MODE) \ 241 #define HARD_REGNO_NREGS(REGNO, MODE) \
217 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) 242 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
218 243
219 /* Value is 1 if hard register REGNO can hold a value of machine-mode 244 /* Value is 1 if hard register REGNO can hold a value of machine-mode
220 MODE. */ 245 MODE. */
221
222 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 246 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
223 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \ 247 mn10300_hard_regno_mode_ok ((REGNO), (MODE))
224 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
225 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
226 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
227 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
228 248
229 /* Value is 1 if it is a good idea to tie two pseudo registers 249 /* Value is 1 if it is a good idea to tie two pseudo registers
230 when one has mode MODE1 and one has mode MODE2. 250 when one has mode MODE1 and one has mode MODE2.
231 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 251 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
232 for any hard reg, then this must be 0 for correct output. */ 252 for any hard reg, then this must be 0 for correct output. */
233 #define MODES_TIEABLE_P(MODE1, MODE2) \ 253 #define MODES_TIEABLE_P(MODE1, MODE2) \
234 (TARGET_AM33 \ 254 mn10300_modes_tieable ((MODE1), (MODE2))
235 || MODE1 == MODE2 \
236 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
237 255
238 /* 4 data, and effectively 3 address registers is small as far as I'm 256 /* 4 data, and effectively 3 address registers is small as far as I'm
239 concerned. */ 257 concerned. */
240 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true 258 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
241 259
257 in a smaller-numbered class. 275 in a smaller-numbered class.
258 276
259 For any two classes, it is very desirable that there be another 277 For any two classes, it is very desirable that there be another
260 class that represents their union. */ 278 class that represents their union. */
261 279
262 enum reg_class { 280 enum reg_class
263 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, 281 {
264 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS, 282 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
265 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS, 283 EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
266 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS, 284 GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
267 FP_REGS, FP_ACC_REGS,
268 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
269 }; 285 };
270 286
271 #define N_REG_CLASSES (int) LIM_REG_CLASSES 287 #define N_REG_CLASSES (int) LIM_REG_CLASSES
272 288
273 /* Give names of register classes as strings for dump file. */ 289 /* Give names of register classes as strings for dump file. */
274 290
275 #define REG_CLASS_NAMES \ 291 #define REG_CLASS_NAMES \
276 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \ 292 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
277 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \ 293 "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS", \
278 "EXTENDED_REGS", \ 294 "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
279 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \ 295 }
280 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
281 "FP_REGS", "FP_ACC_REGS", \
282 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
283 296
284 /* Define which registers fit in which classes. 297 /* Define which registers fit in which classes.
285 This is an initializer for a vector of HARD_REG_SET 298 This is an initializer for a vector of HARD_REG_SET
286 of length N_REG_CLASSES. */ 299 of length N_REG_CLASSES. */
287 300
288 #define REG_CLASS_CONTENTS \ 301 #define REG_CLASS_CONTENTS \
289 { { 0, 0 }, /* No regs */ \ 302 { { 0, 0 }, /* No regs */ \
290 { 0x0000f, 0 }, /* DATA_REGS */ \ 303 { 0x0000000f, 0 }, /* DATA_REGS */ \
291 { 0x001f0, 0 }, /* ADDRESS_REGS */ \ 304 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
292 { 0x00200, 0 }, /* SP_REGS */ \ 305 { 0x00000200, 0 }, /* SP_REGS */ \
293 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\ 306 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
294 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\ 307 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
295 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \ 308 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
296 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \ 309 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
297 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \ 310 { 0x00000000, 0x80000 },/* CC_REGS */ \
298 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \ 311 { 0x00000000, 0x40000 },/* MDR_REGS */ \
299 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \ 312 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
