diff gcc/tree-vrp.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/tree-vrp.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,7334 @@
+/* Support routines for Value Range Propagation (VRP).
+   Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
+   Contributed by Diego Novillo <dnovillo@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "flags.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "tree-flow.h"
+#include "tree-pass.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "diagnostic.h"
+#include "toplev.h"
+#include "intl.h"
+#include "cfgloop.h"
+#include "tree-scalar-evolution.h"
+#include "tree-ssa-propagate.h"
+#include "tree-chrec.h"
+
+
+/* Set of SSA names found live during the RPO traversal of the function
+   for still active basic-blocks.  */
+static sbitmap *live;
+
+/* Return true if the SSA name NAME is live on the edge E.  */
+
+static bool
+live_on_edge (edge e, tree name)
+{
+  return (live[e->dest->index]
+	  && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
+}
+
+/* Local functions.  */
+static int compare_values (tree val1, tree val2);
+static int compare_values_warnv (tree val1, tree val2, bool *);
+static void vrp_meet (value_range_t *, value_range_t *);
+static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
+						     tree, tree, bool, bool *,
+						     bool *);
+
+/* Location information for ASSERT_EXPRs.  Each instance of this
+   structure describes an ASSERT_EXPR for an SSA name.  Since a single
+   SSA name may have more than one assertion associated with it, these
+   locations are kept in a linked list attached to the corresponding
+   SSA name.  */
+struct assert_locus_d
+{
+  /* Basic block where the assertion would be inserted.  */
+  basic_block bb;
+
+  /* Some assertions need to be inserted on an edge (e.g., assertions
+     generated by COND_EXPRs).  In those cases, BB will be NULL.  */
+  edge e;
+
+  /* Pointer to the statement that generated this assertion.  */
+  gimple_stmt_iterator si;
+
+  /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
+  enum tree_code comp_code;
+
+  /* Value being compared against.  */
+  tree val;
+
+  /* Expression to compare.  */
+  tree expr;
+
+  /* Next node in the linked list.  */
+  struct assert_locus_d *next;
+};
+
+typedef struct assert_locus_d *assert_locus_t;
+
+/* If bit I is present, it means that SSA name N_i has a list of
+   assertions that should be inserted in the IL.  */
+static bitmap need_assert_for;
+
+/* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
+   holds a list of ASSERT_LOCUS_T nodes that describe where
+   ASSERT_EXPRs for SSA name N_I should be inserted.  */
+static assert_locus_t *asserts_for;
+
+/* Value range array.  After propagation, VR_VALUE[I] holds the range
+   of values that SSA name N_I may take.  */
+static value_range_t **vr_value;
+
+/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
+   number of executable edges we saw the last time we visited the
+   node.  */
+static int *vr_phi_edge_counts;
+
+typedef struct {
+  gimple stmt;
+  tree vec;
+} switch_update;
+
+static VEC (edge, heap) *to_remove_edges;
+DEF_VEC_O(switch_update);
+DEF_VEC_ALLOC_O(switch_update, heap);
+static VEC (switch_update, heap) *to_update_switch_stmts;
+
+
+/* Return the maximum value for TYPEs base type.  */
+
+static inline tree
+vrp_val_max (const_tree type)
+{
+  if (!INTEGRAL_TYPE_P (type))
+    return NULL_TREE;
+
+  /* For integer sub-types the values for the base type are relevant.  */
+  if (TREE_TYPE (type))
+    type = TREE_TYPE (type);
+
+  return TYPE_MAX_VALUE (type);
+}
+
+/* Return the minimum value for TYPEs base type.  */
+
+static inline tree
+vrp_val_min (const_tree type)
+{
+  if (!INTEGRAL_TYPE_P (type))
+    return NULL_TREE;
+
+  /* For integer sub-types the values for the base type are relevant.  */
+  if (TREE_TYPE (type))
+    type = TREE_TYPE (type);
+
+  return TYPE_MIN_VALUE (type);
+}
+
+/* Return whether VAL is equal to the maximum value of its type.  This
+   will be true for a positive overflow infinity.  We can't do a
+   simple equality comparison with TYPE_MAX_VALUE because C typedefs
+   and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
+   to the integer constant with the same value in the type.  */
+
+static inline bool
+vrp_val_is_max (const_tree val)
+{
+  tree type_max = vrp_val_max (TREE_TYPE (val));
+  return (val == type_max
+	  || (type_max != NULL_TREE
+	      && operand_equal_p (val, type_max, 0)));
+}
+
+/* Return whether VAL is equal to the minimum value of its type.  This
+   will be true for a negative overflow infinity.  */
+
+static inline bool
+vrp_val_is_min (const_tree val)
+{
+  tree type_min = vrp_val_min (TREE_TYPE (val));
+  return (val == type_min
+	  || (type_min != NULL_TREE
+	      && operand_equal_p (val, type_min, 0)));
+}
+
+
+/* Return whether TYPE should use an overflow infinity distinct from
+   TYPE_{MIN,MAX}_VALUE.  We use an overflow infinity value to
+   represent a signed overflow during VRP computations.  An infinity
+   is distinct from a half-range, which will go from some number to
+   TYPE_{MIN,MAX}_VALUE.  */
+
+static inline bool
+needs_overflow_infinity (const_tree type)
+{
+  return (INTEGRAL_TYPE_P (type)
+	  && !TYPE_OVERFLOW_WRAPS (type)
+	  /* Integer sub-types never overflow as they are never
+	     operands of arithmetic operators.  */
+	  && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
+}
+
+/* Return whether TYPE can support our overflow infinity
+   representation: we use the TREE_OVERFLOW flag, which only exists
+   for constants.  If TYPE doesn't support this, we don't optimize
+   cases which would require signed overflow--we drop them to
+   VARYING.  */
+
+static inline bool
+supports_overflow_infinity (const_tree type)
+{
+  tree min = vrp_val_min (type), max = vrp_val_max (type);
+#ifdef ENABLE_CHECKING
+  gcc_assert (needs_overflow_infinity (type));
+#endif
+  return (min != NULL_TREE
+	  && CONSTANT_CLASS_P (min)
+	  && max != NULL_TREE
+	  && CONSTANT_CLASS_P (max));
+}
+
+/* VAL is the maximum or minimum value of a type.  Return a
+   corresponding overflow infinity.  */
+
+static inline tree
+make_overflow_infinity (tree val)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
+#endif
+  val = copy_node (val);
+  TREE_OVERFLOW (val) = 1;
+  return val;
+}
+
+/* Return a negative overflow infinity for TYPE.  */
+
+static inline tree
+negative_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (supports_overflow_infinity (type));
+#endif
+  return make_overflow_infinity (vrp_val_min (type));
+}
+
+/* Return a positive overflow infinity for TYPE.  */
+
+static inline tree
+positive_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+  gcc_assert (supports_overflow_infinity (type));
+#endif
+  return make_overflow_infinity (vrp_val_max (type));
+}
+
+/* Return whether VAL is a negative overflow infinity.  */
+
+static inline bool
+is_negative_overflow_infinity (const_tree val)
+{
+  return (needs_overflow_infinity (TREE_TYPE (val))
+	  && CONSTANT_CLASS_P (val)
+	  && TREE_OVERFLOW (val)
+	  && vrp_val_is_min (val));
+}
+
+/* Return whether VAL is a positive overflow infinity.  */
+
+static inline bool
+is_positive_overflow_infinity (const_tree val)
+{
+  return (needs_overflow_infinity (TREE_TYPE (val))
+	  && CONSTANT_CLASS_P (val)
+	  && TREE_OVERFLOW (val)
+	  && vrp_val_is_max (val));
+}
+
+/* Return whether VAL is a positive or negative overflow infinity.  */
+
+static inline bool
+is_overflow_infinity (const_tree val)
+{
+  return (needs_overflow_infinity (TREE_TYPE (val))
+	  && CONSTANT_CLASS_P (val)
+	  && TREE_OVERFLOW (val)
+	  && (vrp_val_is_min (val) || vrp_val_is_max (val)));
+}
+
+/* Return whether STMT has a constant rhs that is_overflow_infinity. */
+
+static inline bool
+stmt_overflow_infinity (gimple stmt)
+{
+  if (is_gimple_assign (stmt)
+      && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
+      GIMPLE_SINGLE_RHS)
+    return is_overflow_infinity (gimple_assign_rhs1 (stmt));
+  return false;
+}
+
+/* If VAL is now an overflow infinity, return VAL.  Otherwise, return
+   the same value with TREE_OVERFLOW clear.  This can be used to avoid
+   confusing a regular value with an overflow value.  */
+
+static inline tree
+avoid_overflow_infinity (tree val)
+{
+  if (!is_overflow_infinity (val))
+    return val;
+
+  if (vrp_val_is_max (val))
+    return vrp_val_max (TREE_TYPE (val));
+  else
+    {
+#ifdef ENABLE_CHECKING
+      gcc_assert (vrp_val_is_min (val));
+#endif
+      return vrp_val_min (TREE_TYPE (val));
+    }
+}
+
+
+/* Return true if ARG is marked with the nonnull attribute in the
+   current function signature.  */
+
+static bool
+nonnull_arg_p (const_tree arg)
+{
+  tree t, attrs, fntype;
+  unsigned HOST_WIDE_INT arg_num;
+
+  gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
+
+  /* The static chain decl is always non null.  */
+  if (arg == cfun->static_chain_decl)
+    return true;
+
+  fntype = TREE_TYPE (current_function_decl);
+  attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
+
+  /* If "nonnull" wasn't specified, we know nothing about the argument.  */
+  if (attrs == NULL_TREE)
+    return false;
+
+  /* If "nonnull" applies to all the arguments, then ARG is non-null.  */
+  if (TREE_VALUE (attrs) == NULL_TREE)
+    return true;
+
+  /* Get the position number for ARG in the function signature.  */
+  for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
+       t;
+       t = TREE_CHAIN (t), arg_num++)
+    {
+      if (t == arg)
+	break;
+    }
+
+  gcc_assert (t == arg);
+
+  /* Now see if ARG_NUM is mentioned in the nonnull list.  */
+  for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
+    {
+      if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
+	return true;
+    }
+
+  return false;
+}
+
+
+/* Set value range VR to VR_VARYING.  */
+
+static inline void
+set_value_range_to_varying (value_range_t *vr)
+{
+  vr->type = VR_VARYING;
+  vr->min = vr->max = NULL_TREE;
+  if (vr->equiv)
+    bitmap_clear (vr->equiv);
+}
+
+
+/* Set value range VR to {T, MIN, MAX, EQUIV}.  */
+
+static void
+set_value_range (value_range_t *vr, enum value_range_type t, tree min,
+		 tree max, bitmap equiv)
+{
+#if defined ENABLE_CHECKING
+  /* Check the validity of the range.  */
+  if (t == VR_RANGE || t == VR_ANTI_RANGE)
+    {
+      int cmp;
+
+      gcc_assert (min && max);
+
+      if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
+	gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
+
+      cmp = compare_values (min, max);
+      gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
+
+      if (needs_overflow_infinity (TREE_TYPE (min)))
+	gcc_assert (!is_overflow_infinity (min)
+		    || !is_overflow_infinity (max));
+    }
+
+  if (t == VR_UNDEFINED || t == VR_VARYING)
+    gcc_assert (min == NULL_TREE && max == NULL_TREE);
+
+  if (t == VR_UNDEFINED || t == VR_VARYING)
+    gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
+#endif
+
+  vr->type = t;
+  vr->min = min;
+  vr->max = max;
+
+  /* Since updating the equivalence set involves deep copying the
+     bitmaps, only do it if absolutely necessary.  */
+  if (vr->equiv == NULL
+      && equiv != NULL)
+    vr->equiv = BITMAP_ALLOC (NULL);
+
+  if (equiv != vr->equiv)
+    {
+      if (equiv && !bitmap_empty_p (equiv))
+	bitmap_copy (vr->equiv, equiv);
+      else
+	bitmap_clear (vr->equiv);
+    }
+}
+
+
+/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
+   This means adjusting T, MIN and MAX representing the case of a
+   wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
+   as anti-rage ~[MAX+1, MIN-1].  Likewise for wrapping anti-ranges.
+   In corner cases where MAX+1 or MIN-1 wraps this will fall back
+   to varying.
+   This routine exists to ease canonicalization in the case where we
+   extract ranges from var + CST op limit.  */
+
+static void
+set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
+				  tree min, tree max, bitmap equiv)
+{
+  /* Nothing to canonicalize for symbolic or unknown or varying ranges.  */
+  if ((t != VR_RANGE
+       && t != VR_ANTI_RANGE)
+      || TREE_CODE (min) != INTEGER_CST
+      || TREE_CODE (max) != INTEGER_CST)
+    {
+      set_value_range (vr, t, min, max, equiv);
+      return;
+    }
+
+  /* Wrong order for min and max, to swap them and the VR type we need
+     to adjust them.  */
+  if (tree_int_cst_lt (max, min))
+    {
+      tree one = build_int_cst (TREE_TYPE (min), 1);
+      tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
+      max = int_const_binop (MINUS_EXPR, min, one, 0);
+      min = tmp;
+
+      /* There's one corner case, if we had [C+1, C] before we now have
+	 that again.  But this represents an empty value range, so drop
+	 to varying in this case.  */
+      if (tree_int_cst_lt (max, min))
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+
+      t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
+    }
+
+  /* Anti-ranges that can be represented as ranges should be so.  */
+  if (t == VR_ANTI_RANGE)
+    {
+      bool is_min = vrp_val_is_min (min);
+      bool is_max = vrp_val_is_max (max);
+
+      if (is_min && is_max)
+	{
+	  /* We cannot deal with empty ranges, drop to varying.  */
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+      else if (is_min
+	       /* As a special exception preserve non-null ranges.  */
+	       && !(TYPE_UNSIGNED (TREE_TYPE (min))
+		    && integer_zerop (max)))
+        {
+	  tree one = build_int_cst (TREE_TYPE (max), 1);
+	  min = int_const_binop (PLUS_EXPR, max, one, 0);
+	  max = vrp_val_max (TREE_TYPE (max));
+	  t = VR_RANGE;
+        }
+      else if (is_max)
+        {
+	  tree one = build_int_cst (TREE_TYPE (min), 1);
+	  max = int_const_binop (MINUS_EXPR, min, one, 0);
+	  min = vrp_val_min (TREE_TYPE (min));
+	  t = VR_RANGE;
+        }
+    }
+
+  set_value_range (vr, t, min, max, equiv);
+}
+
+/* Copy value range FROM into value range TO.  */
+
+static inline void
+copy_value_range (value_range_t *to, value_range_t *from)
+{
+  set_value_range (to, from->type, from->min, from->max, from->equiv);
+}
+
+/* Set value range VR to a single value.  This function is only called
+   with values we get from statements, and exists to clear the
+   TREE_OVERFLOW flag so that we don't think we have an overflow
+   infinity when we shouldn't.  */
+
+static inline void
+set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
+{
+  gcc_assert (is_gimple_min_invariant (val));
+  val = avoid_overflow_infinity (val);
+  set_value_range (vr, VR_RANGE, val, val, equiv);
+}
+
+/* Set value range VR to a non-negative range of type TYPE.
+   OVERFLOW_INFINITY indicates whether to use an overflow infinity
+   rather than TYPE_MAX_VALUE; this should be true if we determine
+   that the range is nonnegative based on the assumption that signed
+   overflow does not occur.  */
+
+static inline void
+set_value_range_to_nonnegative (value_range_t *vr, tree type,
+				bool overflow_infinity)
+{
+  tree zero;
+
+  if (overflow_infinity && !supports_overflow_infinity (type))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  zero = build_int_cst (type, 0);
+  set_value_range (vr, VR_RANGE, zero,
+		   (overflow_infinity
+		    ? positive_overflow_infinity (type)
+		    : TYPE_MAX_VALUE (type)),
+		   vr->equiv);
+}
+
+/* Set value range VR to a non-NULL range of type TYPE.  */
+
+static inline void
+set_value_range_to_nonnull (value_range_t *vr, tree type)
+{
+  tree zero = build_int_cst (type, 0);
+  set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
+}
+
+
+/* Set value range VR to a NULL range of type TYPE.  */
+
+static inline void
+set_value_range_to_null (value_range_t *vr, tree type)
+{
+  set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
+}
+
+
+/* Set value range VR to a range of a truthvalue of type TYPE.  */
+
+static inline void
+set_value_range_to_truthvalue (value_range_t *vr, tree type)
+{
+  if (TYPE_PRECISION (type) == 1)
+    set_value_range_to_varying (vr);
+  else
+    set_value_range (vr, VR_RANGE,
+		     build_int_cst (type, 0), build_int_cst (type, 1),
+		     vr->equiv);
+}
+
+
+/* Set value range VR to VR_UNDEFINED.  */
+
+static inline void
+set_value_range_to_undefined (value_range_t *vr)
+{
+  vr->type = VR_UNDEFINED;
+  vr->min = vr->max = NULL_TREE;
+  if (vr->equiv)
+    bitmap_clear (vr->equiv);
+}
+
+
+/* If abs (min) < abs (max), set VR to [-max, max], if
+   abs (min) >= abs (max), set VR to [-min, min].  */
+
+static void
+abs_extent_range (value_range_t *vr, tree min, tree max)
+{
+  int cmp;
+
+  gcc_assert (TREE_CODE (min) == INTEGER_CST);
+  gcc_assert (TREE_CODE (max) == INTEGER_CST);
+  gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
+  gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
+  min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
+  max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
+  if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+  cmp = compare_values (min, max);
+  if (cmp == -1)
+    min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
+  else if (cmp == 0 || cmp == 1)
+    {
+      max = min;
+      min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
+    }
+  else
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+  set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
+}
+
+
+/* Return value range information for VAR.  
+
+   If we have no values ranges recorded (ie, VRP is not running), then
+   return NULL.  Otherwise create an empty range if none existed for VAR.  */
+
+static value_range_t *
+get_value_range (const_tree var)
+{
+  value_range_t *vr;
+  tree sym;
+  unsigned ver = SSA_NAME_VERSION (var);
+
+  /* If we have no recorded ranges, then return NULL.  */
+  if (! vr_value)
+    return NULL;
+
+  vr = vr_value[ver];
+  if (vr)
+    return vr;
+
+  /* Create a default value range.  */
+  vr_value[ver] = vr = XCNEW (value_range_t);
+
+  /* Defer allocating the equivalence set.  */
+  vr->equiv = NULL;
+
+  /* If VAR is a default definition, the variable can take any value
+     in VAR's type.  */
+  sym = SSA_NAME_VAR (var);
+  if (SSA_NAME_IS_DEFAULT_DEF (var))
+    {
+      /* Try to use the "nonnull" attribute to create ~[0, 0]
+	 anti-ranges for pointers.  Note that this is only valid with
+	 default definitions of PARM_DECLs.  */
+      if (TREE_CODE (sym) == PARM_DECL
+	  && POINTER_TYPE_P (TREE_TYPE (sym))
+	  && nonnull_arg_p (sym))
+	set_value_range_to_nonnull (vr, TREE_TYPE (sym));
+      else
+	set_value_range_to_varying (vr);
+    }
+
+  return vr;
+}
+
+/* Return true, if VAL1 and VAL2 are equal values for VRP purposes.  */
+
+static inline bool
+vrp_operand_equal_p (const_tree val1, const_tree val2)
+{
+  if (val1 == val2)
+    return true;
+  if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
+    return false;
+  if (is_overflow_infinity (val1))
+    return is_overflow_infinity (val2);
+  return true;
+}
+
+/* Return true, if the bitmaps B1 and B2 are equal.  */
+
+static inline bool
+vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
+{
+  return (b1 == b2
+	  || (b1 && b2
+	      && bitmap_equal_p (b1, b2)));
+}
+
+/* Update the value range and equivalence set for variable VAR to
+   NEW_VR.  Return true if NEW_VR is different from VAR's previous
+   value.
+
+   NOTE: This function assumes that NEW_VR is a temporary value range
+   object created for the sole purpose of updating VAR's range.  The
+   storage used by the equivalence set from NEW_VR will be freed by
+   this function.  Do not call update_value_range when NEW_VR
+   is the range object associated with another SSA name.  */
+
+static inline bool
+update_value_range (const_tree var, value_range_t *new_vr)
+{
+  value_range_t *old_vr;
+  bool is_new;
+
+  /* Update the value range, if necessary.  */
+  old_vr = get_value_range (var);
+  is_new = old_vr->type != new_vr->type
+	   || !vrp_operand_equal_p (old_vr->min, new_vr->min)
+	   || !vrp_operand_equal_p (old_vr->max, new_vr->max)
+	   || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
+
+  if (is_new)
+    set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
+	             new_vr->equiv);
+
+  BITMAP_FREE (new_vr->equiv);
+
+  return is_new;
+}
+
+
+/* Add VAR and VAR's equivalence set to EQUIV.  This is the central
+   point where equivalence processing can be turned on/off.  */
+
+static void
+add_equivalence (bitmap *equiv, const_tree var)
+{
+  unsigned ver = SSA_NAME_VERSION (var);
+  value_range_t *vr = vr_value[ver];
+
+  if (*equiv == NULL)
+    *equiv = BITMAP_ALLOC (NULL);
+  bitmap_set_bit (*equiv, ver);
+  if (vr && vr->equiv)
+    bitmap_ior_into (*equiv, vr->equiv);
+}
+
+
+/* Return true if VR is ~[0, 0].  */
+
+static inline bool
+range_is_nonnull (value_range_t *vr)
+{
+  return vr->type == VR_ANTI_RANGE
+	 && integer_zerop (vr->min)
+	 && integer_zerop (vr->max);
+}
+
+
+/* Return true if VR is [0, 0].  */
+
+static inline bool
+range_is_null (value_range_t *vr)
+{
+  return vr->type == VR_RANGE
+	 && integer_zerop (vr->min)
+	 && integer_zerop (vr->max);
+}
+
+
+/* Return true if value range VR involves at least one symbol.  */
+
+static inline bool
+symbolic_range_p (value_range_t *vr)
+{
+  return (!is_gimple_min_invariant (vr->min)
+          || !is_gimple_min_invariant (vr->max));
+}
+
+/* Return true if value range VR uses an overflow infinity.  */
+
+static inline bool
+overflow_infinity_range_p (value_range_t *vr)
+{
+  return (vr->type == VR_RANGE
+	  && (is_overflow_infinity (vr->min)
+	      || is_overflow_infinity (vr->max)));
+}
+
+/* Return false if we can not make a valid comparison based on VR;
+   this will be the case if it uses an overflow infinity and overflow
+   is not undefined (i.e., -fno-strict-overflow is in effect).
+   Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
+   uses an overflow infinity.  */
+
+static bool
+usable_range_p (value_range_t *vr, bool *strict_overflow_p)
+{
+  gcc_assert (vr->type == VR_RANGE);
+  if (is_overflow_infinity (vr->min))
+    {
+      *strict_overflow_p = true;
+      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
+	return false;
+    }
+  if (is_overflow_infinity (vr->max))
+    {
+      *strict_overflow_p = true;
+      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
+	return false;
+    }
+  return true;
+}
+
+
+/* Like tree_expr_nonnegative_warnv_p, but this function uses value
+   ranges obtained so far.  */
+
+static bool
+vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
+{
+  return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
+	  || (TREE_CODE (expr) == SSA_NAME
+	      && ssa_name_nonnegative_p (expr)));
+}
+
+/* Return true if the result of assignment STMT is know to be non-negative.
+   If the return value is based on the assumption that signed overflow is
+   undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+   *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+  enum tree_code code = gimple_assign_rhs_code (stmt);
+  switch (get_gimple_rhs_class (code))
+    {
+    case GIMPLE_UNARY_RHS:
+      return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
+					     gimple_expr_type (stmt),
+					     gimple_assign_rhs1 (stmt),
+					     strict_overflow_p);
+    case GIMPLE_BINARY_RHS:
+      return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
+					      gimple_expr_type (stmt),
+					      gimple_assign_rhs1 (stmt),
+					      gimple_assign_rhs2 (stmt),
+					      strict_overflow_p);
+    case GIMPLE_SINGLE_RHS:
+      return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
+					      strict_overflow_p);
+    case GIMPLE_INVALID_RHS:
+      gcc_unreachable ();
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Return true if return value of call STMT is know to be non-negative.
+   If the return value is based on the assumption that signed overflow is
+   undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+   *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+  tree arg0 = gimple_call_num_args (stmt) > 0 ?
+    gimple_call_arg (stmt, 0) : NULL_TREE;
+  tree arg1 = gimple_call_num_args (stmt) > 1 ?
+    gimple_call_arg (stmt, 1) : NULL_TREE;
+
+  return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
+					gimple_call_fndecl (stmt),
+					arg0,
+					arg1,
+					strict_overflow_p);
+}
+
+/* Return true if STMT is know to to compute a non-negative value.
+   If the return value is based on the assumption that signed overflow is
+   undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+   *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+  switch (gimple_code (stmt))
+    {
+    case GIMPLE_ASSIGN:
+      return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
+    case GIMPLE_CALL:
+      return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Return true if the result of assignment STMT is know to be non-zero.
+   If the return value is based on the assumption that signed overflow is
+   undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+   *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+  enum tree_code code = gimple_assign_rhs_code (stmt);
+  switch (get_gimple_rhs_class (code))
+    {
+    case GIMPLE_UNARY_RHS:
+      return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
+					 gimple_expr_type (stmt),
+					 gimple_assign_rhs1 (stmt),
+					 strict_overflow_p);
+    case GIMPLE_BINARY_RHS:
+      return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
+					  gimple_expr_type (stmt),
+					  gimple_assign_rhs1 (stmt),
+					  gimple_assign_rhs2 (stmt),
+					  strict_overflow_p);
+    case GIMPLE_SINGLE_RHS:
+      return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
+					  strict_overflow_p);
+    case GIMPLE_INVALID_RHS:
+      gcc_unreachable ();
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Return true if STMT is know to to compute a non-zero value.
+   If the return value is based on the assumption that signed overflow is
+   undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+   *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+  switch (gimple_code (stmt))
+    {
+    case GIMPLE_ASSIGN:
+      return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
+    case GIMPLE_CALL:
+      return gimple_alloca_call_p (stmt);
+    default:
+      gcc_unreachable ();
+    }
+}
+
+/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
+   obtained so far.  */
+
+static bool
+vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
+{
+  if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
+    return true;
+
+  /* If we have an expression of the form &X->a, then the expression
+     is nonnull if X is nonnull.  */
+  if (is_gimple_assign (stmt)
+      && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
+    {
+      tree expr = gimple_assign_rhs1 (stmt);
+      tree base = get_base_address (TREE_OPERAND (expr, 0));
+
+      if (base != NULL_TREE
+	  && TREE_CODE (base) == INDIRECT_REF
+	  && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
+	{
+	  value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
+	  if (range_is_nonnull (vr))
+	    return true;
+	}
+    }
+
+  return false;
+}
+
+/* Returns true if EXPR is a valid value (as expected by compare_values) --
+   a gimple invariant, or SSA_NAME +- CST.  */
+
+static bool
+valid_value_p (tree expr)
+{
+  if (TREE_CODE (expr) == SSA_NAME)
+    return true;
+
+  if (TREE_CODE (expr) == PLUS_EXPR
+      || TREE_CODE (expr) == MINUS_EXPR)
+    return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
+	    && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
+  
+  return is_gimple_min_invariant (expr);
+}
+
+/* Return 
+   1 if VAL < VAL2
+   0 if !(VAL < VAL2)
+   -2 if those are incomparable.  */
+static inline int
+operand_less_p (tree val, tree val2)
+{
+  /* LT is folded faster than GE and others.  Inline the common case.  */
+  if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
+    {
+      if (TYPE_UNSIGNED (TREE_TYPE (val)))
+	return INT_CST_LT_UNSIGNED (val, val2);
+      else
+	{
+	  if (INT_CST_LT (val, val2))
+	    return 1;
+	}
+    }
+  else
+    {
+      tree tcmp;
+
+      fold_defer_overflow_warnings ();
+
+      tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
+
+      fold_undefer_and_ignore_overflow_warnings ();
+
+      if (!tcmp
+	  || TREE_CODE (tcmp) != INTEGER_CST)
+	return -2;
+
+      if (!integer_zerop (tcmp))
+	return 1;
+    }
+
+  /* val >= val2, not considering overflow infinity.  */
+  if (is_negative_overflow_infinity (val))
+    return is_negative_overflow_infinity (val2) ? 0 : 1;
+  else if (is_positive_overflow_infinity (val2))
+    return is_positive_overflow_infinity (val) ? 0 : 1;
+
+  return 0;
+}
+
+/* Compare two values VAL1 and VAL2.  Return
+   
+   	-2 if VAL1 and VAL2 cannot be compared at compile-time,
+   	-1 if VAL1 < VAL2,
+   	 0 if VAL1 == VAL2,
+	+1 if VAL1 > VAL2, and
+	+2 if VAL1 != VAL2
+
+   This is similar to tree_int_cst_compare but supports pointer values
+   and values that cannot be compared at compile time.
+
+   If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
+   true if the return value is only valid if we assume that signed
+   overflow is undefined.  */
+
+static int
+compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
+{
+  if (val1 == val2)
+    return 0;
+
+  /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
+     both integers.  */
+  gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
+	      == POINTER_TYPE_P (TREE_TYPE (val2)));
+  /* Convert the two values into the same type.  This is needed because
+     sizetype causes sign extension even for unsigned types.  */
+  val2 = fold_convert (TREE_TYPE (val1), val2);
+  STRIP_USELESS_TYPE_CONVERSION (val2);
+
+  if ((TREE_CODE (val1) == SSA_NAME
+       || TREE_CODE (val1) == PLUS_EXPR
+       || TREE_CODE (val1) == MINUS_EXPR)
+      && (TREE_CODE (val2) == SSA_NAME
+	  || TREE_CODE (val2) == PLUS_EXPR
+	  || TREE_CODE (val2) == MINUS_EXPR))
+    {
+      tree n1, c1, n2, c2;
+      enum tree_code code1, code2;
+  
+      /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
+	 return -1 or +1 accordingly.  If VAL1 and VAL2 don't use the
+	 same name, return -2.  */
+      if (TREE_CODE (val1) == SSA_NAME)
+	{
+	  code1 = SSA_NAME;
+	  n1 = val1;
+	  c1 = NULL_TREE;
+	}
+      else
+	{
+	  code1 = TREE_CODE (val1);
+	  n1 = TREE_OPERAND (val1, 0);
+	  c1 = TREE_OPERAND (val1, 1);
+	  if (tree_int_cst_sgn (c1) == -1)
+	    {
+	      if (is_negative_overflow_infinity (c1))
+		return -2;
+	      c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
+	      if (!c1)
+		return -2;
+	      code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+	    }
+	}
+
+      if (TREE_CODE (val2) == SSA_NAME)
+	{
+	  code2 = SSA_NAME;
+	  n2 = val2;
+	  c2 = NULL_TREE;
+	}
+      else
+	{
+	  code2 = TREE_CODE (val2);
+	  n2 = TREE_OPERAND (val2, 0);
+	  c2 = TREE_OPERAND (val2, 1);
+	  if (tree_int_cst_sgn (c2) == -1)
+	    {
+	      if (is_negative_overflow_infinity (c2))
+		return -2;
+	      c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
+	      if (!c2)
+		return -2;
+	      code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+	    }
+	}
+
+      /* Both values must use the same name.  */
+      if (n1 != n2)
+	return -2;
+
+      if (code1 == SSA_NAME
+	  && code2 == SSA_NAME)
+	/* NAME == NAME  */
+	return 0;
+
+      /* If overflow is defined we cannot simplify more.  */
+      if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
+	return -2;
+
+      if (strict_overflow_p != NULL
+	  && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
+	  && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
+	*strict_overflow_p = true;
+
+      if (code1 == SSA_NAME)
+	{
+	  if (code2 == PLUS_EXPR)
+	    /* NAME < NAME + CST  */
+	    return -1;
+	  else if (code2 == MINUS_EXPR)
+	    /* NAME > NAME - CST  */
+	    return 1;
+	}
+      else if (code1 == PLUS_EXPR)
+	{
+	  if (code2 == SSA_NAME)
+	    /* NAME + CST > NAME  */
+	    return 1;
+	  else if (code2 == PLUS_EXPR)
+	    /* NAME + CST1 > NAME + CST2, if CST1 > CST2  */
+	    return compare_values_warnv (c1, c2, strict_overflow_p);
+	  else if (code2 == MINUS_EXPR)
+	    /* NAME + CST1 > NAME - CST2  */
+	    return 1;
+	}
+      else if (code1 == MINUS_EXPR)
+	{
+	  if (code2 == SSA_NAME)
+	    /* NAME - CST < NAME  */
+	    return -1;
+	  else if (code2 == PLUS_EXPR)
+	    /* NAME - CST1 < NAME + CST2  */
+	    return -1;
+	  else if (code2 == MINUS_EXPR)
+	    /* NAME - CST1 > NAME - CST2, if CST1 < CST2.  Notice that
+	       C1 and C2 are swapped in the call to compare_values.  */
+	    return compare_values_warnv (c2, c1, strict_overflow_p);
+	}
+
+      gcc_unreachable ();
+    }
+
+  /* We cannot compare non-constants.  */
+  if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
+    return -2;
+
+  if (!POINTER_TYPE_P (TREE_TYPE (val1)))
+    {
+      /* We cannot compare overflowed values, except for overflow
+	 infinities.  */
+      if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
+	{
+	  if (strict_overflow_p != NULL)
+	    *strict_overflow_p = true;
+	  if (is_negative_overflow_infinity (val1))
+	    return is_negative_overflow_infinity (val2) ? 0 : -1;
+	  else if (is_negative_overflow_infinity (val2))
+	    return 1;
+	  else if (is_positive_overflow_infinity (val1))
+	    return is_positive_overflow_infinity (val2) ? 0 : 1;
+	  else if (is_positive_overflow_infinity (val2))
+	    return -1;
+	  return -2;
+	}
+
+      return tree_int_cst_compare (val1, val2);
+    }
+  else
+    {
+      tree t;
+
+      /* First see if VAL1 and VAL2 are not the same.  */
+      if (val1 == val2 || operand_equal_p (val1, val2, 0))
+	return 0;
+      
+      /* If VAL1 is a lower address than VAL2, return -1.  */
+      if (operand_less_p (val1, val2) == 1)
+	return -1;
+
+      /* If VAL1 is a higher address than VAL2, return +1.  */
+      if (operand_less_p (val2, val1) == 1)
+	return 1;
+
+      /* If VAL1 is different than VAL2, return +2.
+	 For integer constants we either have already returned -1 or 1
+	 or they are equivalent.  We still might succeed in proving
+	 something about non-trivial operands.  */
+      if (TREE_CODE (val1) != INTEGER_CST
+	  || TREE_CODE (val2) != INTEGER_CST)
+	{
+          t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
+	  if (t && integer_onep (t))
+	    return 2;
+	}
+
+      return -2;
+    }
+}
+
+/* Compare values like compare_values_warnv, but treat comparisons of
+   nonconstants which rely on undefined overflow as incomparable.  */
+
+static int
+compare_values (tree val1, tree val2)
+{
+  bool sop;
+  int ret;
+
+  sop = false;
+  ret = compare_values_warnv (val1, val2, &sop);
+  if (sop
+      && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
+    ret = -2;
+  return ret;
+}
+
+
+/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
+          0 if VAL is not inside VR,
+	 -2 if we cannot tell either way.
+
+   FIXME, the current semantics of this functions are a bit quirky
+	  when taken in the context of VRP.  In here we do not care
+	  about VR's type.  If VR is the anti-range ~[3, 5] the call
+	  value_inside_range (4, VR) will return 1.
+
+	  This is counter-intuitive in a strict sense, but the callers
+	  currently expect this.  They are calling the function
+	  merely to determine whether VR->MIN <= VAL <= VR->MAX.  The
+	  callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
+	  themselves.
+
+	  This also applies to value_ranges_intersect_p and
+	  range_includes_zero_p.  The semantics of VR_RANGE and
+	  VR_ANTI_RANGE should be encoded here, but that also means
+	  adapting the users of these functions to the new semantics.  
+
+   Benchmark compile/20001226-1.c compilation time after changing this
+   function.  */
+
+static inline int
+value_inside_range (tree val, value_range_t * vr)
+{
+  int cmp1, cmp2;
+
+  cmp1 = operand_less_p (val, vr->min);
+  if (cmp1 == -2)
+    return -2;
+  if (cmp1 == 1)
+    return 0;
+
+  cmp2 = operand_less_p (vr->max, val);
+  if (cmp2 == -2)
+    return -2;
+
+  return !cmp2;
+}
+
+
+/* Return true if value ranges VR0 and VR1 have a non-empty
+   intersection.  
+   
+   Benchmark compile/20001226-1.c compilation time after changing this
+   function.
+   */
+
+static inline bool
+value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
+{
+  /* The value ranges do not intersect if the maximum of the first range is
+     less than the minimum of the second range or vice versa.
+     When those relations are unknown, we can't do any better.  */
+  if (operand_less_p (vr0->max, vr1->min) != 0)
+    return false;
+  if (operand_less_p (vr1->max, vr0->min) != 0)
+    return false;
+  return true;
+}
+
+
+/* Return true if VR includes the value zero, false otherwise.  FIXME,
+   currently this will return false for an anti-range like ~[-4, 3].
+   This will be wrong when the semantics of value_inside_range are
+   modified (currently the users of this function expect these
+   semantics).  */
+
+static inline bool
+range_includes_zero_p (value_range_t *vr)
+{
+  tree zero;
+
+  gcc_assert (vr->type != VR_UNDEFINED
+              && vr->type != VR_VARYING
+	      && !symbolic_range_p (vr));
+
+  zero = build_int_cst (TREE_TYPE (vr->min), 0);
+  return (value_inside_range (zero, vr) == 1);
+}
+
+/* Return true if T, an SSA_NAME, is known to be nonnegative.  Return
+   false otherwise or if no value range information is available.  */
+
+bool
+ssa_name_nonnegative_p (const_tree t)
+{
+  value_range_t *vr = get_value_range (t);
+
+  if (!vr)
+    return false;
+
+  /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
+     which would return a useful value should be encoded as a VR_RANGE.  */
+  if (vr->type == VR_RANGE)
+    {
+      int result = compare_values (vr->min, integer_zero_node);
+
+      return (result == 0 || result == 1);
+    }
+  return false;
+}
+
+/* Return true if T, an SSA_NAME, is known to be nonzero.  Return
+   false otherwise or if no value range information is available.  */
+
+bool
+ssa_name_nonzero_p (const_tree t)
+{
+  value_range_t *vr = get_value_range (t);
+
+  if (!vr)
+    return false;
+
+  /* A VR_RANGE which does not include zero is a nonzero value.  */
+  if (vr->type == VR_RANGE && !symbolic_range_p (vr))
+    return ! range_includes_zero_p (vr);
+
+  /* A VR_ANTI_RANGE which does include zero is a nonzero value.  */
+  if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
+    return range_includes_zero_p (vr);
+
+  return false;
+}
+
+/* If OP has a value range with a single constant value return that,
+   otherwise return NULL_TREE.  This returns OP itself if OP is a
+   constant.  */
+
+static tree
+op_with_constant_singleton_value_range (tree op)
+{
+  value_range_t *vr;
+
+  if (is_gimple_min_invariant (op))
+    return op;
+
+  if (TREE_CODE (op) != SSA_NAME)
+    return NULL_TREE;
+
+  vr = get_value_range (op);
+  if (vr->type == VR_RANGE
+      && operand_equal_p (vr->min, vr->max, 0)
+      && is_gimple_min_invariant (vr->min))
+    return vr->min;
+
+  return NULL_TREE;
+}
+
+
+/* Extract value range information from an ASSERT_EXPR EXPR and store
+   it in *VR_P.  */
+
+static void
+extract_range_from_assert (value_range_t *vr_p, tree expr)
+{
+  tree var, cond, limit, min, max, type;
+  value_range_t *var_vr, *limit_vr;
+  enum tree_code cond_code;
+
+  var = ASSERT_EXPR_VAR (expr);
+  cond = ASSERT_EXPR_COND (expr);
+
+  gcc_assert (COMPARISON_CLASS_P (cond));
+
+  /* Find VAR in the ASSERT_EXPR conditional.  */
+  if (var == TREE_OPERAND (cond, 0)
+      || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
+      || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
+    {
+      /* If the predicate is of the form VAR COMP LIMIT, then we just
+	 take LIMIT from the RHS and use the same comparison code.  */
+      cond_code = TREE_CODE (cond);
+      limit = TREE_OPERAND (cond, 1);
+      cond = TREE_OPERAND (cond, 0);
+    }
+  else
+    {
+      /* If the predicate is of the form LIMIT COMP VAR, then we need
+	 to flip around the comparison code to create the proper range
+	 for VAR.  */
+      cond_code = swap_tree_comparison (TREE_CODE (cond));
+      limit = TREE_OPERAND (cond, 0);
+      cond = TREE_OPERAND (cond, 1);
+    }
+
+  limit = avoid_overflow_infinity (limit);
+
+  type = TREE_TYPE (limit);
+  gcc_assert (limit != var);
+
+  /* For pointer arithmetic, we only keep track of pointer equality
+     and inequality.  */
+  if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
+    {
+      set_value_range_to_varying (vr_p);
+      return;
+    }
+
+  /* If LIMIT is another SSA name and LIMIT has a range of its own,
+     try to use LIMIT's range to avoid creating symbolic ranges
+     unnecessarily. */
+  limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
+
+  /* LIMIT's range is only interesting if it has any useful information.  */
+  if (limit_vr
+      && (limit_vr->type == VR_UNDEFINED
+	  || limit_vr->type == VR_VARYING
+	  || symbolic_range_p (limit_vr)))
+    limit_vr = NULL;
+
+  /* Initially, the new range has the same set of equivalences of
+     VAR's range.  This will be revised before returning the final
+     value.  Since assertions may be chained via mutually exclusive
+     predicates, we will need to trim the set of equivalences before
+     we are done.  */
+  gcc_assert (vr_p->equiv == NULL);
+  add_equivalence (&vr_p->equiv, var);
+
+  /* Extract a new range based on the asserted comparison for VAR and
+     LIMIT's value range.  Notice that if LIMIT has an anti-range, we
+     will only use it for equality comparisons (EQ_EXPR).  For any
+     other kind of assertion, we cannot derive a range from LIMIT's
+     anti-range that can be used to describe the new range.  For
+     instance, ASSERT_EXPR <x_2, x_2 <= b_4>.  If b_4 is ~[2, 10],
+     then b_4 takes on the ranges [-INF, 1] and [11, +INF].  There is
+     no single range for x_2 that could describe LE_EXPR, so we might
+     as well build the range [b_4, +INF] for it.
+     One special case we handle is extracting a range from a
+     range test encoded as (unsigned)var + CST <= limit.  */
+  if (TREE_CODE (cond) == NOP_EXPR
+      || TREE_CODE (cond) == PLUS_EXPR)
+    {
+      if (TREE_CODE (cond) == PLUS_EXPR)
+        {
+          min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
+			     TREE_OPERAND (cond, 1));
+          max = int_const_binop (PLUS_EXPR, limit, min, 0);
+	  cond = TREE_OPERAND (cond, 0);
+	}
+      else
+	{
+	  min = build_int_cst (TREE_TYPE (var), 0);
+	  max = limit;
+	}
+
+      /* Make sure to not set TREE_OVERFLOW on the final type
+	 conversion.  We are willingly interpreting large positive
+	 unsigned values as negative singed values here.  */
+      min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
+				   TREE_INT_CST_HIGH (min), 0, false);
+      max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
+				   TREE_INT_CST_HIGH (max), 0, false);
+
+      /* We can transform a max, min range to an anti-range or
+         vice-versa.  Use set_and_canonicalize_value_range which does
+	 this for us.  */
+      if (cond_code == LE_EXPR)
+        set_and_canonicalize_value_range (vr_p, VR_RANGE,
+					  min, max, vr_p->equiv);
+      else if (cond_code == GT_EXPR)
+        set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
+					  min, max, vr_p->equiv);
+      else
+	gcc_unreachable ();
+    }
+  else if (cond_code == EQ_EXPR)
+    {
+      enum value_range_type range_type;
+
+      if (limit_vr)
+	{
+	  range_type = limit_vr->type;
+	  min = limit_vr->min;
+	  max = limit_vr->max;
+	}
+      else
+	{
+	  range_type = VR_RANGE;
+	  min = limit;
+	  max = limit;
+	}
+
+      set_value_range (vr_p, range_type, min, max, vr_p->equiv);
+
+      /* When asserting the equality VAR == LIMIT and LIMIT is another
+	 SSA name, the new range will also inherit the equivalence set
+	 from LIMIT.  */
+      if (TREE_CODE (limit) == SSA_NAME)
+	add_equivalence (&vr_p->equiv, limit);
+    }
+  else if (cond_code == NE_EXPR)
+    {
+      /* As described above, when LIMIT's range is an anti-range and
+	 this assertion is an inequality (NE_EXPR), then we cannot
+	 derive anything from the anti-range.  For instance, if
+	 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
+	 not imply that VAR's range is [0, 0].  So, in the case of
+	 anti-ranges, we just assert the inequality using LIMIT and
+	 not its anti-range.
+
+	 If LIMIT_VR is a range, we can only use it to build a new
+	 anti-range if LIMIT_VR is a single-valued range.  For
+	 instance, if LIMIT_VR is [0, 1], the predicate
+	 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
+	 Rather, it means that for value 0 VAR should be ~[0, 0]
+	 and for value 1, VAR should be ~[1, 1].  We cannot
+	 represent these ranges.
+
+	 The only situation in which we can build a valid
+	 anti-range is when LIMIT_VR is a single-valued range
+	 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX).  In that case, 
+	 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX].  */
+      if (limit_vr
+	  && limit_vr->type == VR_RANGE
+	  && compare_values (limit_vr->min, limit_vr->max) == 0)
+	{
+	  min = limit_vr->min;
+	  max = limit_vr->max;
+	}
+      else
+	{
+	  /* In any other case, we cannot use LIMIT's range to build a
+	     valid anti-range.  */
+	  min = max = limit;
+	}
+
+      /* If MIN and MAX cover the whole range for their type, then
+	 just use the original LIMIT.  */
+      if (INTEGRAL_TYPE_P (type)
+	  && vrp_val_is_min (min)
+	  && vrp_val_is_max (max))
+	min = max = limit;
+
+      set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
+    }
+  else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
+    {
+      min = TYPE_MIN_VALUE (type);
+
+      if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
+	max = limit;
+      else
+	{
+	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
+	     range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
+	     LT_EXPR.  */
+	  max = limit_vr->max;
+	}
+
+      /* If the maximum value forces us to be out of bounds, simply punt.
+	 It would be pointless to try and do anything more since this
+	 all should be optimized away above us.  */
+      if ((cond_code == LT_EXPR
+	   && compare_values (max, min) == 0)
+	  || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
+	set_value_range_to_varying (vr_p);
+      else
+	{
+	  /* For LT_EXPR, we create the range [MIN, MAX - 1].  */
+	  if (cond_code == LT_EXPR)
+	    {
+	      tree one = build_int_cst (type, 1);
+	      max = fold_build2 (MINUS_EXPR, type, max, one);
+	      if (EXPR_P (max))
+		TREE_NO_WARNING (max) = 1;
+	    }
+
+	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+	}
+    }
+  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
+    {
+      max = TYPE_MAX_VALUE (type);
+
+      if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
+	min = limit;
+      else
+	{
+	  /* If LIMIT_VR is of the form [N1, N2], we need to build the
+	     range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
+	     GT_EXPR.  */
+	  min = limit_vr->min;
+	}
+
+      /* If the minimum value forces us to be out of bounds, simply punt.
+	 It would be pointless to try and do anything more since this
+	 all should be optimized away above us.  */
+      if ((cond_code == GT_EXPR
+	   && compare_values (min, max) == 0)
+	  || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
+	set_value_range_to_varying (vr_p);
+      else
+	{
+	  /* For GT_EXPR, we create the range [MIN + 1, MAX].  */
+	  if (cond_code == GT_EXPR)
+	    {
+	      tree one = build_int_cst (type, 1);
+	      min = fold_build2 (PLUS_EXPR, type, min, one);
+	      if (EXPR_P (min))
+		TREE_NO_WARNING (min) = 1;
+	    }
+
+	  set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+	}
+    }
+  else
+    gcc_unreachable ();
+
+  /* If VAR already had a known range, it may happen that the new
+     range we have computed and VAR's range are not compatible.  For
+     instance,
+
+	if (p_5 == NULL)
+	  p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
+	  x_7 = p_6->fld;
+	  p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
+
+     While the above comes from a faulty program, it will cause an ICE
+     later because p_8 and p_6 will have incompatible ranges and at
+     the same time will be considered equivalent.  A similar situation
+     would arise from
+
+     	if (i_5 > 10)
+	  i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
+	  if (i_5 < 5)
+	    i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
+
+     Again i_6 and i_7 will have incompatible ranges.  It would be
+     pointless to try and do anything with i_7's range because
+     anything dominated by 'if (i_5 < 5)' will be optimized away.
+     Note, due to the wa in which simulation proceeds, the statement
+     i_7 = ASSERT_EXPR <...> we would never be visited because the
+     conditional 'if (i_5 < 5)' always evaluates to false.  However,
+     this extra check does not hurt and may protect against future
+     changes to VRP that may get into a situation similar to the
+     NULL pointer dereference example.
+
+     Note that these compatibility tests are only needed when dealing
+     with ranges or a mix of range and anti-range.  If VAR_VR and VR_P
+     are both anti-ranges, they will always be compatible, because two
+     anti-ranges will always have a non-empty intersection.  */
+
+  var_vr = get_value_range (var);
+
+  /* We may need to make adjustments when VR_P and VAR_VR are numeric
+     ranges or anti-ranges.  */
+  if (vr_p->type == VR_VARYING
+      || vr_p->type == VR_UNDEFINED
+      || var_vr->type == VR_VARYING
+      || var_vr->type == VR_UNDEFINED
+      || symbolic_range_p (vr_p)
+      || symbolic_range_p (var_vr))
+    return;
+
+  if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
+    {
+      /* If the two ranges have a non-empty intersection, we can
+	 refine the resulting range.  Since the assert expression
+	 creates an equivalency and at the same time it asserts a
+	 predicate, we can take the intersection of the two ranges to
+	 get better precision.  */
+      if (value_ranges_intersect_p (var_vr, vr_p))
+	{
+	  /* Use the larger of the two minimums.  */
+	  if (compare_values (vr_p->min, var_vr->min) == -1)
+	    min = var_vr->min;
+	  else
+	    min = vr_p->min;
+
+	  /* Use the smaller of the two maximums.  */
+	  if (compare_values (vr_p->max, var_vr->max) == 1)
+	    max = var_vr->max;
+	  else
+	    max = vr_p->max;
+
+	  set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
+	}
+      else
+	{
+	  /* The two ranges do not intersect, set the new range to
+	     VARYING, because we will not be able to do anything
+	     meaningful with it.  */
+	  set_value_range_to_varying (vr_p);
+	}
+    }
+  else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
+           || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
+    {
+      /* A range and an anti-range will cancel each other only if
+	 their ends are the same.  For instance, in the example above,
+	 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
+	 so VR_P should be set to VR_VARYING.  */
+      if (compare_values (var_vr->min, vr_p->min) == 0
+	  && compare_values (var_vr->max, vr_p->max) == 0)
+	set_value_range_to_varying (vr_p);
+      else
+	{
+	  tree min, max, anti_min, anti_max, real_min, real_max;
+	  int cmp;
+
+	  /* We want to compute the logical AND of the two ranges;
+	     there are three cases to consider.
+
+
+	     1. The VR_ANTI_RANGE range is completely within the 
+		VR_RANGE and the endpoints of the ranges are
+		different.  In that case the resulting range
+		should be whichever range is more precise.
+		Typically that will be the VR_RANGE.
+
+	     2. The VR_ANTI_RANGE is completely disjoint from
+		the VR_RANGE.  In this case the resulting range
+		should be the VR_RANGE.
+
+	     3. There is some overlap between the VR_ANTI_RANGE
+		and the VR_RANGE.
+
+		3a. If the high limit of the VR_ANTI_RANGE resides
+		    within the VR_RANGE, then the result is a new
+		    VR_RANGE starting at the high limit of the
+		    VR_ANTI_RANGE + 1 and extending to the
+		    high limit of the original VR_RANGE.