300 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \ 313 { 0x0003ffff, 0 }, /* SP_OR_GENERAL_REGS */ \
301 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \ 314 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
302 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
303 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
304 } 315 }
305 316
306 /* The following macro defines cover classes for Integrated Register 317 /* The following macro defines cover classes for Integrated Register
307 Allocator. Cover classes is a set of non-intersected register 318 Allocator. Cover classes is a set of non-intersected register
308 classes covering all hard registers used for register allocation 319 classes covering all hard registers used for register allocation
309 purpose. Any move between two registers of a cover class should be 320 purpose. Any move between two registers of a cover class should be
310 cheaper than load or store of the registers. The macro value is 321 cheaper than load or store of the registers. The macro value is
311 array of register classes with LIM_REG_CLASSES used as the end 322 array of register classes with LIM_REG_CLASSES used as the end
312 marker. */ 323 marker. */
313 324
314 #define IRA_COVER_CLASSES \ 325 #define IRA_COVER_CLASSES \
315 { \ 326 { \
316 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \ 327 GENERAL_REGS, FP_REGS, MDR_REGS, LIM_REG_CLASSES \
317 } 328 }
318 329
319 /* The same information, inverted: 330 /* The same information, inverted:
320 Return the class number of the smallest class containing 331 Return the class number of the smallest class containing
321 reg number REGNO. This could be a conditional expression 332 reg number REGNO. This could be a conditional expression
322 or could index an array. */ 333 or could index an array. */
323 334
324 #define REGNO_REG_CLASS(REGNO) \ 335 #define REGNO_REG_CLASS(REGNO) \
325 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \ 336 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
326 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \ 337 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
327 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \ 338 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
328 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \ 339 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
329 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \ 340 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
341 (REGNO) == MDR_REG ? MDR_REGS : \
342 (REGNO) == CC_REG ? CC_REGS : \
330 NO_REGS) 343 NO_REGS)
331 344
332 /* The class value for index registers, and the one for base regs. */ 345 /* The class value for index registers, and the one for base regs. */
333 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS 346 #define INDEX_REG_CLASS \
334 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS 347 (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
348 #define BASE_REG_CLASS \
349 (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
335 350
336 /* Macros to check register numbers against specific register classes. */ 351 /* Macros to check register numbers against specific register classes. */
337 352
338 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 353 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
339 and check its validity for a certain class. 354 and check its validity for a certain class.
358 # define REG_STRICT 0 373 # define REG_STRICT 0
359 #else 374 #else
360 # define REG_STRICT 1 375 # define REG_STRICT 1
361 #endif 376 #endif
362 377
363 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
364 (IN_RANGE ((regno), (min), (max)) \
365 || ((strict) \
366 ? (reg_renumber \
367 && reg_renumber[(regno)] >= (min) \
368 && reg_renumber[(regno)] <= (max)) \
369 : (regno) >= FIRST_PSEUDO_REGISTER))
370
371 #define REGNO_DATA_P(regno, strict) \ 378 #define REGNO_DATA_P(regno, strict) \
372 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \ 379 mn10300_regno_in_class_p (regno, DATA_REGS, strict)
373 (strict)))
374 #define REGNO_ADDRESS_P(regno, strict) \ 380 #define REGNO_ADDRESS_P(regno, strict) \
375 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \ 381 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
376 (strict)))
377 #define REGNO_SP_P(regno, strict) \
378 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
379 (strict)))
380 #define REGNO_EXTENDED_P(regno, strict) \ 382 #define REGNO_EXTENDED_P(regno, strict) \
381 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \ 383 mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
382 (strict))) 384 #define REGNO_GENERAL_P(regno, strict) \
383 #define REGNO_AM33_P(regno, strict) \ 385 mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
384 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
385 || REGNO_EXTENDED_P ((regno), (strict)))
386 #define REGNO_FP_P(regno, strict) \
387 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
388 386
389 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \ 387 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