+
+		3b. If the low limit of the VR_ANTI_RANGE resides
+		    within the VR_RANGE, then the result is a new
+		    VR_RANGE starting at the low limit of the original
+		    VR_RANGE and extending to the low limit of the
+		    VR_ANTI_RANGE - 1.  */
+	  if (vr_p->type == VR_ANTI_RANGE)
+	    {
+	      anti_min = vr_p->min;
+	      anti_max = vr_p->max;
+	      real_min = var_vr->min;
+	      real_max = var_vr->max;
+	    }
+	  else
+	    {
+	      anti_min = var_vr->min;
+	      anti_max = var_vr->max;
+	      real_min = vr_p->min;
+	      real_max = vr_p->max;
+	    }
+
+
+	  /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
+	     not including any endpoints.  */
+	  if (compare_values (anti_max, real_max) == -1
+	      && compare_values (anti_min, real_min) == 1)
+	    {
+	      /* If the range is covering the whole valid range of
+		 the type keep the anti-range.  */
+	      if (!vrp_val_is_min (real_min)
+		  || !vrp_val_is_max (real_max))
+	        set_value_range (vr_p, VR_RANGE, real_min,
+				 real_max, vr_p->equiv);
+	    }
+	  /* Case 2, VR_ANTI_RANGE completely disjoint from
+	     VR_RANGE.  */
+	  else if (compare_values (anti_min, real_max) == 1
+		   || compare_values (anti_max, real_min) == -1)
+	    {
+	      set_value_range (vr_p, VR_RANGE, real_min,
+			       real_max, vr_p->equiv);
+	    }
+	  /* Case 3a, the anti-range extends into the low
+	     part of the real range.  Thus creating a new
+	     low for the real range.  */
+	  else if (((cmp = compare_values (anti_max, real_min)) == 1
+		    || cmp == 0)
+		   && compare_values (anti_max, real_max) == -1)
+	    {
+	      gcc_assert (!is_positive_overflow_infinity (anti_max));
+	      if (needs_overflow_infinity (TREE_TYPE (anti_max))
+		  && vrp_val_is_max (anti_max))
+		{
+		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+		    {
+		      set_value_range_to_varying (vr_p);
+		      return;
+		    }
+		  min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
+		}
+	      else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
+		min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
+				   anti_max,
+				   build_int_cst (TREE_TYPE (var_vr->min), 1));
+	      else
+		min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
+				   anti_max, size_int (1));
+	      max = real_max;
+	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+	    }
+	  /* Case 3b, the anti-range extends into the high
+	     part of the real range.  Thus creating a new
+	     higher for the real range.  */
+	  else if (compare_values (anti_min, real_min) == 1
+		   && ((cmp = compare_values (anti_min, real_max)) == -1
+		       || cmp == 0))
+	    {
+	      gcc_assert (!is_negative_overflow_infinity (anti_min));
+	      if (needs_overflow_infinity (TREE_TYPE (anti_min))
+		  && vrp_val_is_min (anti_min))
+		{
+		  if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+		    {
+		      set_value_range_to_varying (vr_p);
+		      return;
+		    }
+		  max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
+		}
+	      else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
+		max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
+				   anti_min,
+				   build_int_cst (TREE_TYPE (var_vr->min), 1));
+	      else
+		max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
+				   anti_min,
+				   size_int (-1));
+	      min = real_min;
+	      set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+	    }
+	}
+    }
+}
+
+
+/* Extract range information from SSA name VAR and store it in VR.  If
+   VAR has an interesting range, use it.  Otherwise, create the
+   range [VAR, VAR] and return it.  This is useful in situations where
+   we may have conditionals testing values of VARYING names.  For
+   instance,
+
+   	x_3 = y_5;
+	if (x_3 > y_5)
+	  ...
+
+    Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
+    always false.  */
+
+static void
+extract_range_from_ssa_name (value_range_t *vr, tree var)
+{
+  value_range_t *var_vr = get_value_range (var);
+
+  if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
+    copy_value_range (vr, var_vr);
+  else
+    set_value_range (vr, VR_RANGE, var, var, NULL);
+
+  add_equivalence (&vr->equiv, var);
+}
+
+
+/* Wrapper around int_const_binop.  If the operation overflows and we
+   are not using wrapping arithmetic, then adjust the result to be
+   -INF or +INF depending on CODE, VAL1 and VAL2.  This can return
+   NULL_TREE if we need to use an overflow infinity representation but
+   the type does not support it.  */
+
+static tree
+vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
+{
+  tree res;
+
+  res = int_const_binop (code, val1, val2, 0);
+
+  /* If we are not using wrapping arithmetic, operate symbolically
+     on -INF and +INF.  */
+  if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
+    {
+      int checkz = compare_values (res, val1);
+      bool overflow = false;
+
+      /* Ensure that res = val1 [+*] val2 >= val1
+         or that res = val1 - val2 <= val1.  */
+      if ((code == PLUS_EXPR
+	   && !(checkz == 1 || checkz == 0))
+          || (code == MINUS_EXPR
+	      && !(checkz == 0 || checkz == -1)))
+	{
+	  overflow = true;
+	}
+      /* Checking for multiplication overflow is done by dividing the
+	 output of the multiplication by the first input of the
+	 multiplication.  If the result of that division operation is
+	 not equal to the second input of the multiplication, then the
+	 multiplication overflowed.  */
+      else if (code == MULT_EXPR && !integer_zerop (val1))
+	{
+	  tree tmp = int_const_binop (TRUNC_DIV_EXPR,
+				      res,
+				      val1, 0);
+	  int check = compare_values (tmp, val2);
+
+	  if (check != 0)
+	    overflow = true;
+	}
+
+      if (overflow)
+	{
+	  res = copy_node (res);
+	  TREE_OVERFLOW (res) = 1;
+	}
+
+    }
+  else if ((TREE_OVERFLOW (res)
+	    && !TREE_OVERFLOW (val1)
+	    && !TREE_OVERFLOW (val2))
+	   || is_overflow_infinity (val1)
+	   || is_overflow_infinity (val2))
+    {
+      /* If the operation overflowed but neither VAL1 nor VAL2 are
+	 overflown, return -INF or +INF depending on the operation
+	 and the combination of signs of the operands.  */
+      int sgn1 = tree_int_cst_sgn (val1);
+      int sgn2 = tree_int_cst_sgn (val2);
+
+      if (needs_overflow_infinity (TREE_TYPE (res))
+	  && !supports_overflow_infinity (TREE_TYPE (res)))
+	return NULL_TREE;
+
+      /* We have to punt on adding infinities of different signs,
+	 since we can't tell what the sign of the result should be.
+	 Likewise for subtracting infinities of the same sign.  */
+      if (((code == PLUS_EXPR && sgn1 != sgn2)
+	   || (code == MINUS_EXPR && sgn1 == sgn2))
+	  && is_overflow_infinity (val1)
+	  && is_overflow_infinity (val2))
+	return NULL_TREE;
+
+      /* Don't try to handle division or shifting of infinities.  */
+      if ((code == TRUNC_DIV_EXPR
+	   || code == FLOOR_DIV_EXPR
+	   || code == CEIL_DIV_EXPR
+	   || code == EXACT_DIV_EXPR
+	   || code == ROUND_DIV_EXPR
+	   || code == RSHIFT_EXPR)
+	  && (is_overflow_infinity (val1)
+	      || is_overflow_infinity (val2)))
+	return NULL_TREE;
+
+      /* Notice that we only need to handle the restricted set of
+	 operations handled by extract_range_from_binary_expr.
+	 Among them, only multiplication, addition and subtraction
+	 can yield overflow without overflown operands because we
+	 are working with integral types only... except in the
+	 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
+	 for division too.  */
+
+      /* For multiplication, the sign of the overflow is given
+	 by the comparison of the signs of the operands.  */
+      if ((code == MULT_EXPR && sgn1 == sgn2)
+          /* For addition, the operands must be of the same sign
+	     to yield an overflow.  Its sign is therefore that
+	     of one of the operands, for example the first.  For
+	     infinite operands X + -INF is negative, not positive.  */
+	  || (code == PLUS_EXPR
+	      && (sgn1 >= 0
+		  ? !is_negative_overflow_infinity (val2)
+		  : is_positive_overflow_infinity (val2)))
+	  /* For subtraction, non-infinite operands must be of
+	     different signs to yield an overflow.  Its sign is
+	     therefore that of the first operand or the opposite of
+	     that of the second operand.  A first operand of 0 counts
+	     as positive here, for the corner case 0 - (-INF), which
+	     overflows, but must yield +INF.  For infinite operands 0
+	     - INF is negative, not positive.  */
+	  || (code == MINUS_EXPR
+	      && (sgn1 >= 0
+		  ? !is_positive_overflow_infinity (val2)
+		  : is_negative_overflow_infinity (val2)))
+	  /* We only get in here with positive shift count, so the
+	     overflow direction is the same as the sign of val1.
+	     Actually rshift does not overflow at all, but we only
+	     handle the case of shifting overflowed -INF and +INF.  */
+	  || (code == RSHIFT_EXPR
+	      && sgn1 >= 0)
+	  /* For division, the only case is -INF / -1 = +INF.  */
+	  || code == TRUNC_DIV_EXPR
+	  || code == FLOOR_DIV_EXPR
+	  || code == CEIL_DIV_EXPR
+	  || code == EXACT_DIV_EXPR
+	  || code == ROUND_DIV_EXPR)
+	return (needs_overflow_infinity (TREE_TYPE (res))
+		? positive_overflow_infinity (TREE_TYPE (res))
+		: TYPE_MAX_VALUE (TREE_TYPE (res)));
+      else
+	return (needs_overflow_infinity (TREE_TYPE (res))
+		? negative_overflow_infinity (TREE_TYPE (res))
+		: TYPE_MIN_VALUE (TREE_TYPE (res)));
+    }
+
+  return res;
+}
+
+
+/* Extract range information from a binary expression EXPR based on
+   the ranges of each of its operands and the expression code.  */
+
+static void
+extract_range_from_binary_expr (value_range_t *vr,
+				enum tree_code code,
+				tree expr_type, tree op0, tree op1)
+{
+  enum value_range_type type;
+  tree min, max;
+  int cmp;
+  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+  value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+  /* Not all binary expressions can be applied to ranges in a
+     meaningful way.  Handle only arithmetic operations.  */
+  if (code != PLUS_EXPR
+      && code != MINUS_EXPR
+      && code != POINTER_PLUS_EXPR
+      && code != MULT_EXPR
+      && code != TRUNC_DIV_EXPR
+      && code != FLOOR_DIV_EXPR
+      && code != CEIL_DIV_EXPR
+      && code != EXACT_DIV_EXPR
+      && code != ROUND_DIV_EXPR
+      && code != RSHIFT_EXPR
+      && code != MIN_EXPR
+      && code != MAX_EXPR
+      && code != BIT_AND_EXPR
+      && code != BIT_IOR_EXPR
+      && code != TRUTH_AND_EXPR
+      && code != TRUTH_OR_EXPR)
+    {
+      /* We can still do constant propagation here.  */
+      tree const_op0 = op_with_constant_singleton_value_range (op0);
+      tree const_op1 = op_with_constant_singleton_value_range (op1);
+      if (const_op0 || const_op1)
+	{
+	  tree tem = fold_binary (code, expr_type,
+				  const_op0 ? const_op0 : op0,
+				  const_op1 ? const_op1 : op1);
+	  if (tem
+	      && is_gimple_min_invariant (tem)
+	      && !is_overflow_infinity (tem))
+	    {
+	      set_value_range (vr, VR_RANGE, tem, tem, NULL);
+	      return;
+	    }
+	}
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* Get value ranges for each operand.  For constant operands, create
+     a new value range with the operand to simplify processing.  */
+  if (TREE_CODE (op0) == SSA_NAME)
+    vr0 = *(get_value_range (op0));
+  else if (is_gimple_min_invariant (op0))
+    set_value_range_to_value (&vr0, op0, NULL);
+  else
+    set_value_range_to_varying (&vr0);
+
+  if (TREE_CODE (op1) == SSA_NAME)
+    vr1 = *(get_value_range (op1));
+  else if (is_gimple_min_invariant (op1))
+    set_value_range_to_value (&vr1, op1, NULL);
+  else
+    set_value_range_to_varying (&vr1);
+
+  /* If either range is UNDEFINED, so is the result.  */
+  if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
+    {
+      set_value_range_to_undefined (vr);
+      return;
+    }
+
+  /* The type of the resulting value range defaults to VR0.TYPE.  */
+  type = vr0.type;
+
+  /* Refuse to operate on VARYING ranges, ranges of different kinds
+     and symbolic ranges.  As an exception, we allow BIT_AND_EXPR
+     because we may be able to derive a useful range even if one of
+     the operands is VR_VARYING or symbolic range.  Similarly for
+     divisions.  TODO, we may be able to derive anti-ranges in
+     some cases.  */
+  if (code != BIT_AND_EXPR
+      && code != TRUTH_AND_EXPR
+      && code != TRUTH_OR_EXPR
+      && code != TRUNC_DIV_EXPR
+      && code != FLOOR_DIV_EXPR
+      && code != CEIL_DIV_EXPR
+      && code != EXACT_DIV_EXPR
+      && code != ROUND_DIV_EXPR
+      && (vr0.type == VR_VARYING
+	  || vr1.type == VR_VARYING
+	  || vr0.type != vr1.type
+	  || symbolic_range_p (&vr0)
+	  || symbolic_range_p (&vr1)))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* Now evaluate the expression to determine the new range.  */
+  if (POINTER_TYPE_P (expr_type)
+      || POINTER_TYPE_P (TREE_TYPE (op0))
+      || POINTER_TYPE_P (TREE_TYPE (op1)))
+    {
+      if (code == MIN_EXPR || code == MAX_EXPR)
+	{
+	  /* For MIN/MAX expressions with pointers, we only care about
+	     nullness, if both are non null, then the result is nonnull.
+	     If both are null, then the result is null. Otherwise they
+	     are varying.  */
+	  if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
+	    set_value_range_to_nonnull (vr, expr_type);
+	  else if (range_is_null (&vr0) && range_is_null (&vr1))
+	    set_value_range_to_null (vr, expr_type);
+	  else
+	    set_value_range_to_varying (vr);
+
+	  return;
+	}
+      gcc_assert (code == POINTER_PLUS_EXPR);
+      /* For pointer types, we are really only interested in asserting
+	 whether the expression evaluates to non-NULL.  */
+      if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
+	set_value_range_to_nonnull (vr, expr_type);
+      else if (range_is_null (&vr0) && range_is_null (&vr1))
+	set_value_range_to_null (vr, expr_type);
+      else
+	set_value_range_to_varying (vr);
+
+      return;
+    }
+
+  /* For integer ranges, apply the operation to each end of the
+     range and see what we end up with.  */
+  if (code == TRUTH_AND_EXPR
+      || code == TRUTH_OR_EXPR)
+    {
+      /* If one of the operands is zero, we know that the whole
+	 expression evaluates zero.  */
+      if (code == TRUTH_AND_EXPR
+	  && ((vr0.type == VR_RANGE
+	       && integer_zerop (vr0.min)
+	       && integer_zerop (vr0.max))
+	      || (vr1.type == VR_RANGE
+		  && integer_zerop (vr1.min)
+		  && integer_zerop (vr1.max))))
+	{
+	  type = VR_RANGE;
+	  min = max = build_int_cst (expr_type, 0);
+	}
+      /* If one of the operands is one, we know that the whole
+	 expression evaluates one.  */
+      else if (code == TRUTH_OR_EXPR
+	       && ((vr0.type == VR_RANGE
+		    && integer_onep (vr0.min)
+		    && integer_onep (vr0.max))
+		   || (vr1.type == VR_RANGE
+		       && integer_onep (vr1.min)
+		       && integer_onep (vr1.max))))
+	{
+	  type = VR_RANGE;
+	  min = max = build_int_cst (expr_type, 1);
+	}
+      else if (vr0.type != VR_VARYING
+	       && vr1.type != VR_VARYING
+	       && vr0.type == vr1.type
+	       && !symbolic_range_p (&vr0)
+	       && !overflow_infinity_range_p (&vr0)
+	       && !symbolic_range_p (&vr1)
+	       && !overflow_infinity_range_p (&vr1))
+	{
+	  /* Boolean expressions cannot be folded with int_const_binop.  */
+	  min = fold_binary (code, expr_type, vr0.min, vr1.min);
+	  max = fold_binary (code, expr_type, vr0.max, vr1.max);
+	}
+      else
+	{
+	  /* The result of a TRUTH_*_EXPR is always true or false.  */
+	  set_value_range_to_truthvalue (vr, expr_type);
+	  return;
+	}
+    }
+  else if (code == PLUS_EXPR
+	   || code == MIN_EXPR
+	   || code == MAX_EXPR)
+    {
+      /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
+	 VR_VARYING.  It would take more effort to compute a precise
+	 range for such a case.  For example, if we have op0 == 1 and
+	 op1 == -1 with their ranges both being ~[0,0], we would have
+	 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
+	 Note that we are guaranteed to have vr0.type == vr1.type at
+	 this point.  */
+      if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+
+      /* For operations that make the resulting range directly
+	 proportional to the original ranges, apply the operation to
+	 the same end of each range.  */
+      min = vrp_int_const_binop (code, vr0.min, vr1.min);
+      max = vrp_int_const_binop (code, vr0.max, vr1.max);
+    }
+  else if (code == MULT_EXPR
+	   || code == TRUNC_DIV_EXPR
+	   || code == FLOOR_DIV_EXPR
+	   || code == CEIL_DIV_EXPR
+	   || code == EXACT_DIV_EXPR
+	   || code == ROUND_DIV_EXPR
+	   || code == RSHIFT_EXPR)
+    {
+      tree val[4];
+      size_t i;
+      bool sop;
+
+      /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
+	 drop to VR_VARYING.  It would take more effort to compute a
+	 precise range for such a case.  For example, if we have
+	 op0 == 65536 and op1 == 65536 with their ranges both being
+	 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
+	 we cannot claim that the product is in ~[0,0].  Note that we
+	 are guaranteed to have vr0.type == vr1.type at this
+	 point.  */
+      if (code == MULT_EXPR
+	  && vr0.type == VR_ANTI_RANGE
+	  && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+
+      /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
+	 then drop to VR_VARYING.  Outside of this range we get undefined
+	 behavior from the shift operation.  We cannot even trust
+	 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
+	 shifts, and the operation at the tree level may be widened.  */
+      if (code == RSHIFT_EXPR)
+	{
+	  if (vr1.type == VR_ANTI_RANGE
+	      || !vrp_expr_computes_nonnegative (op1, &sop)
+	      || (operand_less_p
+		  (build_int_cst (TREE_TYPE (vr1.max),
+				  TYPE_PRECISION (expr_type) - 1),
+		   vr1.max) != 0))
+	    {
+	      set_value_range_to_varying (vr);
+	      return;
+	    }
+	}
+
+      else if ((code == TRUNC_DIV_EXPR
+		|| code == FLOOR_DIV_EXPR
+		|| code == CEIL_DIV_EXPR
+		|| code == EXACT_DIV_EXPR
+		|| code == ROUND_DIV_EXPR)
+	       && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
+	{
+	  /* For division, if op1 has VR_RANGE but op0 does not, something
+	     can be deduced just from that range.  Say [min, max] / [4, max]
+	     gives [min / 4, max / 4] range.  */
+	  if (vr1.type == VR_RANGE
+	      && !symbolic_range_p (&vr1)
+	      && !range_includes_zero_p (&vr1))
+	    {
+	      vr0.type = type = VR_RANGE;
+	      vr0.min = vrp_val_min (TREE_TYPE (op0));
+	      vr0.max = vrp_val_max (TREE_TYPE (op1));
+	    }
+	  else
+	    {
+	      set_value_range_to_varying (vr);
+	      return;
+	    }
+	}
+
+      /* For divisions, if op0 is VR_RANGE, we can deduce a range
+	 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
+	 include 0.  */
+      if ((code == TRUNC_DIV_EXPR
+	   || code == FLOOR_DIV_EXPR
+	   || code == CEIL_DIV_EXPR
+	   || code == EXACT_DIV_EXPR
+	   || code == ROUND_DIV_EXPR)
+	  && vr0.type == VR_RANGE
+	  && (vr1.type != VR_RANGE
+	      || symbolic_range_p (&vr1)
+	      || range_includes_zero_p (&vr1)))
+	{
+	  tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
+	  int cmp;
+
+	  sop = false;
+	  min = NULL_TREE;
+	  max = NULL_TREE;
+	  if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
+	    {
+	      /* For unsigned division or when divisor is known
+		 to be non-negative, the range has to cover
+		 all numbers from 0 to max for positive max
+		 and all numbers from min to 0 for negative min.  */
+	      cmp = compare_values (vr0.max, zero);
+	      if (cmp == -1)
+		max = zero;
+	      else if (cmp == 0 || cmp == 1)
+		max = vr0.max;
+	      else
+		type = VR_VARYING;
+	      cmp = compare_values (vr0.min, zero);
+	      if (cmp == 1)
+		min = zero;
+	      else if (cmp == 0 || cmp == -1)
+		min = vr0.min;
+	      else
+		type = VR_VARYING;
+	    }
+	  else
+	    {
+	      /* Otherwise the range is -max .. max or min .. -min
+		 depending on which bound is bigger in absolute value,
+		 as the division can change the sign.  */
+	      abs_extent_range (vr, vr0.min, vr0.max);
+	      return;
+	    }
+	  if (type == VR_VARYING)
+	    {
+	      set_value_range_to_varying (vr);
+	      return;
+	    }
+	}
+
+      /* Multiplications and divisions are a bit tricky to handle,
+	 depending on the mix of signs we have in the two ranges, we
+	 need to operate on different values to get the minimum and
+	 maximum values for the new range.  One approach is to figure
+	 out all the variations of range combinations and do the
+	 operations.
+
+	 However, this involves several calls to compare_values and it
+	 is pretty convoluted.  It's simpler to do the 4 operations
+	 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
+	 MAX1) and then figure the smallest and largest values to form
+	 the new range.  */
+      else
+	{
+	  gcc_assert ((vr0.type == VR_RANGE
+		       || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
+		      && vr0.type == vr1.type);
+
+	  /* Compute the 4 cross operations.  */
+	  sop = false;
+	  val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
+	  if (val[0] == NULL_TREE)
+	    sop = true;
+
+	  if (vr1.max == vr1.min)
+	    val[1] = NULL_TREE;
+	  else
+	    {
+	      val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
+	      if (val[1] == NULL_TREE)
+		sop = true;
+	    }
+
+	  if (vr0.max == vr0.min)
+	    val[2] = NULL_TREE;
+	  else
+	    {
+	      val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
+	      if (val[2] == NULL_TREE)
+		sop = true;
+	    }
+
+	  if (vr0.min == vr0.max || vr1.min == vr1.max)
+	    val[3] = NULL_TREE;
+	  else
+	    {
+	      val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
+	      if (val[3] == NULL_TREE)
+		sop = true;
+	    }
+
+	  if (sop)
+	    {
+	      set_value_range_to_varying (vr);
+	      return;
+	    }
+
+	  /* Set MIN to the minimum of VAL[i] and MAX to the maximum
+	     of VAL[i].  */
+	  min = val[0];
+	  max = val[0];
+	  for (i = 1; i < 4; i++)
+	    {
+	      if (!is_gimple_min_invariant (min)
+		  || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+		  || !is_gimple_min_invariant (max)
+		  || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
+		break;
+
+	      if (val[i])
+		{
+		  if (!is_gimple_min_invariant (val[i])
+		      || (TREE_OVERFLOW (val[i])
+			  && !is_overflow_infinity (val[i])))
+		    {
+		      /* If we found an overflowed value, set MIN and MAX
+			 to it so that we set the resulting range to
+			 VARYING.  */
+		      min = max = val[i];
+		      break;
+		    }
+
+		  if (compare_values (val[i], min) == -1)
+		    min = val[i];
+
+		  if (compare_values (val[i], max) == 1)
+		    max = val[i];
+		}
+	    }
+	}
+    }
+  else if (code == MINUS_EXPR)
+    {
+      /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
+	 VR_VARYING.  It would take more effort to compute a precise
+	 range for such a case.  For example, if we have op0 == 1 and
+	 op1 == 1 with their ranges both being ~[0,0], we would have
+	 op0 - op1 == 0, so we cannot claim that the difference is in
+	 ~[0,0].  Note that we are guaranteed to have
+	 vr0.type == vr1.type at this point.  */
+      if (vr0.type == VR_ANTI_RANGE)
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+
+      /* For MINUS_EXPR, apply the operation to the opposite ends of
+	 each range.  */
+      min = vrp_int_const_binop (code, vr0.min, vr1.max);
+      max = vrp_int_const_binop (code, vr0.max, vr1.min);
+    }
+  else if (code == BIT_AND_EXPR)
+    {
+      if (vr0.type == VR_RANGE
+	  && vr0.min == vr0.max
+	  && TREE_CODE (vr0.max) == INTEGER_CST
+	  && !TREE_OVERFLOW (vr0.max)
+	  && tree_int_cst_sgn (vr0.max) >= 0)
+	{
+	  min = build_int_cst (expr_type, 0);
+	  max = vr0.max;
+	}
+      else if (vr1.type == VR_RANGE
+	       && vr1.min == vr1.max
+	       && TREE_CODE (vr1.max) == INTEGER_CST
+	       && !TREE_OVERFLOW (vr1.max)
+	       && tree_int_cst_sgn (vr1.max) >= 0)
+	{
+	  type = VR_RANGE;
+	  min = build_int_cst (expr_type, 0);
+	  max = vr1.max;
+	}
+      else
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+    }
+  else if (code == BIT_IOR_EXPR)
+    {
+      if (vr0.type == VR_RANGE
+          && vr1.type == VR_RANGE
+	  && TREE_CODE (vr0.min) == INTEGER_CST
+	  && TREE_CODE (vr1.min) == INTEGER_CST
+	  && TREE_CODE (vr0.max) == INTEGER_CST
+	  && TREE_CODE (vr1.max) == INTEGER_CST
+	  && tree_int_cst_sgn (vr0.min) >= 0
+	  && tree_int_cst_sgn (vr1.min) >= 0)
+	{
+	  double_int vr0_max = tree_to_double_int (vr0.max);
+	  double_int vr1_max = tree_to_double_int (vr1.max);
+	  double_int ior_max;
+
+	  /* Set all bits to the right of the most significant one to 1.
+	     For example, [0, 4] | [4, 4] = [4, 7]. */
+	  ior_max.low = vr0_max.low | vr1_max.low;
+	  ior_max.high = vr0_max.high | vr1_max.high;
+	  if (ior_max.high != 0)
+	    {
+	      ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
+	      ior_max.high |= ((HOST_WIDE_INT) 1
+			       << floor_log2 (ior_max.high)) - 1;
+	    }
+	  else if (ior_max.low != 0)
+	    ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
+			    << floor_log2 (ior_max.low)) - 1;
+
+	  /* Both of these endpoints are conservative.  */
+          min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
+          max = double_int_to_tree (expr_type, ior_max);
+	}
+      else
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+    }
+  else
+    gcc_unreachable ();
+
+  /* If either MIN or MAX overflowed, then set the resulting range to
+     VARYING.  But we do accept an overflow infinity
+     representation.  */
+  if (min == NULL_TREE
+      || !is_gimple_min_invariant (min)
+      || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+      || max == NULL_TREE
+      || !is_gimple_min_invariant (max)
+      || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* We punt if:
+     1) [-INF, +INF]
+     2) [-INF, +-INF(OVF)]
+     3) [+-INF(OVF), +INF]
+     4) [+-INF(OVF), +-INF(OVF)]
+     We learn nothing when we have INF and INF(OVF) on both sides.
+     Note that we do accept [-INF, -INF] and [+INF, +INF] without
+     overflow.  */
+  if ((vrp_val_is_min (min) || is_overflow_infinity (min))
+      && (vrp_val_is_max (max) || is_overflow_infinity (max)))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  cmp = compare_values (min, max);
+  if (cmp == -2 || cmp == 1)
+    {
+      /* If the new range has its limits swapped around (MIN > MAX),
+	 then the operation caused one of them to wrap around, mark
+	 the new range VARYING.  */
+      set_value_range_to_varying (vr);
+    }
+  else
+    set_value_range (vr, type, min, max, NULL);
+}
+
+
+/* Extract range information from a unary expression EXPR based on
+   the range of its operand and the expression code.  */
+
+static void
+extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
+			       tree type, tree op0)
+{
+  tree min, max;
+  int cmp;
+  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+  /* Refuse to operate on certain unary expressions for which we
+     cannot easily determine a resulting range.  */
+  if (code == FIX_TRUNC_EXPR
+      || code == FLOAT_EXPR
+      || code == BIT_NOT_EXPR
+      || code == CONJ_EXPR)
+    {
+      /* We can still do constant propagation here.  */
+      if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
+	{
+	  tree tem = fold_unary (code, type, op0);
+	  if (tem
+	      && is_gimple_min_invariant (tem)
+	      && !is_overflow_infinity (tem))
+	    {
+	      set_value_range (vr, VR_RANGE, tem, tem, NULL);
+	      return;
+	    }
+	}
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* Get value ranges for the operand.  For constant operands, create
+     a new value range with the operand to simplify processing.  */
+  if (TREE_CODE (op0) == SSA_NAME)
+    vr0 = *(get_value_range (op0));
+  else if (is_gimple_min_invariant (op0))
+    set_value_range_to_value (&vr0, op0, NULL);
+  else
+    set_value_range_to_varying (&vr0);
+
+  /* If VR0 is UNDEFINED, so is the result.  */
+  if (vr0.type == VR_UNDEFINED)
+    {
+      set_value_range_to_undefined (vr);
+      return;
+    }
+
+  /* Refuse to operate on symbolic ranges, or if neither operand is
+     a pointer or integral type.  */
+  if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
+       && !POINTER_TYPE_P (TREE_TYPE (op0)))
+      || (vr0.type != VR_VARYING
+	  && symbolic_range_p (&vr0)))
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* If the expression involves pointers, we are only interested in
+     determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).  */
+  if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
+    {
+      bool sop;
+
+      sop = false;
+      if (range_is_nonnull (&vr0)
+	  || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
+	      && !sop))
+	set_value_range_to_nonnull (vr, type);
+      else if (range_is_null (&vr0))
+	set_value_range_to_null (vr, type);
+      else
+	set_value_range_to_varying (vr);
+
+      return;
+    }
+
+  /* Handle unary expressions on integer ranges.  */
+  if (CONVERT_EXPR_CODE_P (code)
+      && INTEGRAL_TYPE_P (type)
+      && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+    {
+      tree inner_type = TREE_TYPE (op0);
+      tree outer_type = type;
+
+      /* Always use base-types here.  This is important for the
+	 correct signedness.  */
+      if (TREE_TYPE (inner_type))
+	inner_type = TREE_TYPE (inner_type);
+      if (TREE_TYPE (outer_type))
+	outer_type = TREE_TYPE (outer_type);
+
+      /* If VR0 is varying and we increase the type precision, assume
+	 a full range for the following transformation.  */
+      if (vr0.type == VR_VARYING
+	  && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
+	{
+	  vr0.type = VR_RANGE;
+	  vr0.min = TYPE_MIN_VALUE (inner_type);
+	  vr0.max = TYPE_MAX_VALUE (inner_type);
+	}
+
+      /* If VR0 is a constant range or anti-range and the conversion is
+	 not truncating we can convert the min and max values and
+	 canonicalize the resulting range.  Otherwise we can do the
+	 conversion if the size of the range is less than what the
+	 precision of the target type can represent and the range is
+	 not an anti-range.  */
+      if ((vr0.type == VR_RANGE
+	   || vr0.type == VR_ANTI_RANGE)
+	  && TREE_CODE (vr0.min) == INTEGER_CST
+	  && TREE_CODE (vr0.max) == INTEGER_CST
+	  && !is_overflow_infinity (vr0.min)
+	  && !is_overflow_infinity (vr0.max)
+	  && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
+	      || (vr0.type == VR_RANGE
+		  && integer_zerop (int_const_binop (RSHIFT_EXPR,
+		       int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
+		         size_int (TYPE_PRECISION (outer_type)), 0)))))
+	{
+	  tree new_min, new_max;
+	  new_min = force_fit_type_double (outer_type,
+					   TREE_INT_CST_LOW (vr0.min),
+					   TREE_INT_CST_HIGH (vr0.min), 0, 0);
+	  new_max = force_fit_type_double (outer_type,
+					   TREE_INT_CST_LOW (vr0.max),
+					   TREE_INT_CST_HIGH (vr0.max), 0, 0);
+	  set_and_canonicalize_value_range (vr, vr0.type,
+					    new_min, new_max, NULL);
+	  return;
+	}
+
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* Conversion of a VR_VARYING value to a wider type can result
+     in a usable range.  So wait until after we've handled conversions
+     before dropping the result to VR_VARYING if we had a source
+     operand that is VR_VARYING.  */
+  if (vr0.type == VR_VARYING)
+    {
+      set_value_range_to_varying (vr);
+      return;
+    }
+
+  /* Apply the operation to each end of the range and see what we end
+     up with.  */
+  if (code == NEGATE_EXPR
+      && !TYPE_UNSIGNED (type))
+    {
+      /* NEGATE_EXPR flips the range around.  We need to treat
+	 TYPE_MIN_VALUE specially.  */
+      if (is_positive_overflow_infinity (vr0.max))
+	min = negative_overflow_infinity (type);
+      else if (is_negative_overflow_infinity (vr0.max))
+	min = positive_overflow_infinity (type);
+      else if (!vrp_val_is_min (vr0.max))
+	min = fold_unary_to_constant (code, type, vr0.max);
+      else if (needs_overflow_infinity (type))
+	{
+	  if (supports_overflow_infinity (type)
+	      && !is_overflow_infinity (vr0.min)
+	      && !vrp_val_is_min (vr0.min))
+	    min = positive_overflow_infinity (type);
+	  else
+	    {
+	      set_value_range_to_varying (vr);
+	      return;
+	    }
+	}
+      else
+	min = TYPE_MIN_VALUE (type);
+
+      if (is_positive_overflow_infinity (vr0.min))
+	max = negative_overflow_infinity (type);
+      else if (is_negative_overflow_infinity (vr0.min))
+	max = positive_overflow_infinity (type);
+      else if (!vrp_val_is_min (vr0.min))
+	max = fold_unary_to_constant (code, type, vr0.min);
+      else if (needs_overflow_infinity (type))
+	{
+	  if (supports_overflow_infinity (type))
+	    max = positive_overflow_infinity (type);
+	  else
+	    {
+	      set_value_range_to_varying (vr);
+	      return;
+	    }
+	}
+      else
+	max = TYPE_MIN_VALUE (type);
+    }
+  else if (code == NEGATE_EXPR
+	   && TYPE_UNSIGNED (type))
+    {
+      if (!range_includes_zero_p (&vr0))
+	{
+	  max = fold_unary_to_constant (code, type, vr0.min);
+	  min = fold_unary_to_constant (code, type, vr0.max);
+	}
+      else
+	{
+	  if (range_is_null (&vr0))
+	    set_value_range_to_null (vr, type);
+	  else
+	    set_value_range_to_varying (vr);
+	  return;
+	}
+    }
+  else if (code == ABS_EXPR
+           && !TYPE_UNSIGNED (type))
+    {
+      /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
+         useful range.  */
+      if (!TYPE_OVERFLOW_UNDEFINED (type)
+	  && ((vr0.type == VR_RANGE
+	       && vrp_val_is_min (vr0.min))
+	      || (vr0.type == VR_ANTI_RANGE
+		  && !vrp_val_is_min (vr0.min)
+		  && !range_includes_zero_p (&vr0))))
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+	
+      /* ABS_EXPR may flip the range around, if the original range
+	 included negative values.  */
+      if (is_overflow_infinity (vr0.min))
+	min = positive_overflow_infinity (type);
+      else if (!vrp_val_is_min (vr0.min))
+	min = fold_unary_to_constant (code, type, vr0.min);
+      else if (!needs_overflow_infinity (type))
+	min = TYPE_MAX_VALUE (type);
+      else if (supports_overflow_infinity (type))
+	min = positive_overflow_infinity (type);
+      else
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+
+      if (is_overflow_infinity (vr0.max))
+	max = positive_overflow_infinity (type);
+      else if (!vrp_val_is_min (vr0.max))
+	max = fold_unary_to_constant (code, type, vr0.max);
+      else if (!needs_overflow_infinity (type))
+	max = TYPE_MAX_VALUE (type);
+      else if (supports_overflow_infinity (type)
+	       /* We shouldn't generate [+INF, +INF] as set_value_range
+		  doesn't like this and ICEs.  */
+	       && !is_positive_overflow_infinity (min))
+	max = positive_overflow_infinity (type);
+      else
+	{
+	  set_value_range_to_varying (vr);
+	  return;
+	}
+
+      cmp = compare_values (min, max);
+
+      /* If a VR_ANTI_RANGEs contains zero, then we have
+	 ~[-INF, min(MIN, MAX)].  */
+      if (vr0.type == VR_ANTI_RANGE)
+	{ 
+	  if (range_includes_zero_p (&vr0))
+	    {
+	      /* Take the lower of the two values.  */
+	      if (cmp != 1)
+		max = min;
+
+	      /* Create ~[-INF, min (abs(MIN), abs(MAX))]
+	         or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
+		 flag_wrapv is set and the original anti-range doesn't include
+	         TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE.  */
+	      if (TYPE_OVERFLOW_WRAPS (type))
+		{
+		  tree type_min_value = TYPE_MIN_VALUE (type);
+
+		  min = (vr0.min != type_min_value
+			 ? int_const_binop (PLUS_EXPR, type_min_value,
+					    integer_one_node, 0)
+			 : type_min_value);
+		}
+	      else
+		{
+		  if (overflow_infinity_range_p (&vr0))
+		    min = negative_overflow_infinity (type);
+		  else
+		    min = TYPE_MIN_VALUE (type);
+		}
+	    }
+	  else
+	    {
+	      /* All else has failed, so create the range [0, INF], even for
+	         flag_wrapv since TYPE_MIN_VALUE is in the original
+	         anti-range.  */
+	      vr0.type = VR_RANGE;
+	      min = build_int_cst (type, 0);
+	      if (needs_overflow_infinity (type))
+		{
+		  if (supports_overflow_infinity (type))
+		    max = positive_overflow_infinity (type);
+		  else
+		    {
+		      set_value_range_to_varying (vr);
+		      return;
+		    }
+		}
+	      else
+		max = TYPE_MAX_VALUE (type);
+	    }
+	}
+
+      /* If the range contains zero then we know that the minimum value in the
+         range will be zero.  */
+      else if (range_includes_zero_p (&vr0))
+	{
+	  if (cmp == 1)
+	    max = min;
+	  min = build_int_cst (type, 0);
+	}
+      else
+	{
+          /* If the range was reversed, swap MIN and MAX.  */
+	  if (cmp == 1)
+	    {
+	      tree t = min;
+	      min = max;
+	      max = t;
+	    }
+	}
+    }
+  else
+    {
+      /* Otherwise, operate on each end of the range.  */
+      min = fold_unary_to_constant (code, type, vr0.min);
+      max = fold_unary_to_constant (code, type, vr0.max);
+
+      if (needs_overflow_infinity (type))
+	{
+	  gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
+
+	  /* If both sides have overflowed, we don't know
+	     anything.  */
+	  if ((is_overflow_infinity (vr0.min)
+	       || TREE_OVERFLOW (min))
+	      && (is_overflow_infinity (vr0.max)
+		  || TREE_OVERFLOW (max)))
+	    {
+	      set_value_range_to_varying (vr);
+	      return;
+	    }
+
+	  if (is_overflow_infinity (vr0.min))
+	    min = vr0.min;
+	  else if (TREE_OVERFLOW (min))
+	    {
+	      if (supports_overflow_infinity (type))
+		min = (tree_int_cst_sgn (min) >= 0
+		       ? positive_overflow_infinity (TREE_TYPE (min))
+		       : negative_overflow_infinity (TREE_TYPE (min)));
+	      else
+		{
+		  set_value_range_to_varying (vr);
+		  return;
+		}
+	    }
+
+	  if (is_overflow_infinity (vr0.max))
+	    max = vr0.max;
+	  else if (TREE_OVERFLOW (max))
+	    {
+	      if (supports_overflow_infinity (type))
+		max = (tree_int_cst_sgn (max) >= 0
+		       ? positive_overflow_infinity (TREE_TYPE (max))
+		       : negative_overflow_infinity (TREE_TYPE (max)));
+	      else
+		{
+		  set_value_range_to_varying (vr);
+		  return;
+		}
+	    }
+	}
+    }
+
+  cmp = compare_values (min, max);
+  if (cmp == -2 || cmp == 1)
+    {
+      /* If the new range has its limits swapped around (MIN > MAX),
+	 then the operation caused one of them to wrap around, mark
+	 the new range VARYING.  */
+      set_value_range_to_varying (vr);
+    }
+  else
+    set_value_range (vr, vr0.type, min, max, NULL);
+}
+
+
+/* Extract range information from a conditional expression EXPR based on
+   the ranges of each of its operands and the expression code.  */
+
+static void
+extract_range_from_cond_expr (value_range_t *vr, tree expr)
+{
+  tree op0, op1;
+  value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+  value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+  /* Get value ranges for each operand.  For constant operands, create
+     a new value range with the operand to simplify processing.  */
+  op0 = COND_EXPR_THEN (expr);
+  if (TREE_CODE (op0) == SSA_NAME)
+    vr0 = *(get_value_range (op0));
+  else if (is_gimple_min_invariant (op0))
+    set_value_range_to_value (&vr0, op0, NULL);
+  else
+    set_value_range_to_varying (&vr0);
+
+  op1 = COND_EXPR_ELSE (expr);
+  if (TREE_CODE (op1) == SSA_NAME)
+    vr1 = *(get_value_range (op1));
+  else if (is_gimple_min_invariant (op1))
+    set_value_range_to_value (&vr1, op1, NULL);
+  else
+    set_value_range_to_varying (&vr1);
+
+  /* The resulting value range is the union of the operand ranges */
+  vrp_meet (&vr0, &vr1);
+  copy_value_range (vr, &vr0);
+}
+
+
+/* Extract range information from a comparison expression EXPR based
+   on the range of its operand and the expression code.  */
+
+static void
+extract_range_from_comparison (value_range_t *vr, enum tree_code code,
+			       tree type, tree op0, tree op1)
+{
+  bool sop = false;
+  tree val;
+  
+  val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
+  						 NULL);
+
+  /* A disadvantage of using a special infinity as an overflow
+     representation is that we lose the ability to record overflow
+     when we don't have an infinity.  So we have to ignore a result
+     which relies on overflow.  */
+
+  if (val && !is_overflow_infinity (val) && !sop)
+    {
+      /* Since this expression was found on the RHS of an assignment,
+	 its type may be different from _Bool.  Convert VAL to EXPR's
+	 type.  */
+      val = fold_convert (type, val);
+      if (is_gimple_min_invariant (val))
+	set_value_range_to_value (vr, val, vr->equiv);
+      else
+	set_value_range (vr, VR_RANGE, val, val, vr->equiv);
+    }
+  else
+    /* The result of a comparison is always true or false.  */
+    set_value_range_to_truthvalue (vr, type);
+}
+
+/* Try to derive a nonnegative or nonzero range out of STMT relying
+   primarily on generic routines in fold in conjunction with range data.
+   Store the result in *VR */
+
+static void
+extract_range_basic (value_range_t *vr, gimple stmt)
+{
+  bool sop = false;
+  tree type = gimple_expr_type (stmt);
+
+  if (INTEGRAL_TYPE_P (type)
+      && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
+    set_value_range_to_nonnegative (vr, type,
+				    sop || stmt_overflow_infinity (stmt));
+  else if (vrp_stmt_computes_nonzero (stmt, &sop)
+	   && !sop)
+    set_value_range_to_nonnull (vr, type);
+  else
+    set_value_range_to_varying (vr);
+}
+
+
+/* Try to compute a useful range out of assignment STMT and store it
+   in *VR.  */
+
+static void
+extract_range_from_assignment (value_range_t *vr, gimple stmt)
+{
+  enum tree_code code = gimple_assign_rhs_code (stmt);
+
+  if (code == ASSERT_EXPR)
+    extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
+  else if (code == SSA_NAME)
+    extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
+  else if (TREE_CODE_CLASS (code) == tcc_binary
+	   || code == TRUTH_AND_EXPR
+	   || code == TRUTH_OR_EXPR
+	   || code == TRUTH_XOR_EXPR)
+    extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
+				    gimple_expr_type (stmt),
+				    gimple_assign_rhs1 (stmt),
+				    gimple_assign_rhs2 (stmt));
+  else if (TREE_CODE_CLASS (code) == tcc_unary)
+    extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
+				   gimple_expr_type (stmt),
+				   gimple_assign_rhs1 (stmt));
+  else if (code == COND_EXPR)
+    extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
+  else if (TREE_CODE_CLASS (code) == tcc_comparison)
+    extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
+				   gimple_expr_type (stmt),
+				   gimple_assign_rhs1 (stmt),
+				   gimple_assign_rhs2 (stmt));
+  else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
+	   && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
+    set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
+  else
+    set_value_range_to_varying (vr);
+
+  if (vr->type == VR_VARYING)
+    extract_range_basic (vr, stmt);
+}
+
+/* Given a range VR, a LOOP and a variable VAR, determine whether it
+   would be profitable to adjust VR using scalar evolution information
+   for VAR.  If so, update VR with the new limits.  */
+
+static void
+adjust_range_with_scev (value_range_t *vr, struct loop *loop,
+			gimple stmt, tree var)
+{
+  tree init, step, chrec, tmin, tmax, min, max, type;
+  enum ev_direction dir;
+
+  /* TODO.  Don't adjust anti-ranges.  An anti-range may provide
+     better opportunities than a regular range, but I'm not sure.  */
+  if (vr->type == VR_ANTI_RANGE)
+    return;
+
+  chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
+
+  /* Like in PR19590, scev can return a constant function.  */
+  if (is_gimple_min_invariant (chrec))
+    {
+      set_value_range_to_value (vr, chrec, vr->equiv);
+      return;
+    }
+
+  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+    return;
+
+  init = initial_condition_in_loop_num (chrec, loop->num);
+  step = evolution_part_in_loop_num (chrec, loop->num);
+
+  /* If STEP is symbolic, we can't know whether INIT will be the
+     minimum or maximum value in the range.  Also, unless INIT is
+     a simple expression, compare_values and possibly other functions
+     in tree-vrp won't be able to handle it.  */
+  if (step == NULL_TREE
+      || !is_gimple_min_invariant (step)
+      || !valid_value_p (init))
+    return;
+
+  dir = scev_direction (chrec);
+  if (/* Do not adjust ranges if we do not know whether the iv increases
+	 or decreases,  ... */
+      dir == EV_DIR_UNKNOWN
+      /* ... or if it may wrap.  */
+      || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
+				true))
+    return;
+
+  /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
+     negative_overflow_infinity and positive_overflow_infinity,
+     because we have concluded that the loop probably does not
+     wrap.  */
+
+  type = TREE_TYPE (var);
+  if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
+    tmin = lower_bound_in_type (type, type);
+  else
+    tmin = TYPE_MIN_VALUE (type);
+  if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
+    tmax = upper_bound_in_type (type, type);
+  else
+    tmax = TYPE_MAX_VALUE (type);
+
+  if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
+    {
+      min = tmin;
+      max = tmax;
+
+      /* For VARYING or UNDEFINED ranges, just about anything we get
+	 from scalar evolutions should be better.  */
+
+      if (dir == EV_DIR_DECREASES)
+	max = init;
+      else
+	min = init;
+
+      /* If we would create an invalid range, then just assume we
+	 know absolutely nothing.  This may be over-conservative,
+	 but it's clearly safe, and should happen only in unreachable
+         parts of code, or for invalid programs.  */
+      if (compare_values (min, max) == 1)
+	return;
+
+      set_value_range (vr, VR_RANGE, min, max, vr->equiv);
+    }
+  else if (vr->type == VR_RANGE)
+    {
+      min = vr->min;
+      max = vr->max;
+
+      if (dir == EV_DIR_DECREASES)
+	{
+	  /* INIT is the maximum value.  If INIT is lower than VR->MAX
+	     but no smaller than VR->MIN, set VR->MAX to INIT.  */
+	  if (compare_values (init, max) == -1)
+	    {
+	      max = init;
+
+	      /* If we just created an invalid range with the minimum
+		 greater than the maximum, we fail conservatively.
+		 This should happen only in unreachable
+		 parts of code, or for invalid programs.  */
+	      if (compare_values (min, max) == 1)
+		return;
+	    }
+
+	  /* According to the loop information, the variable does not
+	     overflow.  If we think it does, probably because of an
+	     overflow due to arithmetic on a different INF value,
+	     reset now.  */
+	  if (is_negative_overflow_infinity (min))
+	    min = tmin;
+	}
+      else
+	{
+	  /* If INIT is bigger than VR->MIN, set VR->MIN to INIT.  */
+	  if (compare_values (init, min) == 1)
+	    {
+	      min = init;
+
+	      /* Again, avoid creating invalid range by failing.  */
+	      if (compare_values (min, max) == 1)
+		return;
+	    }
+
+	  if (is_positive_overflow_infinity (max))
+	    max = tmax;
+	}
+
+      set_value_range (vr, VR_RANGE, min, max, vr->equiv);
+    }
+}
+
+/* Return true if VAR may overflow at STMT.  This checks any available
+   loop information to see if we can determine that VAR does not
+   overflow.  */
+
+static bool
+vrp_var_may_overflow (tree var, gimple stmt)
+{
+  struct loop *l;
+  tree chrec, init, step;
+
+  if (current_loops == NULL)
+    return true;
+
+  l = loop_containing_stmt (stmt);
+  if (l == NULL)
+    return true;
+
+  chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
+  if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+    return true;
+
+  init = initial_condition_in_loop_num (chrec, l->num);
+  step = evolution_part_in_loop_num (chrec, l->num);
+
+  if (step == NULL_TREE
+      || !is_gimple_min_invariant (step)
+      || !valid_value_p (init))
+    return true;
+
+  /* If we get here, we know something useful about VAR based on the
+     loop information.  If it wraps, it may overflow.  */
+
+  if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
+			     true))
+    return true;
+
+  if (dump_file && (dump_flags & TDF_DETAILS) != 0)
+    {
+      print_generic_expr (dump_file, var, 0);
+      fprintf (dump_file, ": loop information indicates does not overflow\n");
+    }
+
+  return false;
+}
+
+
+/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
+   
+   - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
+     all the values in the ranges.
+
+   - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
+
+   - Return NULL_TREE if it is not always possible to determine the
+     value of the comparison.