390 (REGNO_SP_P ((regno), (strict)) \ 388 mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
391 || REGNO_ADDRESS_P ((regno), (strict)) \
392 || REGNO_EXTENDED_P ((regno), (strict)))
393 #define REGNO_OK_FOR_BASE_P(regno) \ 389 #define REGNO_OK_FOR_BASE_P(regno) \
394 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT)) 390 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
395 #define REG_OK_FOR_BASE_P(X) \ 391 #define REG_OK_FOR_BASE_P(X) \
396 (REGNO_OK_FOR_BASE_P (REGNO (X))) 392 (REGNO_OK_FOR_BASE_P (REGNO (X)))
397 393
398 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \ 394 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
399 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict))) 395 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
400 #define REGNO_OK_FOR_BIT_BASE_P(regno) \ 396 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
401 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT)) 397 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
402 #define REG_OK_FOR_BIT_BASE_P(X) \ 398 #define REG_OK_FOR_BIT_BASE_P(X) \
403 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X))) 399 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
404 400
405 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \ 401 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
406 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict))) 402 mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
407 #define REGNO_OK_FOR_INDEX_P(regno) \ 403 #define REGNO_OK_FOR_INDEX_P(regno) \
408 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT)) 404 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
409 #define REG_OK_FOR_INDEX_P(X) \ 405 #define REG_OK_FOR_INDEX_P(X) \
410 (REGNO_OK_FOR_INDEX_P (REGNO (X))) 406 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
411 407
412 /* Given an rtx X being reloaded into a reg required to be
413 in class CLASS, return the class of reg to actually use.
414 In general this is just CLASS; but on some machines
415 in some cases it is preferable to use a more restrictive class. */
416
417 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
418 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
419 ? ADDRESS_OR_EXTENDED_REGS \
420 : (GET_CODE (X) == MEM \
421 || (GET_CODE (X) == REG \
422 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
423 || (GET_CODE (X) == SUBREG \
424 && GET_CODE (SUBREG_REG (X)) == REG \
425 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
426 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
427 : (CLASS)))
428
429 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
430 (X == stack_pointer_rtx && CLASS != SP_REGS \
431 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
432
433 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \ 408 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
434 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS) 409 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
435
436 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
437 mn10300_secondary_reload_class(CLASS,MODE,IN)
438 410
439 /* Return the maximum number of consecutive registers 411 /* Return the maximum number of consecutive registers
440 needed to represent mode MODE in a register of class CLASS. */ 412 needed to represent mode MODE in a register of class CLASS. */
441 413
442 #define CLASS_MAX_NREGS(CLASS, MODE) \ 414 #define CLASS_MAX_NREGS(CLASS, MODE) \
478 /* Is equal to the size of the saved fp + pc, even if an fp isn't 450 /* Is equal to the size of the saved fp + pc, even if an fp isn't
479 saved since the value is used before we know. */ 451 saved since the value is used before we know. */
480 452
481 #define FIRST_PARM_OFFSET(FNDECL) 4 453 #define FIRST_PARM_OFFSET(FNDECL) 4
482 454
455 /* But the CFA is at the arg pointer directly, not at the first argument. */
456 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
457
483 #define ELIMINABLE_REGS \ 458 #define ELIMINABLE_REGS \
484 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 459 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
485 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ 460 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
486 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} 461 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
487 462
488 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 463 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
489 OFFSET = initial_offset (FROM, TO) 464 OFFSET = mn10300_initial_offset (FROM, TO)
490
491 /* We can debug without frame pointers on the mn10300, so eliminate
492 them whenever possible. */
493 #define CAN_DEBUG_WITHOUT_FP
494
495 /* Value is the number of bytes of arguments automatically
496 popped when returning from a subroutine call.
497 FUNDECL is the declaration node of the function (as a tree),
498 FUNTYPE is the data type of the function (as a tree),
499 or for a library call it is an identifier node for the subroutine name.