+
+   Also set *STRICT_OVERFLOW_P to indicate whether a range with an
+   overflow infinity was used in the test.  */
+
+
+static tree
+compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
+		bool *strict_overflow_p)
+{
+  /* VARYING or UNDEFINED ranges cannot be compared.  */
+  if (vr0->type == VR_VARYING
+      || vr0->type == VR_UNDEFINED
+      || vr1->type == VR_VARYING
+      || vr1->type == VR_UNDEFINED)
+    return NULL_TREE;
+
+  /* Anti-ranges need to be handled separately.  */
+  if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
+    {
+      /* If both are anti-ranges, then we cannot compute any
+	 comparison.  */
+      if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
+	return NULL_TREE;
+
+      /* These comparisons are never statically computable.  */
+      if (comp == GT_EXPR
+	  || comp == GE_EXPR
+	  || comp == LT_EXPR
+	  || comp == LE_EXPR)
+	return NULL_TREE;
+
+      /* Equality can be computed only between a range and an
+	 anti-range.  ~[VAL1, VAL2] == [VAL1, VAL2] is always false.  */
+      if (vr0->type == VR_RANGE)
+	{
+	  /* To simplify processing, make VR0 the anti-range.  */
+	  value_range_t *tmp = vr0;
+	  vr0 = vr1;
+	  vr1 = tmp;
+	}
+
+      gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
+
+      if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
+	  && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
+	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
+
+      return NULL_TREE;
+    }
+
+  if (!usable_range_p (vr0, strict_overflow_p)
+      || !usable_range_p (vr1, strict_overflow_p))
+    return NULL_TREE;
+
+  /* Simplify processing.  If COMP is GT_EXPR or GE_EXPR, switch the
+     operands around and change the comparison code.  */
+  if (comp == GT_EXPR || comp == GE_EXPR)
+    {
+      value_range_t *tmp;
+      comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
+      tmp = vr0;
+      vr0 = vr1;
+      vr1 = tmp;
+    }
+
+  if (comp == EQ_EXPR)
+    {
+      /* Equality may only be computed if both ranges represent
+	 exactly one value.  */
+      if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
+	  && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
+	{
+	  int cmp_min = compare_values_warnv (vr0->min, vr1->min,
+					      strict_overflow_p);
+	  int cmp_max = compare_values_warnv (vr0->max, vr1->max,
+					      strict_overflow_p);
+	  if (cmp_min == 0 && cmp_max == 0)
+	    return boolean_true_node;
+	  else if (cmp_min != -2 && cmp_max != -2)
+	    return boolean_false_node;
+	}
+      /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1.  */
+      else if (compare_values_warnv (vr0->min, vr1->max,
+				     strict_overflow_p) == 1
+	       || compare_values_warnv (vr1->min, vr0->max,
+					strict_overflow_p) == 1)
+	return boolean_false_node;
+
+      return NULL_TREE;
+    }
+  else if (comp == NE_EXPR)
+    {
+      int cmp1, cmp2;
+
+      /* If VR0 is completely to the left or completely to the right
+	 of VR1, they are always different.  Notice that we need to
+	 make sure that both comparisons yield similar results to
+	 avoid comparing values that cannot be compared at
+	 compile-time.  */
+      cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
+      cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
+      if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
+	return boolean_true_node;
+
+      /* If VR0 and VR1 represent a single value and are identical,
+	 return false.  */
+      else if (compare_values_warnv (vr0->min, vr0->max,
+				     strict_overflow_p) == 0
+	       && compare_values_warnv (vr1->min, vr1->max,
+					strict_overflow_p) == 0
+	       && compare_values_warnv (vr0->min, vr1->min,
+					strict_overflow_p) == 0
+	       && compare_values_warnv (vr0->max, vr1->max,
+					strict_overflow_p) == 0)
+	return boolean_false_node;
+
+      /* Otherwise, they may or may not be different.  */
+      else
+	return NULL_TREE;
+    }
+  else if (comp == LT_EXPR || comp == LE_EXPR)
+    {
+      int tst;
+
+      /* If VR0 is to the left of VR1, return true.  */
+      tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
+      if ((comp == LT_EXPR && tst == -1)
+	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
+	{
+	  if (overflow_infinity_range_p (vr0)
+	      || overflow_infinity_range_p (vr1))
+	    *strict_overflow_p = true;
+	  return boolean_true_node;
+	}
+
+      /* If VR0 is to the right of VR1, return false.  */
+      tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
+      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
+	  || (comp == LE_EXPR && tst == 1))
+	{
+	  if (overflow_infinity_range_p (vr0)
+	      || overflow_infinity_range_p (vr1))
+	    *strict_overflow_p = true;
+	  return boolean_false_node;
+	}
+
+      /* Otherwise, we don't know.  */
+      return NULL_TREE;
+    }
+    
+  gcc_unreachable ();
+}
+
+
+/* Given a value range VR, a value VAL and a comparison code COMP, return
+   BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
+   values in VR.  Return BOOLEAN_FALSE_NODE if the comparison
+   always returns false.  Return NULL_TREE if it is not always
+   possible to determine the value of the comparison.  Also set
+   *STRICT_OVERFLOW_P to indicate whether a range with an overflow
+   infinity was used in the test.  */
+
+static tree
+compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
+			  bool *strict_overflow_p)
+{
+  if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
+    return NULL_TREE;
+
+  /* Anti-ranges need to be handled separately.  */
+  if (vr->type == VR_ANTI_RANGE)
+    {
+      /* For anti-ranges, the only predicates that we can compute at
+	 compile time are equality and inequality.  */
+      if (comp == GT_EXPR
+	  || comp == GE_EXPR
+	  || comp == LT_EXPR
+	  || comp == LE_EXPR)
+	return NULL_TREE;
+
+      /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2.  */
+      if (value_inside_range (val, vr) == 1)
+	return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
+
+      return NULL_TREE;
+    }
+
+  if (!usable_range_p (vr, strict_overflow_p))
+    return NULL_TREE;
+
+  if (comp == EQ_EXPR)
+    {
+      /* EQ_EXPR may only be computed if VR represents exactly
+	 one value.  */
+      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
+	{
+	  int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
+	  if (cmp == 0)
+	    return boolean_true_node;
+	  else if (cmp == -1 || cmp == 1 || cmp == 2)
+	    return boolean_false_node;
+	}
+      else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
+	       || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
+	return boolean_false_node;
+
+      return NULL_TREE;
+    }
+  else if (comp == NE_EXPR)
+    {
+      /* If VAL is not inside VR, then they are always different.  */
+      if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
+	  || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
+	return boolean_true_node;
+
+      /* If VR represents exactly one value equal to VAL, then return
+	 false.  */
+      if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
+	  && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
+	return boolean_false_node;
+
+      /* Otherwise, they may or may not be different.  */
+      return NULL_TREE;
+    }
+  else if (comp == LT_EXPR || comp == LE_EXPR)
+    {
+      int tst;
+
+      /* If VR is to the left of VAL, return true.  */
+      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
+      if ((comp == LT_EXPR && tst == -1)
+	  || (comp == LE_EXPR && (tst == -1 || tst == 0)))
+	{
+	  if (overflow_infinity_range_p (vr))
+	    *strict_overflow_p = true;
+	  return boolean_true_node;
+	}
+
+      /* If VR is to the right of VAL, return false.  */
+      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
+      if ((comp == LT_EXPR && (tst == 0 || tst == 1))
+	  || (comp == LE_EXPR && tst == 1))
+	{
+	  if (overflow_infinity_range_p (vr))
+	    *strict_overflow_p = true;
+	  return boolean_false_node;
+	}
+
+      /* Otherwise, we don't know.  */
+      return NULL_TREE;
+    }
+  else if (comp == GT_EXPR || comp == GE_EXPR)
+    {
+      int tst;
+
+      /* If VR is to the right of VAL, return true.  */
+      tst = compare_values_warnv (vr->min, val, strict_overflow_p);
+      if ((comp == GT_EXPR && tst == 1)
+	  || (comp == GE_EXPR && (tst == 0 || tst == 1)))
+	{
+	  if (overflow_infinity_range_p (vr))
+	    *strict_overflow_p = true;
+	  return boolean_true_node;
+	}
+
+      /* If VR is to the left of VAL, return false.  */
+      tst = compare_values_warnv (vr->max, val, strict_overflow_p);
+      if ((comp == GT_EXPR && (tst == -1 || tst == 0))
+	  || (comp == GE_EXPR && tst == -1))
+	{
+	  if (overflow_infinity_range_p (vr))
+	    *strict_overflow_p = true;
+	  return boolean_false_node;
+	}
+
+      /* Otherwise, we don't know.  */
+      return NULL_TREE;
+    }
+
+  gcc_unreachable ();
+}
+
+
+/* Debugging dumps.  */
+
+void dump_value_range (FILE *, value_range_t *);
+void debug_value_range (value_range_t *);
+void dump_all_value_ranges (FILE *);
+void debug_all_value_ranges (void);
+void dump_vr_equiv (FILE *, bitmap);
+void debug_vr_equiv (bitmap);
+
+
+/* Dump value range VR to FILE.  */
+
+void
+dump_value_range (FILE *file, value_range_t *vr)
+{
+  if (vr == NULL)
+    fprintf (file, "[]");
+  else if (vr->type == VR_UNDEFINED)
+    fprintf (file, "UNDEFINED");
+  else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
+    {
+      tree type = TREE_TYPE (vr->min);
+
+      fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
+
+      if (is_negative_overflow_infinity (vr->min))
+	fprintf (file, "-INF(OVF)");
+      else if (INTEGRAL_TYPE_P (type)
+	       && !TYPE_UNSIGNED (type)
+	       && vrp_val_is_min (vr->min))
+	fprintf (file, "-INF");
+      else
+	print_generic_expr (file, vr->min, 0);
+
+      fprintf (file, ", ");
+
+      if (is_positive_overflow_infinity (vr->max))
+	fprintf (file, "+INF(OVF)");
+      else if (INTEGRAL_TYPE_P (type)
+	       && vrp_val_is_max (vr->max))
+	fprintf (file, "+INF");
+      else
+	print_generic_expr (file, vr->max, 0);
+
+      fprintf (file, "]");
+
+      if (vr->equiv)
+	{
+	  bitmap_iterator bi;
+	  unsigned i, c = 0;
+
+	  fprintf (file, "  EQUIVALENCES: { ");
+
+	  EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
+	    {
+	      print_generic_expr (file, ssa_name (i), 0);
+	      fprintf (file, " ");
+	      c++;
+	    }
+
+	  fprintf (file, "} (%u elements)", c);
+	}
+    }
+  else if (vr->type == VR_VARYING)
+    fprintf (file, "VARYING");
+  else
+    fprintf (file, "INVALID RANGE");
+}
+
+
+/* Dump value range VR to stderr.  */
+
+void
+debug_value_range (value_range_t *vr)
+{
+  dump_value_range (stderr, vr);
+  fprintf (stderr, "\n");
+}
+
+
+/* Dump value ranges of all SSA_NAMEs to FILE.  */
+
+void
+dump_all_value_ranges (FILE *file)
+{
+  size_t i;
+
+  for (i = 0; i < num_ssa_names; i++)
+    {
+      if (vr_value[i])
+	{
+	  print_generic_expr (file, ssa_name (i), 0);
+	  fprintf (file, ": ");
+	  dump_value_range (file, vr_value[i]);
+	  fprintf (file, "\n");
+	}
+    }
+
+  fprintf (file, "\n");
+}
+
+
+/* Dump all value ranges to stderr.  */
+
+void
+debug_all_value_ranges (void)
+{
+  dump_all_value_ranges (stderr);
+}
+
+
+/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
+   create a new SSA name N and return the assertion assignment
+   'V = ASSERT_EXPR <V, V OP W>'.  */
+
+static gimple
+build_assert_expr_for (tree cond, tree v)
+{
+  tree n;
+  gimple assertion;
+
+  gcc_assert (TREE_CODE (v) == SSA_NAME);
+  n = duplicate_ssa_name (v, NULL);
+
+  if (COMPARISON_CLASS_P (cond))
+    {
+      tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond); 
+      assertion = gimple_build_assign (n, a);
+    }
+  else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
+    {
+      /* Given !V, build the assignment N = false.  */
+      tree op0 = TREE_OPERAND (cond, 0);
+      gcc_assert (op0 == v);
+      assertion = gimple_build_assign (n, boolean_false_node);
+    }
+  else if (TREE_CODE (cond) == SSA_NAME)
+    {
+      /* Given V, build the assignment N = true.  */
+      gcc_assert (v == cond);
+      assertion = gimple_build_assign (n, boolean_true_node);
+    }
+  else
+    gcc_unreachable ();
+
+  SSA_NAME_DEF_STMT (n) = assertion;
+
+  /* The new ASSERT_EXPR, creates a new SSA name that replaces the
+     operand of the ASSERT_EXPR. Register the new name and the old one
+     in the replacement table so that we can fix the SSA web after
+     adding all the ASSERT_EXPRs.  */
+  register_new_name_mapping (n, v);
+
+  return assertion;
+}
+
+
+/* Return false if EXPR is a predicate expression involving floating
+   point values.  */
+
+static inline bool
+fp_predicate (gimple stmt)
+{
+  GIMPLE_CHECK (stmt, GIMPLE_COND);
+
+  return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
+}
+
+
+/* If the range of values taken by OP can be inferred after STMT executes,
+   return the comparison code (COMP_CODE_P) and value (VAL_P) that
+   describes the inferred range.  Return true if a range could be
+   inferred.  */
+
+static bool
+infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
+{
+  *val_p = NULL_TREE;
+  *comp_code_p = ERROR_MARK;
+
+  /* Do not attempt to infer anything in names that flow through
+     abnormal edges.  */
+  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
+    return false;
+
+  /* Similarly, don't infer anything from statements that may throw
+     exceptions.  */
+  if (stmt_could_throw_p (stmt))
+    return false;
+
+  /* If STMT is the last statement of a basic block with no
+     successors, there is no point inferring anything about any of its
+     operands.  We would not be able to find a proper insertion point
+     for the assertion, anyway.  */
+  if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
+    return false;
+
+  /* We can only assume that a pointer dereference will yield
+     non-NULL if -fdelete-null-pointer-checks is enabled.  */
+  if (flag_delete_null_pointer_checks
+      && POINTER_TYPE_P (TREE_TYPE (op))
+      && gimple_code (stmt) != GIMPLE_ASM)
+    {
+      unsigned num_uses, num_loads, num_stores;
+
+      count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
+      if (num_loads + num_stores > 0)
+	{
+	  *val_p = build_int_cst (TREE_TYPE (op), 0);
+	  *comp_code_p = NE_EXPR;
+	  return true;
+	}
+    }
+
+  return false;
+}
+
+
+void dump_asserts_for (FILE *, tree);
+void debug_asserts_for (tree);
+void dump_all_asserts (FILE *);
+void debug_all_asserts (void);
+
+/* Dump all the registered assertions for NAME to FILE.  */
+
+void
+dump_asserts_for (FILE *file, tree name)
+{
+  assert_locus_t loc;
+
+  fprintf (file, "Assertions to be inserted for ");
+  print_generic_expr (file, name, 0);
+  fprintf (file, "\n");
+
+  loc = asserts_for[SSA_NAME_VERSION (name)];
+  while (loc)
+    {
+      fprintf (file, "\t");
+      print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
+      fprintf (file, "\n\tBB #%d", loc->bb->index);
+      if (loc->e)
+	{
+	  fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
+	           loc->e->dest->index);
+	  dump_edge_info (file, loc->e, 0);
+	}
+      fprintf (file, "\n\tPREDICATE: ");
+      print_generic_expr (file, name, 0);
+      fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
+      print_generic_expr (file, loc->val, 0);
+      fprintf (file, "\n\n");
+      loc = loc->next;
+    }
+
+  fprintf (file, "\n");
+}
+
+
+/* Dump all the registered assertions for NAME to stderr.  */
+
+void
+debug_asserts_for (tree name)
+{
+  dump_asserts_for (stderr, name);
+}
+
+
+/* Dump all the registered assertions for all the names to FILE.  */
+
+void
+dump_all_asserts (FILE *file)
+{
+  unsigned i;
+  bitmap_iterator bi;
+
+  fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
+  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
+    dump_asserts_for (file, ssa_name (i));
+  fprintf (file, "\n");
+}
+
+
+/* Dump all the registered assertions for all the names to stderr.  */
+
+void
+debug_all_asserts (void)
+{
+  dump_all_asserts (stderr);
+}
+
+
+/* If NAME doesn't have an ASSERT_EXPR registered for asserting
+   'EXPR COMP_CODE VAL' at a location that dominates block BB or
+   E->DEST, then register this location as a possible insertion point
+   for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
+
+   BB, E and SI provide the exact insertion point for the new
+   ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
+   on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
+   BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
+   must not be NULL.  */
+
+static void
+register_new_assert_for (tree name, tree expr,
+			 enum tree_code comp_code,
+			 tree val,
+			 basic_block bb,
+			 edge e,
+			 gimple_stmt_iterator si)
+{
+  assert_locus_t n, loc, last_loc;
+  bool found;
+  basic_block dest_bb;
+
+#if defined ENABLE_CHECKING
+  gcc_assert (bb == NULL || e == NULL);
+
+  if (e == NULL)
+    gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
+		&& gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
+#endif
+
+  /* Never build an assert comparing against an integer constant with
+     TREE_OVERFLOW set.  This confuses our undefined overflow warning
+     machinery.  */
+  if (TREE_CODE (val) == INTEGER_CST
+      && TREE_OVERFLOW (val))
+    val = build_int_cst_wide (TREE_TYPE (val),
+			      TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
+
+  /* The new assertion A will be inserted at BB or E.  We need to
+     determine if the new location is dominated by a previously
+     registered location for A.  If we are doing an edge insertion,
+     assume that A will be inserted at E->DEST.  Note that this is not
+     necessarily true.
+     
+     If E is a critical edge, it will be split.  But even if E is
+     split, the new block will dominate the same set of blocks that
+     E->DEST dominates.
+     
+     The reverse, however, is not true, blocks dominated by E->DEST
+     will not be dominated by the new block created to split E.  So,
+     if the insertion location is on a critical edge, we will not use
+     the new location to move another assertion previously registered
+     at a block dominated by E->DEST.  */
+  dest_bb = (bb) ? bb : e->dest;
+
+  /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
+     VAL at a block dominating DEST_BB, then we don't need to insert a new
+     one.  Similarly, if the same assertion already exists at a block
+     dominated by DEST_BB and the new location is not on a critical
+     edge, then update the existing location for the assertion (i.e.,
+     move the assertion up in the dominance tree).
+
+     Note, this is implemented as a simple linked list because there
+     should not be more than a handful of assertions registered per
+     name.  If this becomes a performance problem, a table hashed by
+     COMP_CODE and VAL could be implemented.  */
+  loc = asserts_for[SSA_NAME_VERSION (name)];
+  last_loc = loc;
+  found = false;
+  while (loc)
+    {
+      if (loc->comp_code == comp_code
+	  && (loc->val == val
+	      || operand_equal_p (loc->val, val, 0))
+	  && (loc->expr == expr
+	      || operand_equal_p (loc->expr, expr, 0)))
+	{
+	  /* If the assertion NAME COMP_CODE VAL has already been
+	     registered at a basic block that dominates DEST_BB, then
+	     we don't need to insert the same assertion again.  Note
+	     that we don't check strict dominance here to avoid
+	     replicating the same assertion inside the same basic
+	     block more than once (e.g., when a pointer is
+	     dereferenced several times inside a block).
+
+	     An exception to this rule are edge insertions.  If the
+	     new assertion is to be inserted on edge E, then it will
+	     dominate all the other insertions that we may want to
+	     insert in DEST_BB.  So, if we are doing an edge
+	     insertion, don't do this dominance check.  */
+          if (e == NULL
+	      && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
+	    return;
+
+	  /* Otherwise, if E is not a critical edge and DEST_BB
+	     dominates the existing location for the assertion, move
+	     the assertion up in the dominance tree by updating its
+	     location information.  */
+	  if ((e == NULL || !EDGE_CRITICAL_P (e))
+	      && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
+	    {
+	      loc->bb = dest_bb;
+	      loc->e = e;
+	      loc->si = si;
+	      return;
+	    }
+	}
+
+      /* Update the last node of the list and move to the next one.  */
+      last_loc = loc;
+      loc = loc->next;
+    }
+
+  /* If we didn't find an assertion already registered for
+     NAME COMP_CODE VAL, add a new one at the end of the list of
+     assertions associated with NAME.  */
+  n = XNEW (struct assert_locus_d);
+  n->bb = dest_bb;
+  n->e = e;
+  n->si = si;
+  n->comp_code = comp_code;
+  n->val = val;
+  n->expr = expr;
+  n->next = NULL;
+
+  if (last_loc)
+    last_loc->next = n;
+  else
+    asserts_for[SSA_NAME_VERSION (name)] = n;
+
+  bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
+}
+
+/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
+   Extract a suitable test code and value and store them into *CODE_P and
+   *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
+
+   If no extraction was possible, return FALSE, otherwise return TRUE.
+
+   If INVERT is true, then we invert the result stored into *CODE_P.  */
+
+static bool
+extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
+					 tree cond_op0, tree cond_op1,
+					 bool invert, enum tree_code *code_p,
+					 tree *val_p)
+{
+  enum tree_code comp_code;
+  tree val;
+
+  /* Otherwise, we have a comparison of the form NAME COMP VAL
+     or VAL COMP NAME.  */
+  if (name == cond_op1)
+    {
+      /* If the predicate is of the form VAL COMP NAME, flip
+	 COMP around because we need to register NAME as the
+	 first operand in the predicate.  */
+      comp_code = swap_tree_comparison (cond_code);
+      val = cond_op0;
+    }
+  else
+    {
+      /* The comparison is of the form NAME COMP VAL, so the
+	 comparison code remains unchanged.  */
+      comp_code = cond_code;
+      val = cond_op1;
+    }
+
+  /* Invert the comparison code as necessary.  */
+  if (invert)
+    comp_code = invert_tree_comparison (comp_code, 0);
+
+  /* VRP does not handle float types.  */
+  if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
+    return false;
+
+  /* Do not register always-false predicates.
+     FIXME:  this works around a limitation in fold() when dealing with
+     enumerations.  Given 'enum { N1, N2 } x;', fold will not
+     fold 'if (x > N2)' to 'if (0)'.  */
+  if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
+      && INTEGRAL_TYPE_P (TREE_TYPE (val)))
+    {
+      tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
+      tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
+
+      if (comp_code == GT_EXPR
+	  && (!max
+	      || compare_values (val, max) == 0))
+	return false;
+
+      if (comp_code == LT_EXPR
+	  && (!min
+	      || compare_values (val, min) == 0))
+	return false;
+    }
+  *code_p = comp_code;
+  *val_p = val;
+  return true;
+}
+
+/* Try to register an edge assertion for SSA name NAME on edge E for
+   the condition COND contributing to the conditional jump pointed to by BSI.
+   Invert the condition COND if INVERT is true.
+   Return true if an assertion for NAME could be registered.  */
+
+static bool
+register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
+			    enum tree_code cond_code,
+			    tree cond_op0, tree cond_op1, bool invert)
+{
+  tree val;
+  enum tree_code comp_code;
+  bool retval = false;
+
+  if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
+						cond_op0,
+						cond_op1,
+						invert, &comp_code, &val))
+    return false;
+
+  /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
+     reachable from E.  */
+  if (live_on_edge (e, name)
+      && !has_single_use (name))
+    {
+      register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
+      retval = true;
+    }
+
+  /* In the case of NAME <= CST and NAME being defined as
+     NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
+     and NAME2 <= CST - CST2.  We can do the same for NAME > CST.
+     This catches range and anti-range tests.  */
+  if ((comp_code == LE_EXPR
+       || comp_code == GT_EXPR)
+      && TREE_CODE (val) == INTEGER_CST
+      && TYPE_UNSIGNED (TREE_TYPE (val)))
+    {
+      gimple def_stmt = SSA_NAME_DEF_STMT (name);
+      tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
+
+      /* Extract CST2 from the (optional) addition.  */
+      if (is_gimple_assign (def_stmt)
+	  && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
+	{
+	  name2 = gimple_assign_rhs1 (def_stmt);
+	  cst2 = gimple_assign_rhs2 (def_stmt);
+	  if (TREE_CODE (name2) == SSA_NAME
+	      && TREE_CODE (cst2) == INTEGER_CST)
+	    def_stmt = SSA_NAME_DEF_STMT (name2);
+	}
+
+      /* Extract NAME2 from the (optional) sign-changing cast.  */
+      if (gimple_assign_cast_p (def_stmt))
+	{
+	  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
+	      && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
+	      && (TYPE_PRECISION (gimple_expr_type (def_stmt))
+		  == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
+	    name3 = gimple_assign_rhs1 (def_stmt);
+	}
+
+      /* If name3 is used later, create an ASSERT_EXPR for it.  */
+      if (name3 != NULL_TREE
+      	  && TREE_CODE (name3) == SSA_NAME
+	  && (cst2 == NULL_TREE
+	      || TREE_CODE (cst2) == INTEGER_CST)
+	  && INTEGRAL_TYPE_P (TREE_TYPE (name3))
+	  && live_on_edge (e, name3)
+	  && !has_single_use (name3))
+	{
+	  tree tmp;
+
+	  /* Build an expression for the range test.  */
+	  tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
+	  if (cst2 != NULL_TREE)
+	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
+
+	  if (dump_file)
+	    {
+	      fprintf (dump_file, "Adding assert for ");
+	      print_generic_expr (dump_file, name3, 0);
+	      fprintf (dump_file, " from ");
+	      print_generic_expr (dump_file, tmp, 0);
+	      fprintf (dump_file, "\n");
+	    }
+
+	  register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
+
+	  retval = true;
+	}
+
+      /* If name2 is used later, create an ASSERT_EXPR for it.  */
+      if (name2 != NULL_TREE
+      	  && TREE_CODE (name2) == SSA_NAME
+	  && TREE_CODE (cst2) == INTEGER_CST
+	  && INTEGRAL_TYPE_P (TREE_TYPE (name2))
+	  && live_on_edge (e, name2)
+	  && !has_single_use (name2))
+	{
+	  tree tmp;
+
+	  /* Build an expression for the range test.  */
+	  tmp = name2;
+	  if (TREE_TYPE (name) != TREE_TYPE (name2))
+	    tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
+	  if (cst2 != NULL_TREE)
+	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
+
+	  if (dump_file)
+	    {
+	      fprintf (dump_file, "Adding assert for ");
+	      print_generic_expr (dump_file, name2, 0);
+	      fprintf (dump_file, " from ");
+	      print_generic_expr (dump_file, tmp, 0);
+	      fprintf (dump_file, "\n");
+	    }
+
+	  register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
+
+	  retval = true;
+	}
+    }
+
+  return retval;
+}
+
+/* OP is an operand of a truth value expression which is known to have
+   a particular value.  Register any asserts for OP and for any
+   operands in OP's defining statement. 
+
+   If CODE is EQ_EXPR, then we want to register OP is zero (false),
+   if CODE is NE_EXPR, then we want to register OP is nonzero (true).   */
+
+static bool
+register_edge_assert_for_1 (tree op, enum tree_code code,
+			    edge e, gimple_stmt_iterator bsi)
+{
+  bool retval = false;
+  gimple op_def;
+  tree val;
+  enum tree_code rhs_code;
+
+  /* We only care about SSA_NAMEs.  */
+  if (TREE_CODE (op) != SSA_NAME)
+    return false;
+
+  /* We know that OP will have a zero or nonzero value.  If OP is used
+     more than once go ahead and register an assert for OP. 
+
+     The FOUND_IN_SUBGRAPH support is not helpful in this situation as
+     it will always be set for OP (because OP is used in a COND_EXPR in
+     the subgraph).  */
+  if (!has_single_use (op))
+    {
+      val = build_int_cst (TREE_TYPE (op), 0);
+      register_new_assert_for (op, op, code, val, NULL, e, bsi);
+      retval = true;
+    }
+
+  /* Now look at how OP is set.  If it's set from a comparison,
+     a truth operation or some bit operations, then we may be able
+     to register information about the operands of that assignment.  */
+  op_def = SSA_NAME_DEF_STMT (op);
+  if (gimple_code (op_def) != GIMPLE_ASSIGN)
+    return retval;
+
+  rhs_code = gimple_assign_rhs_code (op_def);
+
+  if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
+    {
+      bool invert = (code == EQ_EXPR ? true : false);
+      tree op0 = gimple_assign_rhs1 (op_def);
+      tree op1 = gimple_assign_rhs2 (op_def);
+
+      if (TREE_CODE (op0) == SSA_NAME)
+        retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
+					      invert);
+      if (TREE_CODE (op1) == SSA_NAME)
+        retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
+					      invert);
+    }
+  else if ((code == NE_EXPR
+	    && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
+		|| gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
+	   || (code == EQ_EXPR
+	       && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
+		   || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
+    {
+      /* Recurse on each operand.  */
+      retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+					    code, e, bsi);
+      retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
+					    code, e, bsi);
+    }
+  else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
+    {
+      /* Recurse, flipping CODE.  */
+      code = invert_tree_comparison (code, false);
+      retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+					    code, e, bsi);
+    }
+  else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
+    {
+      /* Recurse through the copy.  */
+      retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+					    code, e, bsi);
+    }
+  else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
+    { 
+      /* Recurse through the type conversion.  */
+      retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+					    code, e, bsi);
+    }
+
+  return retval;
+}
+
+/* Try to register an edge assertion for SSA name NAME on edge E for
+   the condition COND contributing to the conditional jump pointed to by SI.
+   Return true if an assertion for NAME could be registered.  */
+
+static bool
+register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
+			  enum tree_code cond_code, tree cond_op0,
+			  tree cond_op1)
+{
+  tree val;
+  enum tree_code comp_code;
+  bool retval = false;
+  bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
+
+  /* Do not attempt to infer anything in names that flow through
+     abnormal edges.  */
+  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
+    return false;
+
+  if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
+						cond_op0, cond_op1,
+						is_else_edge,
+						&comp_code, &val))
+    return false;
+
+  /* Register ASSERT_EXPRs for name.  */
+  retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
+					cond_op1, is_else_edge);
+
+
+  /* If COND is effectively an equality test of an SSA_NAME against
+     the value zero or one, then we may be able to assert values
+     for SSA_NAMEs which flow into COND.  */
+
+  /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
+     statement of NAME we can assert both operands of the TRUTH_AND_EXPR
+     have nonzero value.  */
+  if (((comp_code == EQ_EXPR && integer_onep (val))
+       || (comp_code == NE_EXPR && integer_zerop (val))))
+    {
+      gimple def_stmt = SSA_NAME_DEF_STMT (name);
+
+      if (is_gimple_assign (def_stmt)
+	  && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
+	      || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
+	{
+	  tree op0 = gimple_assign_rhs1 (def_stmt);
+	  tree op1 = gimple_assign_rhs2 (def_stmt);
+	  retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
+	  retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
+	}
+    }
+
+  /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
+     statement of NAME we can assert both operands of the TRUTH_OR_EXPR
+     have zero value.  */
+  if (((comp_code == EQ_EXPR && integer_zerop (val))
+       || (comp_code == NE_EXPR && integer_onep (val))))
+    {
+      gimple def_stmt = SSA_NAME_DEF_STMT (name);
+
+      if (is_gimple_assign (def_stmt)
+	  && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
+	      /* For BIT_IOR_EXPR only if NAME == 0 both operands have
+		 necessarily zero value.  */
+	      || (comp_code == EQ_EXPR
+		  && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
+	{
+	  tree op0 = gimple_assign_rhs1 (def_stmt);
+	  tree op1 = gimple_assign_rhs2 (def_stmt);
+	  retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
+	  retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
+	}
+    }
+
+  return retval;
+}
+
+
+/* Determine whether the outgoing edges of BB should receive an
+   ASSERT_EXPR for each of the operands of BB's LAST statement.