500 SIZE is the number of bytes of arguments passed on the stack. */
501
502 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
503 465
504 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space 466 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
505 for a register flushback area. */ 467 for a register flushback area. */
506 #define REG_PARM_STACK_SPACE(DECL) 8 468 #define REG_PARM_STACK_SPACE(DECL) 8
507 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 469 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
525 487
526 On the MN10300, this is a single integer, which is a number of bytes 488 On the MN10300, this is a single integer, which is a number of bytes
527 of arguments scanned so far. */ 489 of arguments scanned so far. */
528 490
529 #define CUMULATIVE_ARGS struct cum_arg 491 #define CUMULATIVE_ARGS struct cum_arg
530 struct cum_arg {int nbytes; }; 492
493 struct cum_arg
494 {
495 int nbytes;
496 };
531 497
532 /* Initialize a variable CUM of type CUMULATIVE_ARGS 498 /* Initialize a variable CUM of type CUMULATIVE_ARGS
533 for a call to a function whose data type is FNTYPE. 499 for a call to a function whose data type is FNTYPE.
534 For a library call, FNTYPE is 0. 500 For a library call, FNTYPE is 0.
535 501
536 On the MN10300, the offset starts at 0. */ 502 On the MN10300, the offset starts at 0. */
537 503
538 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ 504 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
539 ((CUM).nbytes = 0) 505 ((CUM).nbytes = 0)
540
541 /* Update the data in CUM to advance over an argument
542 of mode MODE and data type TYPE.
543 (TYPE is null for libcalls where that information may not be available.) */
544
545 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
546 ((CUM).nbytes += ((MODE) != BLKmode \
547 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
548 : (int_size_in_bytes (TYPE) + 3) & ~3))
549
550 /* Define where to put the arguments to a function.
551 Value is zero to push the argument on the stack,
552 or a hard register in which to store the argument.
553
554 MODE is the argument's machine mode.
555 TYPE is the data type of the argument (as a tree).
556 This is null for libcalls where that information may
557 not be available.
558 CUM is a variable of type CUMULATIVE_ARGS which gives info about
559 the preceding args and about the function being called.
560 NAMED is nonzero if this argument is a named parameter
561 (otherwise it is an extra parameter matching an ellipsis). */
562
563 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
564 function_arg (&CUM, MODE, TYPE, NAMED)
565 506
566 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N) 507 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
567 508
568 #define DEFAULT_PCC_STRUCT_RETURN 0 509 #define DEFAULT_PCC_STRUCT_RETURN 0
569 510
579 520
580 #define FUNCTION_PROFILER(FILE, LABELNO) ; 521 #define FUNCTION_PROFILER(FILE, LABELNO) ;
581 522
582 /* Length in units of the trampoline for entering a nested function. */ 523 /* Length in units of the trampoline for entering a nested function. */
583 524
584 #define TRAMPOLINE_SIZE 0x1b 525 #define TRAMPOLINE_SIZE 16
585 526 #define TRAMPOLINE_ALIGNMENT 32
586 #define TRAMPOLINE_ALIGNMENT 32
587 527
588 /* A C expression whose value is RTL representing the value of the return 528 /* A C expression whose value is RTL representing the value of the return
589 address for the frame COUNT steps up from the current frame. 529 address for the frame COUNT steps up from the current frame.