+   The last statement of BB must be a COND_EXPR.
+
+   If any of the sub-graphs rooted at BB have an interesting use of
+   the predicate operands, an assert location node is added to the
+   list of assertions for the corresponding operands.  */
+
+static bool
+find_conditional_asserts (basic_block bb, gimple last)
+{
+  bool need_assert;
+  gimple_stmt_iterator bsi;
+  tree op;
+  edge_iterator ei;
+  edge e;
+  ssa_op_iter iter;
+
+  need_assert = false;
+  bsi = gsi_for_stmt (last);
+
+  /* Look for uses of the operands in each of the sub-graphs
+     rooted at BB.  We need to check each of the outgoing edges
+     separately, so that we know what kind of ASSERT_EXPR to
+     insert.  */
+  FOR_EACH_EDGE (e, ei, bb->succs)
+    {
+      if (e->dest == bb)
+	continue;
+
+      /* Register the necessary assertions for each operand in the
+	 conditional predicate.  */
+      FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
+	{
+	  need_assert |= register_edge_assert_for (op, e, bsi,
+						   gimple_cond_code (last),
+						   gimple_cond_lhs (last),
+						   gimple_cond_rhs (last));
+	}
+    }
+
+  return need_assert;
+}
+
+/* Compare two case labels sorting first by the destination label uid
+   and then by the case value.  */
+
+static int
+compare_case_labels (const void *p1, const void *p2)
+{
+  const_tree const case1 = *(const_tree const*)p1;
+  const_tree const case2 = *(const_tree const*)p2;
+  unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
+  unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
+
+  if (uid1 < uid2)
+    return -1;
+  else if (uid1 == uid2)
+    {
+      /* Make sure the default label is first in a group.  */
+      if (!CASE_LOW (case1))
+	return -1;
+      else if (!CASE_LOW (case2))
+	return 1;
+      else
+        return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
+    }
+  else
+    return 1;
+}
+
+/* Determine whether the outgoing edges of BB should receive an
+   ASSERT_EXPR for each of the operands of BB's LAST statement.
+   The last statement of BB must be a SWITCH_EXPR.
+
+   If any of the sub-graphs rooted at BB have an interesting use of
+   the predicate operands, an assert location node is added to the
+   list of assertions for the corresponding operands.  */
+
+static bool
+find_switch_asserts (basic_block bb, gimple last)
+{
+  bool need_assert;
+  gimple_stmt_iterator bsi;
+  tree op;
+  edge e;
+  tree vec2;
+  size_t n = gimple_switch_num_labels(last);
+#if GCC_VERSION >= 4000
+  unsigned int idx;
+#else
+  /* Work around GCC 3.4 bug (PR 37086).  */
+  volatile unsigned int idx;
+#endif
+
+  need_assert = false;
+  bsi = gsi_for_stmt (last);
+  op = gimple_switch_index (last);
+  if (TREE_CODE (op) != SSA_NAME)
+    return false;
+
+  /* Build a vector of case labels sorted by destination label.  */
+  vec2 = make_tree_vec (n);
+  for (idx = 0; idx < n; ++idx)
+    TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
+  qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
+
+  for (idx = 0; idx < n; ++idx)
+    {
+      tree min, max;
+      tree cl = TREE_VEC_ELT (vec2, idx);
+
+      min = CASE_LOW (cl);
+      max = CASE_HIGH (cl);
+
+      /* If there are multiple case labels with the same destination
+	 we need to combine them to a single value range for the edge.  */
+      if (idx + 1 < n
+	  && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
+	{
+	  /* Skip labels until the last of the group.  */
+	  do {
+	    ++idx;
+	  } while (idx < n
+		   && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
+	  --idx;
+
+	  /* Pick up the maximum of the case label range.  */
+	  if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
+	    max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
+	  else
+	    max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
+	}
+
+      /* Nothing to do if the range includes the default label until we
+	 can register anti-ranges.  */
+      if (min == NULL_TREE)
+	continue;
+
+      /* Find the edge to register the assert expr on.  */
+      e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
+
+      /* Register the necessary assertions for the operand in the
+	 SWITCH_EXPR.  */
+      need_assert |= register_edge_assert_for (op, e, bsi,
+					       max ? GE_EXPR : EQ_EXPR,
+					       op,
+					       fold_convert (TREE_TYPE (op),
+							     min));
+      if (max)
+	{
+	  need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
+						   op,
+						   fold_convert (TREE_TYPE (op),
+								 max));
+	}
+    }
+
+  return need_assert;
+}
+
+
+/* Traverse all the statements in block BB looking for statements that
+   may generate useful assertions for the SSA names in their operand.
+   If a statement produces a useful assertion A for name N_i, then the
+   list of assertions already generated for N_i is scanned to
+   determine if A is actually needed.
+   
+   If N_i already had the assertion A at a location dominating the
+   current location, then nothing needs to be done.  Otherwise, the
+   new location for A is recorded instead.
+
+   1- For every statement S in BB, all the variables used by S are
+      added to bitmap FOUND_IN_SUBGRAPH.
+
+   2- If statement S uses an operand N in a way that exposes a known
+      value range for N, then if N was not already generated by an
+      ASSERT_EXPR, create a new assert location for N.  For instance,
+      if N is a pointer and the statement dereferences it, we can
+      assume that N is not NULL.
+
+   3- COND_EXPRs are a special case of #2.  We can derive range
+      information from the predicate but need to insert different
+      ASSERT_EXPRs for each of the sub-graphs rooted at the
+      conditional block.  If the last statement of BB is a conditional
+      expression of the form 'X op Y', then
+
+      a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
+
+      b) If the conditional is the only entry point to the sub-graph
+	 corresponding to the THEN_CLAUSE, recurse into it.  On
+	 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
+	 an ASSERT_EXPR is added for the corresponding variable.
+
+      c) Repeat step (b) on the ELSE_CLAUSE.
+
+      d) Mark X and Y in FOUND_IN_SUBGRAPH.
+
+      For instance,
+
+	    if (a == 9)
+	      b = a;
+	    else
+	      b = c + 1;
+
+      In this case, an assertion on the THEN clause is useful to
+      determine that 'a' is always 9 on that edge.  However, an assertion
+      on the ELSE clause would be unnecessary.
+
+   4- If BB does not end in a conditional expression, then we recurse
+      into BB's dominator children.
+   
+   At the end of the recursive traversal, every SSA name will have a
+   list of locations where ASSERT_EXPRs should be added.  When a new
+   location for name N is found, it is registered by calling
+   register_new_assert_for.  That function keeps track of all the
+   registered assertions to prevent adding unnecessary assertions.
+   For instance, if a pointer P_4 is dereferenced more than once in a
+   dominator tree, only the location dominating all the dereference of
+   P_4 will receive an ASSERT_EXPR.
+
+   If this function returns true, then it means that there are names
+   for which we need to generate ASSERT_EXPRs.  Those assertions are
+   inserted by process_assert_insertions.  */
+
+static bool
+find_assert_locations_1 (basic_block bb, sbitmap live)
+{
+  gimple_stmt_iterator si;
+  gimple last;
+  gimple phi;
+  bool need_assert;
+
+  need_assert = false;
+  last = last_stmt (bb);
+
+  /* If BB's last statement is a conditional statement involving integer
+     operands, determine if we need to add ASSERT_EXPRs.  */
+  if (last
+      && gimple_code (last) == GIMPLE_COND
+      && !fp_predicate (last)
+      && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
+    need_assert |= find_conditional_asserts (bb, last);
+
+  /* If BB's last statement is a switch statement involving integer
+     operands, determine if we need to add ASSERT_EXPRs.  */
+  if (last
+      && gimple_code (last) == GIMPLE_SWITCH
+      && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
+    need_assert |= find_switch_asserts (bb, last);
+
+  /* Traverse all the statements in BB marking used names and looking
+     for statements that may infer assertions for their used operands.  */
+  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+    {
+      gimple stmt;
+      tree op;
+      ssa_op_iter i;
+
+      stmt = gsi_stmt (si);
+
+      /* See if we can derive an assertion for any of STMT's operands.  */
+      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
+	{
+	  tree value;
+	  enum tree_code comp_code;
+
+	  /* Mark OP in our live bitmap.  */
+	  SET_BIT (live, SSA_NAME_VERSION (op));
+
+	  /* If OP is used in such a way that we can infer a value
+	     range for it, and we don't find a previous assertion for
+	     it, create a new assertion location node for OP.  */
+	  if (infer_value_range (stmt, op, &comp_code, &value))
+	    {
+	      /* If we are able to infer a nonzero value range for OP,
+		 then walk backwards through the use-def chain to see if OP
+		 was set via a typecast.
+
+		 If so, then we can also infer a nonzero value range
+		 for the operand of the NOP_EXPR.  */
+	      if (comp_code == NE_EXPR && integer_zerop (value))
+		{
+		  tree t = op;
+		  gimple def_stmt = SSA_NAME_DEF_STMT (t);
+	
+		  while (is_gimple_assign (def_stmt)
+			 && gimple_assign_rhs_code (def_stmt)  == NOP_EXPR
+			 && TREE_CODE
+			     (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
+			 && POINTER_TYPE_P
+			     (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
+		    {
+		      t = gimple_assign_rhs1 (def_stmt);
+		      def_stmt = SSA_NAME_DEF_STMT (t);
+
+		      /* Note we want to register the assert for the
+			 operand of the NOP_EXPR after SI, not after the
+			 conversion.  */
+		      if (! has_single_use (t))
+			{
+			  register_new_assert_for (t, t, comp_code, value,
+						   bb, NULL, si);
+			  need_assert = true;
+			}
+		    }
+		}
+
+	      /* If OP is used only once, namely in this STMT, don't
+		 bother creating an ASSERT_EXPR for it.  Such an
+		 ASSERT_EXPR would do nothing but increase compile time.  */
+	      if (!has_single_use (op))
+		{
+		  register_new_assert_for (op, op, comp_code, value,
+					   bb, NULL, si);
+		  need_assert = true;
+		}
+	    }
+	}
+    }
+
+  /* Traverse all PHI nodes in BB marking used operands.  */
+  for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
+    {
+      use_operand_p arg_p;
+      ssa_op_iter i;
+      phi = gsi_stmt (si);
+
+      FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
+	{
+	  tree arg = USE_FROM_PTR (arg_p);
+	  if (TREE_CODE (arg) == SSA_NAME)
+	    SET_BIT (live, SSA_NAME_VERSION (arg));
+	}
+    }
+
+  return need_assert;
+}
+
+/* Do an RPO walk over the function computing SSA name liveness
+   on-the-fly and deciding on assert expressions to insert.
+   Returns true if there are assert expressions to be inserted.  */
+
+static bool
+find_assert_locations (void)
+{
+  int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
+  int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
+  int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
+  int rpo_cnt, i;
+  bool need_asserts;
+
+  live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
+  rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
+  for (i = 0; i < rpo_cnt; ++i)
+    bb_rpo[rpo[i]] = i;
+
+  need_asserts = false;
+  for (i = rpo_cnt-1; i >= 0; --i)
+    {
+      basic_block bb = BASIC_BLOCK (rpo[i]);
+      edge e;
+      edge_iterator ei;
+
+      if (!live[rpo[i]])
+	{
+	  live[rpo[i]] = sbitmap_alloc (num_ssa_names);
+	  sbitmap_zero (live[rpo[i]]);
+	}
+
+      /* Process BB and update the live information with uses in
+         this block.  */
+      need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
+
+      /* Merge liveness into the predecessor blocks and free it.  */
+      if (!sbitmap_empty_p (live[rpo[i]]))
+	{
+	  int pred_rpo = i;
+	  FOR_EACH_EDGE (e, ei, bb->preds)
+	    {
+	      int pred = e->src->index;
+	      if (e->flags & EDGE_DFS_BACK)
+		continue;
+
+	      if (!live[pred])
+		{
+		  live[pred] = sbitmap_alloc (num_ssa_names);
+		  sbitmap_zero (live[pred]);
+		}
+	      sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
+
+	      if (bb_rpo[pred] < pred_rpo)
+		pred_rpo = bb_rpo[pred];
+	    }
+
+	  /* Record the RPO number of the last visited block that needs
+	     live information from this block.  */
+	  last_rpo[rpo[i]] = pred_rpo;
+	}
+      else
+	{
+	  sbitmap_free (live[rpo[i]]);
+	  live[rpo[i]] = NULL;
+	}
+
+      /* We can free all successors live bitmaps if all their
+         predecessors have been visited already.  */
+      FOR_EACH_EDGE (e, ei, bb->succs)
+	if (last_rpo[e->dest->index] == i
+	    && live[e->dest->index])
+	  {
+	    sbitmap_free (live[e->dest->index]);
+	    live[e->dest->index] = NULL;
+	  }
+    }
+
+  XDELETEVEC (rpo);
+  XDELETEVEC (bb_rpo);
+  XDELETEVEC (last_rpo);
+  for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
+    if (live[i])
+      sbitmap_free (live[i]);
+  XDELETEVEC (live);
+
+  return need_asserts;
+}
+
+/* Create an ASSERT_EXPR for NAME and insert it in the location
+   indicated by LOC.  Return true if we made any edge insertions.  */
+
+static bool
+process_assert_insertions_for (tree name, assert_locus_t loc)
+{
+  /* Build the comparison expression NAME_i COMP_CODE VAL.  */
+  gimple stmt;
+  tree cond;
+  gimple assert_stmt;
+  edge_iterator ei;
+  edge e;
+
+  cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
+  assert_stmt = build_assert_expr_for (cond, name);
+  if (loc->e)
+    {
+      /* We have been asked to insert the assertion on an edge.  This
+	 is used only by COND_EXPR and SWITCH_EXPR assertions.  */
+#if defined ENABLE_CHECKING
+      gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
+	  || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
+#endif
+
+      gsi_insert_on_edge (loc->e, assert_stmt);
+      return true;
+    }
+
+  /* Otherwise, we can insert right after LOC->SI iff the
+     statement must not be the last statement in the block.  */
+  stmt = gsi_stmt (loc->si);
+  if (!stmt_ends_bb_p (stmt))
+    {
+      gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
+      return false;
+    }
+
+  /* If STMT must be the last statement in BB, we can only insert new
+     assertions on the non-abnormal edge out of BB.  Note that since
+     STMT is not control flow, there may only be one non-abnormal edge
+     out of BB.  */
+  FOR_EACH_EDGE (e, ei, loc->bb->succs)
+    if (!(e->flags & EDGE_ABNORMAL))
+      {
+	gsi_insert_on_edge (e, assert_stmt);
+	return true;
+      }
+
+  gcc_unreachable ();
+}
+
+
+/* Process all the insertions registered for every name N_i registered
+   in NEED_ASSERT_FOR.  The list of assertions to be inserted are
+   found in ASSERTS_FOR[i].  */
+
+static void
+process_assert_insertions (void)
+{
+  unsigned i;
+  bitmap_iterator bi;
+  bool update_edges_p = false;
+  int num_asserts = 0;
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    dump_all_asserts (dump_file);
+
+  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
+    {
+      assert_locus_t loc = asserts_for[i];
+      gcc_assert (loc);
+
+      while (loc)
+	{
+	  assert_locus_t next = loc->next;
+	  update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
+	  free (loc);
+	  loc = next;
+	  num_asserts++;
+	}
+    }
+
+  if (update_edges_p)
+    gsi_commit_edge_inserts ();
+
+  statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
+			    num_asserts);
+}
+
+
+/* Traverse the flowgraph looking for conditional jumps to insert range
+   expressions.  These range expressions are meant to provide information
+   to optimizations that need to reason in terms of value ranges.  They
+   will not be expanded into RTL.  For instance, given:
+
+   x = ...
+   y = ...
+   if (x < y)
+     y = x - 2;
+   else
+     x = y + 3;
+
+   this pass will transform the code into:
+
+   x = ...
+   y = ...
+   if (x < y)
+    {
+      x = ASSERT_EXPR <x, x < y>
+      y = x - 2
+    }
+   else
+    {
+      y = ASSERT_EXPR <y, x <= y>
+      x = y + 3
+    }
+
+   The idea is that once copy and constant propagation have run, other
+   optimizations will be able to determine what ranges of values can 'x'
+   take in different paths of the code, simply by checking the reaching
+   definition of 'x'.  */
+
+static void
+insert_range_assertions (void)
+{
+  need_assert_for = BITMAP_ALLOC (NULL);
+  asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
+
+  calculate_dominance_info (CDI_DOMINATORS);
+
+  if (find_assert_locations ())
+    {
+      process_assert_insertions ();
+      update_ssa (TODO_update_ssa_no_phi);
+    }
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
+      dump_function_to_file (current_function_decl, dump_file, dump_flags);
+    }
+
+  free (asserts_for);
+  BITMAP_FREE (need_assert_for);
+}
+
+/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
+   and "struct" hacks. If VRP can determine that the
+   array subscript is a constant, check if it is outside valid
+   range. If the array subscript is a RANGE, warn if it is
+   non-overlapping with valid range.
+   IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR.  */
+
+static void
+check_array_ref (tree ref, const location_t *location, bool ignore_off_by_one)
+{
+  value_range_t* vr = NULL;
+  tree low_sub, up_sub;
+  tree low_bound, up_bound = array_ref_up_bound (ref);
+
+  low_sub = up_sub = TREE_OPERAND (ref, 1);
+
+  if (!up_bound || TREE_NO_WARNING (ref)
+      || TREE_CODE (up_bound) != INTEGER_CST
+      /* Can not check flexible arrays.  */
+      || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
+          && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
+          && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
+      /* Accesses after the end of arrays of size 0 (gcc
+         extension) and 1 are likely intentional ("struct
+         hack").  */
+      || compare_tree_int (up_bound, 1) <= 0)
+    return;
+
+  low_bound = array_ref_low_bound (ref);
+
+  if (TREE_CODE (low_sub) == SSA_NAME)
+    {
+      vr = get_value_range (low_sub);
+      if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
+        {
+          low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
+          up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
+        }
+    }
+
+  if (vr && vr->type == VR_ANTI_RANGE)
+    {
+      if (TREE_CODE (up_sub) == INTEGER_CST
+          && tree_int_cst_lt (up_bound, up_sub)
+          && TREE_CODE (low_sub) == INTEGER_CST
+          && tree_int_cst_lt (low_sub, low_bound))
+        {
+          warning (OPT_Warray_bounds,
+                   "%Harray subscript is outside array bounds", location);
+          TREE_NO_WARNING (ref) = 1;
+        }
+    }
+  else if (TREE_CODE (up_sub) == INTEGER_CST
+           && tree_int_cst_lt (up_bound, up_sub)
+           && !tree_int_cst_equal (up_bound, up_sub)
+           && (!ignore_off_by_one
+               || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
+                                                        up_bound,
+                                                        integer_one_node,
+                                                        0),
+                                       up_sub)))
+    {
+      warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
+               location);
+      TREE_NO_WARNING (ref) = 1;
+    }
+  else if (TREE_CODE (low_sub) == INTEGER_CST
+           && tree_int_cst_lt (low_sub, low_bound))
+    {
+      warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
+               location);
+      TREE_NO_WARNING (ref) = 1;
+    }
+}
+
+/* Searches if the expr T, located at LOCATION computes
+   address of an ARRAY_REF, and call check_array_ref on it.  */
+
+static void
+search_for_addr_array (tree t, const location_t *location)
+{
+  while (TREE_CODE (t) == SSA_NAME)
+    {
+      gimple g = SSA_NAME_DEF_STMT (t);
+
+      if (gimple_code (g) != GIMPLE_ASSIGN)
+	return;
+
+      if (get_gimple_rhs_class (gimple_assign_rhs_code (g)) 
+	  != GIMPLE_SINGLE_RHS)
+	return;
+
+      t = gimple_assign_rhs1 (g);
+    }
+
+
+  /* We are only interested in addresses of ARRAY_REF's.  */
+  if (TREE_CODE (t) != ADDR_EXPR) 
+    return;
+
+  /* Check each ARRAY_REFs in the reference chain. */
+  do 
+    {
+      if (TREE_CODE (t) == ARRAY_REF)
+	check_array_ref (t, location, true /*ignore_off_by_one*/);
+
+      t = TREE_OPERAND (t, 0);
+    }
+  while (handled_component_p (t));
+}
+
+/* walk_tree() callback that checks if *TP is
+   an ARRAY_REF inside an ADDR_EXPR (in which an array
+   subscript one outside the valid range is allowed). Call
+   check_array_ref for each ARRAY_REF found. The location is 
+   passed in DATA.  */
+
+static tree
+check_array_bounds (tree *tp, int *walk_subtree, void *data)
+{
+  tree t = *tp;
+  struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
+  const location_t *location = (const location_t *) wi->info;
+
+  *walk_subtree = TRUE;
+
+  if (TREE_CODE (t) == ARRAY_REF)
+    check_array_ref (t, location, false /*ignore_off_by_one*/);
+
+  if (TREE_CODE (t) == INDIRECT_REF
+      || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
+    search_for_addr_array (TREE_OPERAND (t, 0), location);
+
+  if (TREE_CODE (t) == ADDR_EXPR)
+    *walk_subtree = FALSE;
+
+  return NULL_TREE;
+}
+
+/* Walk over all statements of all reachable BBs and call check_array_bounds
+   on them.  */
+
+static void
+check_all_array_refs (void)
+{
+  basic_block bb;
+  gimple_stmt_iterator si;
+
+  FOR_EACH_BB (bb)
+    {
+      /* Skip bb's that are clearly unreachable.  */
+      if (single_pred_p (bb))
+      {
+	basic_block pred_bb = EDGE_PRED (bb, 0)->src;
+	gimple ls = NULL;
+
+	if (!gsi_end_p (gsi_last_bb (pred_bb)))
+	  ls = gsi_stmt (gsi_last_bb (pred_bb));
+
+	if (ls && gimple_code (ls) == GIMPLE_COND
+	    && ((gimple_cond_false_p (ls)
+		 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
+		|| (gimple_cond_true_p (ls)
+		    && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
+	  continue;
+      }
+      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+	{
+	  gimple stmt = gsi_stmt (si);
+	  const location_t *location = gimple_location_ptr (stmt);
+	  struct walk_stmt_info wi;
+	  if (!gimple_has_location (stmt))
+	    continue;
+
+	  if (is_gimple_call (stmt))
+	    {
+	      size_t i;
+	      size_t n = gimple_call_num_args (stmt);
+	      for (i = 0; i < n; i++)
+		{
+		  tree arg = gimple_call_arg (stmt, i);
+		  search_for_addr_array (arg, location);
+		}
+	    }
+	  else
+	    {
+	      memset (&wi, 0, sizeof (wi));
+	      wi.info = CONST_CAST (void *, (const void *) location);
+
+	      walk_gimple_op (gsi_stmt (si),
+			      check_array_bounds,
+			      &wi);
+	    }
+	}
+    }
+}
+
+/* Convert range assertion expressions into the implied copies and
+   copy propagate away the copies.  Doing the trivial copy propagation
+   here avoids the need to run the full copy propagation pass after
+   VRP. 
+   
+   FIXME, this will eventually lead to copy propagation removing the
+   names that had useful range information attached to them.  For
+   instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
+   then N_i will have the range [3, +INF].
+   
+   However, by converting the assertion into the implied copy
+   operation N_i = N_j, we will then copy-propagate N_j into the uses
+   of N_i and lose the range information.  We may want to hold on to
+   ASSERT_EXPRs a little while longer as the ranges could be used in
+   things like jump threading.
+   
+   The problem with keeping ASSERT_EXPRs around is that passes after
+   VRP need to handle them appropriately. 