590 530
591 On the mn10300, the return address is not at a constant location 531 On the mn10300, the return address is not at a constant location
596 536
597 #define RETURN_ADDR_RTX(COUNT, FRAME) \ 537 #define RETURN_ADDR_RTX(COUNT, FRAME) \
598 ((COUNT == 0) \ 538 ((COUNT == 0) \
599 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \ 539 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
600 : (rtx) 0) 540 : (rtx) 0)
541
542 /* The return address is saved both in the stack and in MDR. Using
543 the stack location is handiest for what unwinding needs. */
544 #define INCOMING_RETURN_ADDR_RTX \
545 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
601 546
602 /* Maximum number of registers that can appear in a valid memory address. */ 547 /* Maximum number of registers that can appear in a valid memory address. */
603 548
604 #define MAX_REGS_PER_ADDRESS 2 549 #define MAX_REGS_PER_ADDRESS 2
605 550
606 551
607 #define HAVE_POST_INCREMENT (TARGET_AM33) 552 /* We have post-increments. */
553 #define HAVE_POST_INCREMENT TARGET_AM33
554 #define HAVE_POST_MODIFY_DISP TARGET_AM33
555
556 /* ... But we don't want to use them for block moves. Small offsets are
557 just as effective, at least for inline block move sizes, and appears
558 to produce cleaner code. */
559 #define USE_LOAD_POST_INCREMENT(M) 0
560 #define USE_STORE_POST_INCREMENT(M) 0
608 561
609 /* Accept either REG or SUBREG where a register is valid. */ 562 /* Accept either REG or SUBREG where a register is valid. */
610 563
611 #define RTX_OK_FOR_BASE_P(X, strict) \ 564 #define RTX_OK_FOR_BASE_P(X, strict) \
612 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \ 565 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
613 (strict))) \ 566 (strict))) \
614 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \ 567 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
615 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \ 568 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
616 (strict)))) 569 (strict))))
617 570
571 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
572 do { \
573 rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
574 if (new_x) \
575 { \
576 X = new_x; \
577 goto WIN; \
578 } \
579 } while (0)
618 580
619 581
620 /* Nonzero if the constant value X is a legitimate general operand. 582 /* Nonzero if the constant value X is a legitimate general operand.
621 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ 583 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
622 584 #define LEGITIMATE_CONSTANT_P(X) mn10300_legitimate_constant_p (X)
623 #define LEGITIMATE_CONSTANT_P(X) 1
624 585
625 /* Zero if this needs fixing up to become PIC. */ 586 /* Zero if this needs fixing up to become PIC. */
626 587
627 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X)) 588 #define LEGITIMATE_PIC_OPERAND_P(X) \
589 mn10300_legitimate_pic_operand_p (X)
628 590
629 /* Register to hold the addressing base for 591 /* Register to hold the addressing base for
630 position independent code access to data items. */ 592 position independent code access to data items. */
631 #define PIC_OFFSET_TABLE_REGNUM PIC_REG 593 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
632 594
637 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \ 599 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
638 && ! LEGITIMATE_PIC_OPERAND_P (X)) 600 && ! LEGITIMATE_PIC_OPERAND_P (X))
639 601
640 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */ 602 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
641 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X)) 603 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
642 604
643 /* Recognize machine-specific patterns that may appear within 605 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (OP, X, Y)
644 constants. Used for PIC-specific UNSPECs. */ 606 #define REVERSIBLE_CC_MODE(MODE) 0
645 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \ 607
646 do \
647 if (GET_CODE (X) == UNSPEC) \
648 { \
649 switch (XINT ((X), 1)) \
650 { \
651 case UNSPEC_INT_LABEL: \
652 asm_fprintf ((STREAM), ".%LLIL" HOST_WIDE_INT_PRINT_DEC, \
653 INTVAL (XVECEXP ((X), 0, 0))); \
654 break; \
655 case UNSPEC_PIC: \
656 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
657 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
658 break; \
659 case UNSPEC_GOT: \
660 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
661 fputs ("@GOT", (STREAM)); \
662 break; \
663 case UNSPEC_GOTOFF: \
664 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
665 fputs ("@GOTOFF", (STREAM)); \
666 break; \
667 case UNSPEC_PLT: \
668 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
669 fputs ("@PLT", (STREAM)); \
670 break; \
671 case UNSPEC_GOTSYM_OFF: \
672 assemble_name (STREAM, GOT_SYMBOL_NAME); \
673 fputs ("-(", STREAM); \
674 output_addr_const (STREAM, XVECEXP (X, 0, 0)); \
675 fputs ("-.)", STREAM); \
676 break; \
677 default: \
678 goto FAIL; \
679 } \
680 break; \
681 } \
682 else \
683 goto FAIL; \
684 while (0)
685
686 /* Tell final.c how to eliminate redundant test instructions. */
687
688 /* Here we define machine-dependent flags and fields in cc_status
689 (see `conditions.h'). No extra ones are needed for the VAX. */
690
691 /* Store in cc_status the expressions
692 that the condition codes will describe
693 after execution of an instruction whose pattern is EXP.
694 Do not alter them if the instruction would not alter the cc's. */
695
696 #define CC_OVERFLOW_UNUSABLE 0x200
697 #define CC_NO_CARRY CC_NO_OVERFLOW
698 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
699
700 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
701 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
702 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
703 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
704 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
705 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
706 ! TARGET_AM33 ? 6 : \
707 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
708 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
709 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
710 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
711 4)
712
713 /* Nonzero if access to memory by bytes or half words is no faster 608 /* Nonzero if access to memory by bytes or half words is no faster
714 than accessing full words. */ 609 than accessing full words. */
715 #define SLOW_BYTE_ACCESS 1 610 #define SLOW_BYTE_ACCESS 1
716 611
717 #define NO_FUNCTION_CSE 612 #define NO_FUNCTION_CSE
720 for the MN10300 series, that's our primary concern. */ 615 for the MN10300 series, that's our primary concern. */
721 #define MOVE_RATIO(speed) 6 616 #define MOVE_RATIO(speed) 6
722 617
723 #define TEXT_SECTION_ASM_OP "\t.section .text" 618 #define TEXT_SECTION_ASM_OP "\t.section .text"
724 #define DATA_SECTION_ASM_OP "\t.section .data" 619 #define DATA_SECTION_ASM_OP "\t.section .data"
725 #define BSS_SECTION_ASM_OP "\t.section .bss" 620 #define BSS_SECTION_ASM_OP "\t.section .bss"
726 621
727 #define ASM_COMMENT_START "#" 622 #define ASM_COMMENT_START "#"
728 623
729 /* Output to assembler file text saying following lines 624 /* Output to assembler file text saying following lines
730 may contain character constants, extra white space, comments, etc. */ 625 may contain character constants, extra white space, comments, etc. */
750 #define GLOBAL_ASM_OP "\t.global " 645 #define GLOBAL_ASM_OP "\t.global "
751 646
752 /* This is how to output a reference to a user-level label named NAME. 647 /* This is how to output a reference to a user-level label named NAME.
753 `assemble_name' uses this. */ 648 `assemble_name' uses this. */
754 649
755 #undef ASM_OUTPUT_LABELREF 650 #undef ASM_OUTPUT_LABELREF
756 #define ASM_OUTPUT_LABELREF(FILE, NAME) \ 651 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
757 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME)) 652 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
758 653
759 #define ASM_PN_FORMAT "%s___%lu"
760
761 /* This is how we tell the assembler that two symbols have the same value. */ 654 /* This is how we tell the assembler that two symbols have the same value. */
762 655
763 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \ 656 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
764 do { assemble_name(FILE, NAME1); \ 657 do \
765 fputs(" = ", FILE); \ 658 { \
766 assemble_name(FILE, NAME2); \ 659 assemble_name (FILE, NAME1); \
767 fputc('\n', FILE); } while (0) 660 fputs (" = ", FILE); \
768 661 assemble_name (FILE, NAME2); \
662 fputc ('\n', FILE); \
663 } \
664 while (0)
769 665
770 /* How to refer to registers in assembler output. 666 /* How to refer to registers in assembler output.