+
+   Another approach would be to make the range information a first
+   class property of the SSA_NAME so that it can be queried from
+   any pass.  This is made somewhat more complex by the need for
+   multiple ranges to be associated with one SSA_NAME.  */
+
+static void
+remove_range_assertions (void)
+{
+  basic_block bb;
+  gimple_stmt_iterator si;
+
+  /* Note that the BSI iterator bump happens at the bottom of the
+     loop and no bump is necessary if we're removing the statement
+     referenced by the current BSI.  */
+  FOR_EACH_BB (bb)
+    for (si = gsi_start_bb (bb); !gsi_end_p (si);)
+      {
+	gimple stmt = gsi_stmt (si);
+	gimple use_stmt;
+
+	if (is_gimple_assign (stmt)
+	    && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
+	  {
+	    tree rhs = gimple_assign_rhs1 (stmt);
+	    tree var;
+	    tree cond = fold (ASSERT_EXPR_COND (rhs));
+	    use_operand_p use_p;
+	    imm_use_iterator iter;
+
+	    gcc_assert (cond != boolean_false_node);
+
+	    /* Propagate the RHS into every use of the LHS.  */
+	    var = ASSERT_EXPR_VAR (rhs);
+	    FOR_EACH_IMM_USE_STMT (use_stmt, iter,
+				   gimple_assign_lhs (stmt))
+	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+		{
+		  SET_USE (use_p, var);
+		  gcc_assert (TREE_CODE (var) == SSA_NAME);
+		}
+
+	    /* And finally, remove the copy, it is not needed.  */
+	    gsi_remove (&si, true);
+	    release_defs (stmt); 
+	  }
+	else
+	  gsi_next (&si);
+      }
+}
+
+
+/* Return true if STMT is interesting for VRP.  */
+
+static bool
+stmt_interesting_for_vrp (gimple stmt)
+{
+  if (gimple_code (stmt) == GIMPLE_PHI
+      && is_gimple_reg (gimple_phi_result (stmt))
+      && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
+	  || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
+    return true;
+  else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
+    {
+      tree lhs = gimple_get_lhs (stmt);
+
+      /* In general, assignments with virtual operands are not useful
+	 for deriving ranges, with the obvious exception of calls to
+	 builtin functions.  */
+      if (lhs && TREE_CODE (lhs) == SSA_NAME
+	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
+	  && ((is_gimple_call (stmt)
+	       && gimple_call_fndecl (stmt) != NULL_TREE
+	       && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
+	      || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
+	return true;
+    }
+  else if (gimple_code (stmt) == GIMPLE_COND
+	   || gimple_code (stmt) == GIMPLE_SWITCH)
+    return true;
+
+  return false;
+}
+
+
+/* Initialize local data structures for VRP.  */
+
+static void
+vrp_initialize (void)
+{
+  basic_block bb;
+
+  vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
+  vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
+
+  FOR_EACH_BB (bb)
+    {
+      gimple_stmt_iterator si;
+
+      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+	{
+	  gimple phi = gsi_stmt (si);
+	  if (!stmt_interesting_for_vrp (phi))
+	    {
+	      tree lhs = PHI_RESULT (phi);
+	      set_value_range_to_varying (get_value_range (lhs));
+	      prop_set_simulate_again (phi, false);
+	    }
+	  else
+	    prop_set_simulate_again (phi, true);
+	}
+
+      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+        {
+	  gimple stmt = gsi_stmt (si);
+
+	  if (!stmt_interesting_for_vrp (stmt))
+	    {
+	      ssa_op_iter i;
+	      tree def;
+	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
+		set_value_range_to_varying (get_value_range (def));
+	      prop_set_simulate_again (stmt, false);
+	    }
+	  else
+	    {
+	      prop_set_simulate_again (stmt, true);
+	    }
+	}
+    }
+}
+
+
+/* Visit assignment STMT.  If it produces an interesting range, record
+   the SSA name in *OUTPUT_P.  */
+
+static enum ssa_prop_result
+vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
+{
+  tree def, lhs;
+  ssa_op_iter iter;
+  enum gimple_code code = gimple_code (stmt);
+  lhs = gimple_get_lhs (stmt);
+
+  /* We only keep track of ranges in integral and pointer types.  */
+  if (TREE_CODE (lhs) == SSA_NAME
+      && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+	   /* It is valid to have NULL MIN/MAX values on a type.  See
+	      build_range_type.  */
+	   && TYPE_MIN_VALUE (TREE_TYPE (lhs))
+	   && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
+	  || POINTER_TYPE_P (TREE_TYPE (lhs))))
+    {
+      struct loop *l;
+      value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+      if (code == GIMPLE_CALL)
+	extract_range_basic (&new_vr, stmt);
+      else
+	extract_range_from_assignment (&new_vr, stmt);
+
+      /* If STMT is inside a loop, we may be able to know something
+	 else about the range of LHS by examining scalar evolution
+	 information.  */
+      if (current_loops && (l = loop_containing_stmt (stmt)))
+	adjust_range_with_scev (&new_vr, l, stmt, lhs);
+
+      if (update_value_range (lhs, &new_vr))
+	{
+	  *output_p = lhs;
+
+	  if (dump_file && (dump_flags & TDF_DETAILS))
+	    {
+	      fprintf (dump_file, "Found new range for ");
+	      print_generic_expr (dump_file, lhs, 0);
+	      fprintf (dump_file, ": ");
+	      dump_value_range (dump_file, &new_vr);
+	      fprintf (dump_file, "\n\n");
+	    }
+
+	  if (new_vr.type == VR_VARYING)
+	    return SSA_PROP_VARYING;
+
+	  return SSA_PROP_INTERESTING;
+	}
+
+      return SSA_PROP_NOT_INTERESTING;
+    }
+  
+  /* Every other statement produces no useful ranges.  */
+  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
+    set_value_range_to_varying (get_value_range (def));
+
+  return SSA_PROP_VARYING;
+}
+
+/* Helper that gets the value range of the SSA_NAME with version I
+   or a symbolic range containing the SSA_NAME only if the value range
+   is varying or undefined.  */
+
+static inline value_range_t
+get_vr_for_comparison (int i)
+{
+  value_range_t vr = *(vr_value[i]);
+
+  /* If name N_i does not have a valid range, use N_i as its own
+     range.  This allows us to compare against names that may
+     have N_i in their ranges.  */
+  if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
+    {
+      vr.type = VR_RANGE;
+      vr.min = ssa_name (i);
+      vr.max = ssa_name (i);
+    }
+
+  return vr;
+}
+
+/* Compare all the value ranges for names equivalent to VAR with VAL
+   using comparison code COMP.  Return the same value returned by
+   compare_range_with_value, including the setting of
+   *STRICT_OVERFLOW_P.  */
+
+static tree
+compare_name_with_value (enum tree_code comp, tree var, tree val,
+			 bool *strict_overflow_p)
+{
+  bitmap_iterator bi;
+  unsigned i;
+  bitmap e;
+  tree retval, t;
+  int used_strict_overflow;
+  bool sop;
+  value_range_t equiv_vr;
+
+  /* Get the set of equivalences for VAR.  */
+  e = get_value_range (var)->equiv;
+
+  /* Start at -1.  Set it to 0 if we do a comparison without relying
+     on overflow, or 1 if all comparisons rely on overflow.  */
+  used_strict_overflow = -1;
+
+  /* Compare vars' value range with val.  */
+  equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
+  sop = false;
+  retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
+  if (retval)
+    used_strict_overflow = sop ? 1 : 0;
+
+  /* If the equiv set is empty we have done all work we need to do.  */
+  if (e == NULL)
+    {
+      if (retval
+	  && used_strict_overflow > 0)
+	*strict_overflow_p = true;
+      return retval;
+    }
+
+  EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
+    {
+      equiv_vr = get_vr_for_comparison (i);
+      sop = false;
+      t = compare_range_with_value (comp, &equiv_vr, val, &sop);
+      if (t)
+	{
+	  /* If we get different answers from different members
+	     of the equivalence set this check must be in a dead
+	     code region.  Folding it to a trap representation
+	     would be correct here.  For now just return don't-know.  */
+	  if (retval != NULL
+	      && t != retval)
+	    {
+	      retval = NULL_TREE;
+	      break;
+	    }
+	  retval = t;
+
+	  if (!sop)
+	    used_strict_overflow = 0;
+	  else if (used_strict_overflow < 0)
+	    used_strict_overflow = 1;
+	}
+    }
+
+  if (retval
+      && used_strict_overflow > 0)
+    *strict_overflow_p = true;
+
+  return retval;
+}
+
+
+/* Given a comparison code COMP and names N1 and N2, compare all the
+   ranges equivalent to N1 against all the ranges equivalent to N2
+   to determine the value of N1 COMP N2.  Return the same value
+   returned by compare_ranges.  Set *STRICT_OVERFLOW_P to indicate
+   whether we relied on an overflow infinity in the comparison.  */
+
+
+static tree
+compare_names (enum tree_code comp, tree n1, tree n2,
+	       bool *strict_overflow_p)
+{
+  tree t, retval;
+  bitmap e1, e2;
+  bitmap_iterator bi1, bi2;
+  unsigned i1, i2;
+  int used_strict_overflow;
+  static bitmap_obstack *s_obstack = NULL;
+  static bitmap s_e1 = NULL, s_e2 = NULL;
+
+  /* Compare the ranges of every name equivalent to N1 against the
+     ranges of every name equivalent to N2.  */
+  e1 = get_value_range (n1)->equiv;
+  e2 = get_value_range (n2)->equiv;
+
+  /* Use the fake bitmaps if e1 or e2 are not available.  */
+  if (s_obstack == NULL)
+    {
+      s_obstack = XNEW (bitmap_obstack);
+      bitmap_obstack_initialize (s_obstack);
+      s_e1 = BITMAP_ALLOC (s_obstack);
+      s_e2 = BITMAP_ALLOC (s_obstack);
+    }
+  if (e1 == NULL)
+    e1 = s_e1;
+  if (e2 == NULL)
+    e2 = s_e2;
+
+  /* Add N1 and N2 to their own set of equivalences to avoid
+     duplicating the body of the loop just to check N1 and N2
+     ranges.  */
+  bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
+  bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
+
+  /* If the equivalence sets have a common intersection, then the two
+     names can be compared without checking their ranges.  */
+  if (bitmap_intersect_p (e1, e2))
+    {
+      bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+      bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+
+      return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
+	     ? boolean_true_node
+	     : boolean_false_node;
+    }
+
+  /* Start at -1.  Set it to 0 if we do a comparison without relying
+     on overflow, or 1 if all comparisons rely on overflow.  */
+  used_strict_overflow = -1;
+
+  /* Otherwise, compare all the equivalent ranges.  First, add N1 and
+     N2 to their own set of equivalences to avoid duplicating the body
+     of the loop just to check N1 and N2 ranges.  */
+  EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
+    {
+      value_range_t vr1 = get_vr_for_comparison (i1);
+
+      t = retval = NULL_TREE;
+      EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
+	{
+	  bool sop = false;
+
+	  value_range_t vr2 = get_vr_for_comparison (i2);
+
+	  t = compare_ranges (comp, &vr1, &vr2, &sop);
+	  if (t)
+	    {
+	      /* If we get different answers from different members
+		 of the equivalence set this check must be in a dead
+		 code region.  Folding it to a trap representation
+		 would be correct here.  For now just return don't-know.  */
+	      if (retval != NULL
+		  && t != retval)
+		{
+		  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+		  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+		  return NULL_TREE;
+		}
+	      retval = t;
+
+	      if (!sop)
+		used_strict_overflow = 0;
+	      else if (used_strict_overflow < 0)
+		used_strict_overflow = 1;
+	    }
+	}
+
+      if (retval)
+	{
+	  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+	  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+	  if (used_strict_overflow > 0)
+	    *strict_overflow_p = true;
+	  return retval;
+	}
+    }
+
+  /* None of the equivalent ranges are useful in computing this
+     comparison.  */
+  bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+  bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+  return NULL_TREE;
+}
+
+/* Helper function for vrp_evaluate_conditional_warnv.  */
+
+static tree
+vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
+						      tree op0, tree op1,
+						      bool * strict_overflow_p)
+{
+  value_range_t *vr0, *vr1;
+
+  vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
+  vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
+
+  if (vr0 && vr1)
+    return compare_ranges (code, vr0, vr1, strict_overflow_p);
+  else if (vr0 && vr1 == NULL)
+    return compare_range_with_value (code, vr0, op1, strict_overflow_p);
+  else if (vr0 == NULL && vr1)
+    return (compare_range_with_value
+	    (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
+  return NULL;
+}
+
+/* Helper function for vrp_evaluate_conditional_warnv. */
+
+static tree
+vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
+					 tree op1, bool use_equiv_p,
+					 bool *strict_overflow_p, bool *only_ranges)
+{
+  tree ret;
+  if (only_ranges)
+    *only_ranges = true;
+
+  /* We only deal with integral and pointer types.  */
+  if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
+      && !POINTER_TYPE_P (TREE_TYPE (op0)))
+    return NULL_TREE;
+
+  if (use_equiv_p)
+    {
+      if (only_ranges
+          && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
+	              (code, op0, op1, strict_overflow_p)))
+	return ret;
+      *only_ranges = false;
+      if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
+	return compare_names (code, op0, op1, strict_overflow_p);
+      else if (TREE_CODE (op0) == SSA_NAME)
+	return compare_name_with_value (code, op0, op1, strict_overflow_p);
+      else if (TREE_CODE (op1) == SSA_NAME)
+	return (compare_name_with_value
+		(swap_tree_comparison (code), op1, op0, strict_overflow_p));
+    }
+  else
+    return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
+								 strict_overflow_p);
+  return NULL_TREE;
+}
+
+/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
+   information.  Return NULL if the conditional can not be evaluated.
+   The ranges of all the names equivalent with the operands in COND
+   will be used when trying to compute the value.  If the result is
+   based on undefined signed overflow, issue a warning if
+   appropriate.  */
+
+tree
+vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
+{
+  bool sop;
+  tree ret;
+  bool only_ranges;
+
+  sop = false;
+  ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
+  						 &only_ranges);
+
+  if (ret && sop)
+    {
+      enum warn_strict_overflow_code wc;
+      const char* warnmsg;
+
+      if (is_gimple_min_invariant (ret))
+	{
+	  wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
+	  warnmsg = G_("assuming signed overflow does not occur when "
+		       "simplifying conditional to constant");
+	}
+      else
+	{
+	  wc = WARN_STRICT_OVERFLOW_COMPARISON;
+	  warnmsg = G_("assuming signed overflow does not occur when "
+		       "simplifying conditional");
+	}
+
+      if (issue_strict_overflow_warning (wc))
+	{
+	  location_t location;
+
+	  if (!gimple_has_location (stmt))
+	    location = input_location;
+	  else
+	    location = gimple_location (stmt);
+	  warning (OPT_Wstrict_overflow, "%H%s", &location, warnmsg);
+	}
+    }
+
+  if (warn_type_limits
+      && ret && only_ranges
+      && TREE_CODE_CLASS (code) == tcc_comparison
+      && TREE_CODE (op0) == SSA_NAME)
+    {
+      /* If the comparison is being folded and the operand on the LHS
+	 is being compared against a constant value that is outside of
+	 the natural range of OP0's type, then the predicate will
+	 always fold regardless of the value of OP0.  If -Wtype-limits
+	 was specified, emit a warning.  */
+      const char *warnmsg = NULL;
+      tree type = TREE_TYPE (op0);
+      value_range_t *vr0 = get_value_range (op0);
+
+      if (vr0->type != VR_VARYING
+	  && INTEGRAL_TYPE_P (type)
+	  && vrp_val_is_min (vr0->min)
+	  && vrp_val_is_max (vr0->max)
+	  && is_gimple_min_invariant (op1))
+	{
+	  if (integer_zerop (ret))
+	    warnmsg = G_("comparison always false due to limited range of "
+		         "data type");
+	  else
+	    warnmsg = G_("comparison always true due to limited range of "
+			 "data type");
+	}
+
+      if (warnmsg)
+	{
+	  location_t location;
+
+	  if (!gimple_has_location (stmt))
+	    location = input_location;
+	  else
+	    location = gimple_location (stmt);
+
+	  warning (OPT_Wtype_limits, "%H%s", &location, warnmsg);
+	}
+    }
+
+  return ret;
+}
+
+
+/* Visit conditional statement STMT.  If we can determine which edge
+   will be taken out of STMT's basic block, record it in
+   *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
+   SSA_PROP_VARYING.  */
+
+static enum ssa_prop_result
+vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
+{
+  tree val;
+  bool sop;
+
+  *taken_edge_p = NULL;
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      tree use;
+      ssa_op_iter i;
+
+      fprintf (dump_file, "\nVisiting conditional with predicate: ");
+      print_gimple_stmt (dump_file, stmt, 0, 0);
+      fprintf (dump_file, "\nWith known ranges\n");
+      
+      FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
+	{
+	  fprintf (dump_file, "\t");
+	  print_generic_expr (dump_file, use, 0);
+	  fprintf (dump_file, ": ");
+	  dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
+	}
+
+      fprintf (dump_file, "\n");
+    }
+
+  /* Compute the value of the predicate COND by checking the known
+     ranges of each of its operands.
+     
+     Note that we cannot evaluate all the equivalent ranges here
+     because those ranges may not yet be final and with the current
+     propagation strategy, we cannot determine when the value ranges
+     of the names in the equivalence set have changed.
+
+     For instance, given the following code fragment
+
+        i_5 = PHI <8, i_13>
+	...
+     	i_14 = ASSERT_EXPR <i_5, i_5 != 0>
+	if (i_14 == 1)
+	  ...
+
+     Assume that on the first visit to i_14, i_5 has the temporary
+     range [8, 8] because the second argument to the PHI function is
+     not yet executable.  We derive the range ~[0, 0] for i_14 and the
+     equivalence set { i_5 }.  So, when we visit 'if (i_14 == 1)' for
+     the first time, since i_14 is equivalent to the range [8, 8], we
+     determine that the predicate is always false.
+
+     On the next round of propagation, i_13 is determined to be
+     VARYING, which causes i_5 to drop down to VARYING.  So, another
+     visit to i_14 is scheduled.  In this second visit, we compute the
+     exact same range and equivalence set for i_14, namely ~[0, 0] and
+     { i_5 }.  But we did not have the previous range for i_5
+     registered, so vrp_visit_assignment thinks that the range for
+     i_14 has not changed.  Therefore, the predicate 'if (i_14 == 1)'
+     is not visited again, which stops propagation from visiting
+     statements in the THEN clause of that if().
+
+     To properly fix this we would need to keep the previous range
+     value for the names in the equivalence set.  This way we would've
+     discovered that from one visit to the other i_5 changed from
+     range [8, 8] to VR_VARYING.
+
+     However, fixing this apparent limitation may not be worth the
+     additional checking.  Testing on several code bases (GCC, DLV,
+     MICO, TRAMP3D and SPEC2000) showed that doing this results in
+     4 more predicates folded in SPEC.  */
+  sop = false;
+
+  val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
+						 gimple_cond_lhs (stmt),
+						 gimple_cond_rhs (stmt),
+						 false, &sop, NULL);
+  if (val)
+    {
+      if (!sop)
+	*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
+      else
+	{
+	  if (dump_file && (dump_flags & TDF_DETAILS))
+	    fprintf (dump_file,
+		     "\nIgnoring predicate evaluation because "
+		     "it assumes that signed overflow is undefined");
+	  val = NULL_TREE;
+	}
+    }
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "\nPredicate evaluates to: ");
+      if (val == NULL_TREE)
+	fprintf (dump_file, "DON'T KNOW\n");
+      else
+	print_generic_stmt (dump_file, val, 0);
+    }
+
+  return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
+}
+
+/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
+   that includes the value VAL.  The search is restricted to the range
+   [START_IDX, n - 1] where n is the size of VEC.
+
+   If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
+   returned.
+
+   If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
+   it is placed in IDX and false is returned.
+
+   If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
+   returned. */
+
+static bool
+find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
+{
+  size_t n = gimple_switch_num_labels (stmt);
+  size_t low, high;
+
+  /* Find case label for minimum of the value range or the next one.
+     At each iteration we are searching in [low, high - 1]. */
+
+  for (low = start_idx, high = n; high != low; )
+    {
+      tree t;
+      int cmp;
+      /* Note that i != high, so we never ask for n. */
+      size_t i = (high + low) / 2;
+      t = gimple_switch_label (stmt, i);
+
+      /* Cache the result of comparing CASE_LOW and val.  */
+      cmp = tree_int_cst_compare (CASE_LOW (t), val);
+
+      if (cmp == 0)
+	{
+	  /* Ranges cannot be empty. */
+	  *idx = i;
+	  return true;
+	}
+      else if (cmp > 0)
+        high = i;
+      else
+	{
+	  low = i + 1;
+	  if (CASE_HIGH (t) != NULL
+	      && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
+	    {
+	      *idx = i;
+	      return true;
+	    }
+        }
+    }
+
+  *idx = high;
+  return false;
+}
+
+/* Searches the case label vector VEC for the range of CASE_LABELs that is used
+   for values between MIN and MAX. The first index is placed in MIN_IDX. The
+   last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
+   then MAX_IDX < MIN_IDX.
+   Returns true if the default label is not needed. */
+
+static bool
+find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
+		       size_t *max_idx)
+{
+  size_t i, j;
+  bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
+  bool max_take_default = !find_case_label_index (stmt, i, max, &j);
+
+  if (i == j
+      && min_take_default
+      && max_take_default)
+    {
+      /* Only the default case label reached. 
+         Return an empty range. */
+      *min_idx = 1;
+      *max_idx = 0;
+      return false;
+    }
+  else
+    {
+      bool take_default = min_take_default || max_take_default;
+      tree low, high;
+      size_t k;
+
+      if (max_take_default)
+	j--;
+
+      /* If the case label range is continuous, we do not need
+	 the default case label.  Verify that.  */
+      high = CASE_LOW (gimple_switch_label (stmt, i));
+      if (CASE_HIGH (gimple_switch_label (stmt, i)))
+	high = CASE_HIGH (gimple_switch_label (stmt, i));
+      for (k = i + 1; k <= j; ++k)
+	{
+	  low = CASE_LOW (gimple_switch_label (stmt, k));
+	  if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
+	    {
+	      take_default = true;
+	      break;
+	    }
+	  high = low;
+	  if (CASE_HIGH (gimple_switch_label (stmt, k)))
+	    high = CASE_HIGH (gimple_switch_label (stmt, k));
+	}
+
+      *min_idx = i;
+      *max_idx = j;
+      return !take_default;
+    }
+}
+
+/* Visit switch statement STMT.  If we can determine which edge
+   will be taken out of STMT's basic block, record it in
+   *TAKEN_EDGE_P and return SSA_PROP_INTERESTING.  Otherwise, return
+   SSA_PROP_VARYING.  */
+
+static enum ssa_prop_result
+vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
+{
+  tree op, val;
+  value_range_t *vr;
+  size_t i = 0, j = 0, n;
+  bool take_default;
+
+  *taken_edge_p = NULL;
+  op = gimple_switch_index (stmt);
+  if (TREE_CODE (op) != SSA_NAME)
+    return SSA_PROP_VARYING;
+
+  vr = get_value_range (op);
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "\nVisiting switch expression with operand ");
+      print_generic_expr (dump_file, op, 0);
+      fprintf (dump_file, " with known range ");
+      dump_value_range (dump_file, vr);
+      fprintf (dump_file, "\n");
+    }
+
+  if (vr->type != VR_RANGE
+      || symbolic_range_p (vr))
+    return SSA_PROP_VARYING;
+
+  /* Find the single edge that is taken from the switch expression.  */
+  n = gimple_switch_num_labels (stmt);
+
+  take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
+
+  /* Check if the range spans no CASE_LABEL. If so, we only reach the default
+     label */
+  if (j < i)
+    {
+      gcc_assert (take_default);
+      val = gimple_switch_default_label (stmt);
+    }
+  else
+    {
+      /* Check if labels with index i to j and maybe the default label
+	 are all reaching the same label.  */
+
+      val = gimple_switch_label (stmt, i);
+      if (take_default
+	  && CASE_LABEL (gimple_switch_default_label (stmt))
+	  != CASE_LABEL (val))
+	{
+	  if (dump_file && (dump_flags & TDF_DETAILS))
+	    fprintf (dump_file, "  not a single destination for this "
+		     "range\n");
+          return SSA_PROP_VARYING;
+	}
+      for (++i; i <= j; ++i)
+        {
+          if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
+	    {
+	      if (dump_file && (dump_flags & TDF_DETAILS))
+		fprintf (dump_file, "  not a single destination for this "
+			 "range\n");
+	      return SSA_PROP_VARYING;
+	    }
+        }
+    }
+
+  *taken_edge_p = find_edge (gimple_bb (stmt),
+			     label_to_block (CASE_LABEL (val)));
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "  will take edge to ");
+      print_generic_stmt (dump_file, CASE_LABEL (val), 0);
+    }
+
+  return SSA_PROP_INTERESTING;
+}
+
+
+/* Evaluate statement STMT.  If the statement produces a useful range,
+   return SSA_PROP_INTERESTING and record the SSA name with the
+   interesting range into *OUTPUT_P.
+
+   If STMT is a conditional branch and we can determine its truth
+   value, the taken edge is recorded in *TAKEN_EDGE_P.
+
+   If STMT produces a varying value, return SSA_PROP_VARYING.  */
+
+static enum ssa_prop_result
+vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
+{
+  tree def;
+  ssa_op_iter iter;
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "\nVisiting statement:\n");
+      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
+      fprintf (dump_file, "\n");
+    }
+
+  if (is_gimple_assign (stmt) || is_gimple_call (stmt))
+    {
+      /* In general, assignments with virtual operands are not useful
+	 for deriving ranges, with the obvious exception of calls to
+	 builtin functions.  */
+
+      if ((is_gimple_call (stmt)
+	   && gimple_call_fndecl (stmt) != NULL_TREE
+	   && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
+	  || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+	return vrp_visit_assignment_or_call (stmt, output_p);
+    }
+  else if (gimple_code (stmt) == GIMPLE_COND)
+    return vrp_visit_cond_stmt (stmt, taken_edge_p);
+  else if (gimple_code (stmt) == GIMPLE_SWITCH)
+    return vrp_visit_switch_stmt (stmt, taken_edge_p);
+
+  /* All other statements produce nothing of interest for VRP, so mark
+     their outputs varying and prevent further simulation.  */
+  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
+    set_value_range_to_varying (get_value_range (def));
+
+  return SSA_PROP_VARYING;
+}
+
+
+/* Meet operation for value ranges.  Given two value ranges VR0 and
+   VR1, store in VR0 a range that contains both VR0 and VR1.  This
+   may not be the smallest possible such range.  */
+
+static void
+vrp_meet (value_range_t *vr0, value_range_t *vr1)
+{
+  if (vr0->type == VR_UNDEFINED)
+    {
+      copy_value_range (vr0, vr1);
+      return;
+    }
+
+  if (vr1->type == VR_UNDEFINED)
+    {
+      /* Nothing to do.  VR0 already has the resulting range.  */
+      return;
+    }
+
+  if (vr0->type == VR_VARYING)
+    {
+      /* Nothing to do.  VR0 already has the resulting range.  */
+      return;
+    }
+
+  if (vr1->type == VR_VARYING)
+    {
+      set_value_range_to_varying (vr0);
+      return;
+    }
+
+  if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
+    {
+      int cmp;
+      tree min, max;
+
+      /* Compute the convex hull of the ranges.  The lower limit of
+         the new range is the minimum of the two ranges.  If they
+	 cannot be compared, then give up.  */
+      cmp = compare_values (vr0->min, vr1->min);
+      if (cmp == 0 || cmp == 1)
+        min = vr1->min;
+      else if (cmp == -1)
+        min = vr0->min;
+      else
+	goto give_up;
+
+      /* Similarly, the upper limit of the new range is the maximum
+         of the two ranges.  If they cannot be compared, then
+	 give up.  */
+      cmp = compare_values (vr0->max, vr1->max);
+      if (cmp == 0 || cmp == -1)
+        max = vr1->max;
+      else if (cmp == 1)
+        max = vr0->max;
+      else
+	goto give_up;
+
+      /* Check for useless ranges.  */
+      if (INTEGRAL_TYPE_P (TREE_TYPE (min))
+	  && ((vrp_val_is_min (min) || is_overflow_infinity (min))
+	      && (vrp_val_is_max (max) || is_overflow_infinity (max))))
+	goto give_up;
+
+      /* The resulting set of equivalences is the intersection of
+	 the two sets.  */
+      if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+        bitmap_and_into (vr0->equiv, vr1->equiv);
+      else if (vr0->equiv && !vr1->equiv)
+        bitmap_clear (vr0->equiv);
+
+      set_value_range (vr0, vr0->type, min, max, vr0->equiv);
+    }
+  else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
+    {
+      /* Two anti-ranges meet only if their complements intersect.
+         Only handle the case of identical ranges.  */
+      if (compare_values (vr0->min, vr1->min) == 0
+	  && compare_values (vr0->max, vr1->max) == 0
+	  && compare_values (vr0->min, vr0->max) == 0)
+	{
+	  /* The resulting set of equivalences is the intersection of
+	     the two sets.  */
+	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+	    bitmap_and_into (vr0->equiv, vr1->equiv);
+	  else if (vr0->equiv && !vr1->equiv)
+	    bitmap_clear (vr0->equiv);
+	}
+      else
+	goto give_up;
+    }
+  else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
+    {
+      /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
+         only handle the case where the ranges have an empty intersection.