771 This sequence is indexed by compiler's hard-register-number (see above). */ 667 This sequence is indexed by compiler's hard-register-number (see above). */
772 668
773 #define REGISTER_NAMES \ 669 #define REGISTER_NAMES \
774 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \ 670 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
775 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \ 671 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
776 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \ 672 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
777 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \ 673 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
778 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \ 674 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
779 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \ 675 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
676 , "mdr", "EPSW" \
780 } 677 }
781 678
782 #define ADDITIONAL_REGISTER_NAMES \ 679 #define ADDITIONAL_REGISTER_NAMES \
783 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \ 680 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
784 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \ 681 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
785 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \ 682 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
786 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \ 683 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
787 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \ 684 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
788 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \ 685 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
789 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \ 686 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
790 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \ 687 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
688 , {"cc", CC_REG} \
791 } 689 }
792 690
793 /* Print an instruction operand X on file FILE. 691 /* Print an instruction operand X on file FILE.
794 look in mn10300.c for details */ 692 look in mn10300.c for details */
795 693
796 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE) 694 #define PRINT_OPERAND(FILE, X, CODE) \
695 mn10300_print_operand (FILE, X, CODE)
797 696
798 /* Print a memory operand whose address is X, on file FILE. 697 /* Print a memory operand whose address is X, on file FILE.
799 This uses a function in output-vax.c. */ 698 This uses a function in output-vax.c. */
800 699
801 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) 700 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
802 701 mn10300_print_operand_address (FILE, ADDR)
803 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
804 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
805 702
806 /* This is how to output an element of a case-vector that is absolute. */ 703 /* This is how to output an element of a case-vector that is absolute. */
807 704
808 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 705 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
809 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE) 706 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
819 716
820 /* We don't have to worry about dbx compatibility for the mn10300. */ 717 /* We don't have to worry about dbx compatibility for the mn10300. */
821 #define DEFAULT_GDB_EXTENSIONS 1 718 #define DEFAULT_GDB_EXTENSIONS 1
822 719
823 /* Use dwarf2 debugging info by default. */ 720 /* Use dwarf2 debugging info by default. */
824 #undef PREFERRED_DEBUGGING_TYPE 721 #undef PREFERRED_DEBUGGING_TYPE
825 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG 722 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
826 723 #define DWARF2_DEBUGGING_INFO 1
827 #define DWARF2_ASM_LINE_DEBUG_INFO 1 724 #define DWARF2_ASM_LINE_DEBUG_INFO 1
828
829 /* GDB always assumes the current function's frame begins at the value
830 of the stack pointer upon entry to the current function. Accessing
831 local variables and parameters passed on the stack is done using the
832 base of the frame + an offset provided by GCC.
833
834 For functions which have frame pointers this method works fine;
835 the (frame pointer) == (stack pointer at function entry) and GCC provides
836 an offset relative to the frame pointer.
837
838 This loses for functions without a frame pointer; GCC provides an offset
839 which is relative to the stack pointer after adjusting for the function's
840 frame size. GDB would prefer the offset to be relative to the value of
841 the stack pointer at the function's entry. Yuk! */
842 #define DEBUGGER_AUTO_OFFSET(X) \
843 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
844 + (frame_pointer_needed \
845 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
846
847 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
848 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
849 + (frame_pointer_needed \
850 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
851 725
852 /* Specify the machine mode that this machine uses 726 /* Specify the machine mode that this machine uses
853 for the index in the tablejump instruction. */ 727 for the index in the tablejump instruction. */
854 #define CASE_VECTOR_MODE Pmode 728 #define CASE_VECTOR_MODE Pmode
855 729
888 762
889 /* The assembler op to get a word. */ 763 /* The assembler op to get a word. */
890 764
891 #define FILE_ASM_OP "\t.file\n" 765 #define FILE_ASM_OP "\t.file\n"
892 766
893 typedef struct mn10300_cc_status_mdep
894 {
895 int fpCC;
896 }
897 cc_status_mdep;
898
899 #define CC_STATUS_MDEP cc_status_mdep
900
901 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)