+	 The result of the meet operation is the anti-range.  */
+      if (!symbolic_range_p (vr0)
+	  && !symbolic_range_p (vr1)
+	  && !value_ranges_intersect_p (vr0, vr1))
+	{
+	  /* Copy most of VR1 into VR0.  Don't copy VR1's equivalence
+	     set.  We need to compute the intersection of the two
+	     equivalence sets.  */
+	  if (vr1->type == VR_ANTI_RANGE)
+	    set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
+
+	  /* The resulting set of equivalences is the intersection of
+	     the two sets.  */
+	  if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+	    bitmap_and_into (vr0->equiv, vr1->equiv);
+	  else if (vr0->equiv && !vr1->equiv)
+	    bitmap_clear (vr0->equiv);
+	}
+      else
+	goto give_up;
+    }
+  else
+    gcc_unreachable ();
+
+  return;
+
+give_up:
+  /* Failed to find an efficient meet.  Before giving up and setting
+     the result to VARYING, see if we can at least derive a useful
+     anti-range.  FIXME, all this nonsense about distinguishing
+     anti-ranges from ranges is necessary because of the odd
+     semantics of range_includes_zero_p and friends.  */
+  if (!symbolic_range_p (vr0)
+      && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
+	  || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
+      && !symbolic_range_p (vr1)
+      && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
+	  || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
+    {
+      set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
+
+      /* Since this meet operation did not result from the meeting of
+	 two equivalent names, VR0 cannot have any equivalences.  */
+      if (vr0->equiv)
+	bitmap_clear (vr0->equiv);
+    }
+  else
+    set_value_range_to_varying (vr0);
+}
+
+
+/* Visit all arguments for PHI node PHI that flow through executable
+   edges.  If a valid value range can be derived from all the incoming
+   value ranges, set a new range for the LHS of PHI.  */
+
+static enum ssa_prop_result
+vrp_visit_phi_node (gimple phi)
+{
+  size_t i;
+  tree lhs = PHI_RESULT (phi);
+  value_range_t *lhs_vr = get_value_range (lhs);
+  value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+  int edges, old_edges;
+
+  copy_value_range (&vr_result, lhs_vr);
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      fprintf (dump_file, "\nVisiting PHI node: ");
+      print_gimple_stmt (dump_file, phi, 0, dump_flags);
+    }
+
+  edges = 0;
+  for (i = 0; i < gimple_phi_num_args (phi); i++)
+    {
+      edge e = gimple_phi_arg_edge (phi, i);
+
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	{
+	  fprintf (dump_file,
+	      "\n    Argument #%d (%d -> %d %sexecutable)\n",
+	      (int) i, e->src->index, e->dest->index,
+	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
+	}
+
+      if (e->flags & EDGE_EXECUTABLE)
+	{
+	  tree arg = PHI_ARG_DEF (phi, i);
+	  value_range_t vr_arg;
+
+	  ++edges;
+
+	  if (TREE_CODE (arg) == SSA_NAME)
+	    {
+	      vr_arg = *(get_value_range (arg));
+	    }
+	  else
+	    {
+	      if (is_overflow_infinity (arg))
+		{
+		  arg = copy_node (arg);
+		  TREE_OVERFLOW (arg) = 0;
+		}
+
+	      vr_arg.type = VR_RANGE;
+	      vr_arg.min = arg;
+	      vr_arg.max = arg;
+	      vr_arg.equiv = NULL;
+	    }
+
+	  if (dump_file && (dump_flags & TDF_DETAILS))
+	    {
+	      fprintf (dump_file, "\t");
+	      print_generic_expr (dump_file, arg, dump_flags);
+	      fprintf (dump_file, "\n\tValue: ");
+	      dump_value_range (dump_file, &vr_arg);
+	      fprintf (dump_file, "\n");
+	    }
+
+	  vrp_meet (&vr_result, &vr_arg);
+
+	  if (vr_result.type == VR_VARYING)
+	    break;
+	}
+    }
+
+  if (vr_result.type == VR_VARYING)
+    goto varying;
+
+  old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
+  vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
+
+  /* To prevent infinite iterations in the algorithm, derive ranges
+     when the new value is slightly bigger or smaller than the
+     previous one.  We don't do this if we have seen a new executable
+     edge; this helps us avoid an overflow infinity for conditionals
+     which are not in a loop.  */
+  if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
+      && edges <= old_edges)
+    {
+      if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
+	{
+	  int cmp_min = compare_values (lhs_vr->min, vr_result.min);
+	  int cmp_max = compare_values (lhs_vr->max, vr_result.max);
+
+	  /* If the new minimum is smaller or larger than the previous
+	     one, go all the way to -INF.  In the first case, to avoid
+	     iterating millions of times to reach -INF, and in the
+	     other case to avoid infinite bouncing between different
+	     minimums.  */
+	  if (cmp_min > 0 || cmp_min < 0)
+	    {
+	      /* If we will end up with a (-INF, +INF) range, set it to
+		 VARYING.  Same if the previous max value was invalid for
+		 the type and we'd end up with vr_result.min > vr_result.max.  */
+	      if (vrp_val_is_max (vr_result.max)
+		  || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
+				     vr_result.max) > 0)
+		goto varying;
+
+	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
+		  || !vrp_var_may_overflow (lhs, phi))
+		vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
+	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
+		vr_result.min =
+		  negative_overflow_infinity (TREE_TYPE (vr_result.min));
+	      else
+		goto varying;
+	    }
+
+	  /* Similarly, if the new maximum is smaller or larger than
+	     the previous one, go all the way to +INF.  */
+	  if (cmp_max < 0 || cmp_max > 0)
+	    {
+	      /* If we will end up with a (-INF, +INF) range, set it to
+		 VARYING.  Same if the previous min value was invalid for
+		 the type and we'd end up with vr_result.max < vr_result.min.  */
+	      if (vrp_val_is_min (vr_result.min)
+		  || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
+				     vr_result.min) < 0)
+		goto varying;
+
+	      if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
+		  || !vrp_var_may_overflow (lhs, phi))
+		vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
+	      else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
+		vr_result.max =
+		  positive_overflow_infinity (TREE_TYPE (vr_result.max));
+	      else
+		goto varying;
+	    }
+	}
+    }
+
+  /* If the new range is different than the previous value, keep
+     iterating.  */
+  if (update_value_range (lhs, &vr_result))
+    return SSA_PROP_INTERESTING;
+
+  /* Nothing changed, don't add outgoing edges.  */
+  return SSA_PROP_NOT_INTERESTING;
+
+  /* No match found.  Set the LHS to VARYING.  */
+varying:
+  set_value_range_to_varying (lhs_vr);
+  return SSA_PROP_VARYING;
+}
+
+/* Simplify boolean operations if the source is known
+   to be already a boolean.  */
+static bool
+simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
+{
+  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+  tree val = NULL;
+  tree op0, op1;
+  value_range_t *vr;
+  bool sop = false;
+  bool need_conversion;
+
+  op0 = gimple_assign_rhs1 (stmt);
+  if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
+    {
+      if (TREE_CODE (op0) != SSA_NAME)
+	return false;
+      vr = get_value_range (op0);
+
+      val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
+      if (!val || !integer_onep (val))
+        return false;
+
+      val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
+      if (!val || !integer_onep (val))
+        return false;
+    }
+
+  if (rhs_code == TRUTH_NOT_EXPR)
+    {
+      rhs_code = NE_EXPR;
+      op1 = build_int_cst (TREE_TYPE (op0), 1);
+    }
+  else
+    {
+      op1 = gimple_assign_rhs2 (stmt);
+
+      /* Reduce number of cases to handle.  */
+      if (is_gimple_min_invariant (op1))
+	{
+          /* Exclude anything that should have been already folded.  */
+	  if (rhs_code != EQ_EXPR
+	      && rhs_code != NE_EXPR
+	      && rhs_code != TRUTH_XOR_EXPR)
+	    return false;
+
+	  if (!integer_zerop (op1)
+	      && !integer_onep (op1)
+	      && !integer_all_onesp (op1))
+	    return false;
+
+	  /* Limit the number of cases we have to consider.  */
+	  if (rhs_code == EQ_EXPR)
+	    {
+	      rhs_code = NE_EXPR;
+	      op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
+	    }
+	}
+      else
+	{
+	  /* Punt on A == B as there is no BIT_XNOR_EXPR.  */
+	  if (rhs_code == EQ_EXPR)
+	    return false;
+
+	  if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
+	    {
+	      vr = get_value_range (op1);
+	      val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
+	      if (!val || !integer_onep (val))
+	        return false;
+
+	      val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
+	      if (!val || !integer_onep (val))
+	        return false;
+	    }
+	}
+    }
+
+  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+    {
+      location_t location;
+
+      if (!gimple_has_location (stmt))
+	location = input_location;
+      else
+	location = gimple_location (stmt);
+
+      if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
+        warning_at (location, OPT_Wstrict_overflow,
+	            _("assuming signed overflow does not occur when "
+		      "simplifying && or || to & or |"));
+      else
+        warning_at (location, OPT_Wstrict_overflow,
+	            _("assuming signed overflow does not occur when "
+		      "simplifying ==, != or ! to identity or ^"));
+    }
+
+  need_conversion =
+    !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
+			        TREE_TYPE (op0));
+
+  /* Make sure to not sign-extend -1 as a boolean value.  */
+  if (need_conversion
+      && !TYPE_UNSIGNED (TREE_TYPE (op0))
+      && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
+    return false;
+
+  switch (rhs_code)
+    {
+    case TRUTH_AND_EXPR:
+      rhs_code = BIT_AND_EXPR;
+      break;
+    case TRUTH_OR_EXPR:
+      rhs_code = BIT_IOR_EXPR;
+      break;
+    case TRUTH_XOR_EXPR:
+    case NE_EXPR:
+      if (integer_zerop (op1))
+	{
+	  gimple_assign_set_rhs_with_ops (gsi,
+					  need_conversion ? NOP_EXPR : SSA_NAME,
+					  op0, NULL);
+	  update_stmt (gsi_stmt (*gsi));
+	  return true;
+	}
+
+      rhs_code = BIT_XOR_EXPR;
+      break;
+    default:
+      gcc_unreachable ();
+    }
+
+  if (need_conversion)
+    return false;
+
+  gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
+  update_stmt (gsi_stmt (*gsi));
+  return true;
+}
+
+/* Simplify a division or modulo operator to a right shift or
+   bitwise and if the first operand is unsigned or is greater
+   than zero and the second operand is an exact power of two.  */
+
+static bool
+simplify_div_or_mod_using_ranges (gimple stmt)
+{
+  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+  tree val = NULL;
+  tree op0 = gimple_assign_rhs1 (stmt);
+  tree op1 = gimple_assign_rhs2 (stmt);
+  value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
+
+  if (TYPE_UNSIGNED (TREE_TYPE (op0)))
+    {
+      val = integer_one_node;
+    }
+  else
+    {
+      bool sop = false;
+
+      val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
+
+      if (val
+	  && sop
+	  && integer_onep (val)
+	  && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+	{
+	  location_t location;
+
+	  if (!gimple_has_location (stmt))
+	    location = input_location;
+	  else
+	    location = gimple_location (stmt);
+	  warning (OPT_Wstrict_overflow,
+		   ("%Hassuming signed overflow does not occur when "
+		    "simplifying / or %% to >> or &"),
+		   &location);
+	}
+    }
+
+  if (val && integer_onep (val))
+    {
+      tree t;
+
+      if (rhs_code == TRUNC_DIV_EXPR)
+	{
+	  t = build_int_cst (NULL_TREE, tree_log2 (op1));
+	  gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
+	  gimple_assign_set_rhs1 (stmt, op0);
+	  gimple_assign_set_rhs2 (stmt, t);
+	}
+      else
+	{
+	  t = build_int_cst (TREE_TYPE (op1), 1);
+	  t = int_const_binop (MINUS_EXPR, op1, t, 0);
+	  t = fold_convert (TREE_TYPE (op0), t);
+
+	  gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
+	  gimple_assign_set_rhs1 (stmt, op0);
+	  gimple_assign_set_rhs2 (stmt, t);
+	}
+
+      update_stmt (stmt);
+      return true;
+    }
+
+  return false;
+}
+
+/* If the operand to an ABS_EXPR is >= 0, then eliminate the
+   ABS_EXPR.  If the operand is <= 0, then simplify the
+   ABS_EXPR into a NEGATE_EXPR.  */
+
+static bool
+simplify_abs_using_ranges (gimple stmt)
+{
+  tree val = NULL;
+  tree op = gimple_assign_rhs1 (stmt);
+  tree type = TREE_TYPE (op);
+  value_range_t *vr = get_value_range (op);
+
+  if (TYPE_UNSIGNED (type))
+    {
+      val = integer_zero_node;
+    }
+  else if (vr)
+    {
+      bool sop = false;
+
+      val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
+      if (!val)
+	{
+	  sop = false;
+	  val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
+					  &sop);
+
+	  if (val)
+	    {
+	      if (integer_zerop (val))
+		val = integer_one_node;
+	      else if (integer_onep (val))
+		val = integer_zero_node;
+	    }
+	}
+
+      if (val
+	  && (integer_onep (val) || integer_zerop (val)))
+	{
+	  if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+	    {
+	      location_t location;
+
+	      if (!gimple_has_location (stmt))
+		location = input_location;
+	      else
+		location = gimple_location (stmt);
+	      warning (OPT_Wstrict_overflow,
+		       ("%Hassuming signed overflow does not occur when "
+			"simplifying abs (X) to X or -X"),
+		       &location);
+	    }
+
+	  gimple_assign_set_rhs1 (stmt, op);
+	  if (integer_onep (val))
+	    gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
+	  else
+	    gimple_assign_set_rhs_code (stmt, SSA_NAME);
+	  update_stmt (stmt);
+	  return true;
+	}
+    }
+
+  return false;
+}
+
+/* We are comparing trees OP0 and OP1 using COND_CODE.  OP0 has
+   a known value range VR.
+
+   If there is one and only one value which will satisfy the
+   conditional, then return that value.  Else return NULL.  */
+
+static tree
+test_for_singularity (enum tree_code cond_code, tree op0,
+		      tree op1, value_range_t *vr)
+{
+  tree min = NULL;
+  tree max = NULL;
+
+  /* Extract minimum/maximum values which satisfy the
+     the conditional as it was written.  */
+  if (cond_code == LE_EXPR || cond_code == LT_EXPR)
+    {
+      /* This should not be negative infinity; there is no overflow
+	 here.  */
+      min = TYPE_MIN_VALUE (TREE_TYPE (op0));
+
+      max = op1;
+      if (cond_code == LT_EXPR && !is_overflow_infinity (max))
+	{
+	  tree one = build_int_cst (TREE_TYPE (op0), 1);
+	  max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
+	  if (EXPR_P (max))
+	    TREE_NO_WARNING (max) = 1;
+	}
+    }
+  else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
+    {
+      /* This should not be positive infinity; there is no overflow
+	 here.  */
+      max = TYPE_MAX_VALUE (TREE_TYPE (op0));
+
+      min = op1;
+      if (cond_code == GT_EXPR && !is_overflow_infinity (min))
+	{
+	  tree one = build_int_cst (TREE_TYPE (op0), 1);
+	  min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
+	  if (EXPR_P (min))
+	    TREE_NO_WARNING (min) = 1;
+	}
+    }
+
+  /* Now refine the minimum and maximum values using any
+     value range information we have for op0.  */
+  if (min && max)
+    {
+      if (compare_values (vr->min, min) == -1)
+	min = min;
+      else
+	min = vr->min;
+      if (compare_values (vr->max, max) == 1)
+	max = max;
+      else
+	max = vr->max;
+
+      /* If the new min/max values have converged to a single value,
+	 then there is only one value which can satisfy the condition,
+	 return that value.  */
+      if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
+	return min;
+    }
+  return NULL;
+}
+
+/* Simplify a conditional using a relational operator to an equality
+   test if the range information indicates only one value can satisfy
+   the original conditional.  */
+
+static bool
+simplify_cond_using_ranges (gimple stmt)
+{
+  tree op0 = gimple_cond_lhs (stmt);
+  tree op1 = gimple_cond_rhs (stmt);
+  enum tree_code cond_code = gimple_cond_code (stmt);
+
+  if (cond_code != NE_EXPR
+      && cond_code != EQ_EXPR
+      && TREE_CODE (op0) == SSA_NAME
+      && INTEGRAL_TYPE_P (TREE_TYPE (op0))
+      && is_gimple_min_invariant (op1))
+    {
+      value_range_t *vr = get_value_range (op0);
+	  
+      /* If we have range information for OP0, then we might be
+	 able to simplify this conditional. */
+      if (vr->type == VR_RANGE)
+	{
+	  tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
+
+	  if (new_tree)
+	    {
+	      if (dump_file)
+		{
+		  fprintf (dump_file, "Simplified relational ");
+		  print_gimple_stmt (dump_file, stmt, 0, 0);
+		  fprintf (dump_file, " into ");
+		}
+
+	      gimple_cond_set_code (stmt, EQ_EXPR);
+	      gimple_cond_set_lhs (stmt, op0);
+	      gimple_cond_set_rhs (stmt, new_tree);
+
+	      update_stmt (stmt);
+
+	      if (dump_file)
+		{
+		  print_gimple_stmt (dump_file, stmt, 0, 0);
+		  fprintf (dump_file, "\n");
+		}
+
+	      return true;
+	    }
+
+	  /* Try again after inverting the condition.  We only deal
+	     with integral types here, so no need to worry about
+	     issues with inverting FP comparisons.  */
+	  cond_code = invert_tree_comparison (cond_code, false);
+	  new_tree = test_for_singularity (cond_code, op0, op1, vr);
+
+	  if (new_tree)
+	    {
+	      if (dump_file)
+		{
+		  fprintf (dump_file, "Simplified relational ");
+		  print_gimple_stmt (dump_file, stmt, 0, 0);
+		  fprintf (dump_file, " into ");
+		}
+
+	      gimple_cond_set_code (stmt, NE_EXPR);
+	      gimple_cond_set_lhs (stmt, op0);
+	      gimple_cond_set_rhs (stmt, new_tree);
+
+	      update_stmt (stmt);
+
+	      if (dump_file)
+		{
+		  print_gimple_stmt (dump_file, stmt, 0, 0);
+		  fprintf (dump_file, "\n");
+		}
+
+	      return true;
+	    }
+	}
+    }
+
+  return false;
+}
+
+/* Simplify a switch statement using the value range of the switch
+   argument.  */
+
+static bool
+simplify_switch_using_ranges (gimple stmt)
+{
+  tree op = gimple_switch_index (stmt);
+  value_range_t *vr;
+  bool take_default;
+  edge e;
+  edge_iterator ei;
+  size_t i = 0, j = 0, n, n2;
+  tree vec2;
+  switch_update su;
+
+  if (TREE_CODE (op) != SSA_NAME)
+    return false;
+
+  vr = get_value_range (op);
+
+  /* We can only handle integer ranges.  */
+  if (vr->type != VR_RANGE
+      || symbolic_range_p (vr))
+    return false;
+
+  /* Find case label for min/max of the value range.  */
+  n = gimple_switch_num_labels (stmt);
+  take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
+
+  /* Bail out if this is just all edges taken.  */
+  if (i == 1
+      && j == n - 1
+      && take_default)
+    return false;
+
+  /* Build a new vector of taken case labels.  */
+  vec2 = make_tree_vec (j - i + 1 + (int)take_default);
+  n2 = 0;
+
+  /* Add the default edge, if necessary.  */
+  if (take_default)
+    TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
+
+  for (; i <= j; ++i, ++n2)
+    TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
+
+  /* Mark needed edges.  */
+  for (i = 0; i < n2; ++i)
+    {
+      e = find_edge (gimple_bb (stmt),
+		     label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
+      e->aux = (void *)-1;
+    }
+
+  /* Queue not needed edges for later removal.  */
+  FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
+    {
+      if (e->aux == (void *)-1)
+	{
+	  e->aux = NULL;
+	  continue;
+	}
+
+      if (dump_file && (dump_flags & TDF_DETAILS))
+	{
+	  fprintf (dump_file, "removing unreachable case label\n");
+	}
+      VEC_safe_push (edge, heap, to_remove_edges, e);
+    }
+
+  /* And queue an update for the stmt.  */
+  su.stmt = stmt;
+  su.vec = vec2;
+  VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
+  return false;
+}
+
+/* Simplify STMT using ranges if possible.  */
+
+bool
+simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
+{
+  gimple stmt = gsi_stmt (*gsi);
+  if (is_gimple_assign (stmt))
+    {
+      enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+
+      switch (rhs_code)
+	{
+	case EQ_EXPR:
+	case NE_EXPR:
+	case TRUTH_NOT_EXPR:
+	case TRUTH_AND_EXPR:
+	case TRUTH_OR_EXPR:
+        case TRUTH_XOR_EXPR:
+          /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
+	     or identity if the RHS is zero or one, and the LHS are known
+	     to be boolean values.  Transform all TRUTH_*_EXPR into
+             BIT_*_EXPR if both arguments are known to be boolean values.  */
+	  if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
+	    return simplify_truth_ops_using_ranges (gsi, stmt);
+	  break;
+
+      /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
+	 and BIT_AND_EXPR respectively if the first operand is greater
+	 than zero and the second operand is an exact power of two.  */
+	case TRUNC_DIV_EXPR:
+	case TRUNC_MOD_EXPR:
+	  if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
+	      && integer_pow2p (gimple_assign_rhs2 (stmt)))
+	    return simplify_div_or_mod_using_ranges (stmt);
+	  break;
+
+      /* Transform ABS (X) into X or -X as appropriate.  */
+	case ABS_EXPR:
+	  if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
+	      && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
+	    return simplify_abs_using_ranges (stmt);
+	  break;
+
+	default:
+	  break;
+	}
+    }
+  else if (gimple_code (stmt) == GIMPLE_COND)
+    return simplify_cond_using_ranges (stmt);
+  else if (gimple_code (stmt) == GIMPLE_SWITCH)
+    return simplify_switch_using_ranges (stmt);
+
+  return false;
+}
+
+/* Stack of dest,src equivalency pairs that need to be restored after
+   each attempt to thread a block's incoming edge to an outgoing edge. 
+
+   A NULL entry is used to mark the end of pairs which need to be
+   restored.  */
+static VEC(tree,heap) *stack;
+
+/* A trivial wrapper so that we can present the generic jump threading
+   code with a simple API for simplifying statements.  STMT is the
+   statement we want to simplify, WITHIN_STMT provides the location
+   for any overflow warnings.  */
+
+static tree
+simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
+{
+  /* We only use VRP information to simplify conditionals.  This is
+     overly conservative, but it's unclear if doing more would be
+     worth the compile time cost.  */
+  if (gimple_code (stmt) != GIMPLE_COND)
+    return NULL;
+
+  return vrp_evaluate_conditional (gimple_cond_code (stmt),
+				   gimple_cond_lhs (stmt),
+				   gimple_cond_rhs (stmt), within_stmt);
+}
+
+/* Blocks which have more than one predecessor and more than
+   one successor present jump threading opportunities, i.e.,
+   when the block is reached from a specific predecessor, we
+   may be able to determine which of the outgoing edges will
+   be traversed.  When this optimization applies, we are able
+   to avoid conditionals at runtime and we may expose secondary
+   optimization opportunities.
+
+   This routine is effectively a driver for the generic jump
+   threading code.  It basically just presents the generic code
+   with edges that may be suitable for jump threading.
+
+   Unlike DOM, we do not iterate VRP if jump threading was successful.
+   While iterating may expose new opportunities for VRP, it is expected
+   those opportunities would be very limited and the compile time cost
+   to expose those opportunities would be significant. 
+
+   As jump threading opportunities are discovered, they are registered
+   for later realization.  */
+
+static void
+identify_jump_threads (void)
+{
+  basic_block bb;
+  gimple dummy;
+  int i;
+  edge e;
+
+  /* Ugh.  When substituting values earlier in this pass we can
+     wipe the dominance information.  So rebuild the dominator
+     information as we need it within the jump threading code.  */
+  calculate_dominance_info (CDI_DOMINATORS);
+
+  /* We do not allow VRP information to be used for jump threading
+     across a back edge in the CFG.  Otherwise it becomes too
+     difficult to avoid eliminating loop exit tests.  Of course
+     EDGE_DFS_BACK is not accurate at this time so we have to
+     recompute it.  */
+  mark_dfs_back_edges ();
+
+  /* Do not thread across edges we are about to remove.  Just marking
+     them as EDGE_DFS_BACK will do.  */
+  for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
+    e->flags |= EDGE_DFS_BACK;
+
+  /* Allocate our unwinder stack to unwind any temporary equivalences
+     that might be recorded.  */
+  stack = VEC_alloc (tree, heap, 20);
+
+  /* To avoid lots of silly node creation, we create a single
+     conditional and just modify it in-place when attempting to
+     thread jumps.  */
+  dummy = gimple_build_cond (EQ_EXPR,
+			     integer_zero_node, integer_zero_node,
+			     NULL, NULL);
+
+  /* Walk through all the blocks finding those which present a
+     potential jump threading opportunity.  We could set this up
+     as a dominator walker and record data during the walk, but
+     I doubt it's worth the effort for the classes of jump
+     threading opportunities we are trying to identify at this
+     point in compilation.  */
+  FOR_EACH_BB (bb)
+    {
+      gimple last;
+
+      /* If the generic jump threading code does not find this block
+	 interesting, then there is nothing to do.  */
+      if (! potentially_threadable_block (bb))
+	continue;
+
+      /* We only care about blocks ending in a COND_EXPR.  While there
+	 may be some value in handling SWITCH_EXPR here, I doubt it's
+	 terribly important.  */
+      last = gsi_stmt (gsi_last_bb (bb));
+      if (gimple_code (last) != GIMPLE_COND)
+	continue;
+
+      /* We're basically looking for any kind of conditional with
+	 integral type arguments.  */
+      if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
+	  && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
+	  && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
+	      || is_gimple_min_invariant (gimple_cond_rhs (last)))
+	  && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
+	{
+	  edge_iterator ei;
+
+	  /* We've got a block with multiple predecessors and multiple
+	     successors which also ends in a suitable conditional.  For
+	     each predecessor, see if we can thread it to a specific
+	     successor.  */
+	  FOR_EACH_EDGE (e, ei, bb->preds)
+	    {
+	      /* Do not thread across back edges or abnormal edges
+		 in the CFG.  */
+	      if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
+		continue;
+
+	      thread_across_edge (dummy, e, true, &stack,
+				  simplify_stmt_for_jump_threading);
+	    }
+	}
+    }
+
+  /* We do not actually update the CFG or SSA graphs at this point as
+     ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
+     handle ASSERT_EXPRs gracefully.  */
+}
+
+/* We identified all the jump threading opportunities earlier, but could
+   not transform the CFG at that time.  This routine transforms the
+   CFG and arranges for the dominator tree to be rebuilt if necessary.
+
+   Note the SSA graph update will occur during the normal TODO
+   processing by the pass manager.  */
+static void
+finalize_jump_threads (void)
+{
+  thread_through_all_blocks (false);
+  VEC_free (tree, heap, stack);
+}
+
+
+/* Traverse all the blocks folding conditionals with known ranges.  */
+
+static void
+vrp_finalize (void)
+{
+  size_t i;
+  prop_value_t *single_val_range;
+  bool do_value_subst_p;
+
+  if (dump_file)
+    {
+      fprintf (dump_file, "\nValue ranges after VRP:\n\n");
+      dump_all_value_ranges (dump_file);
+      fprintf (dump_file, "\n");
+    }
+
+  /* We may have ended with ranges that have exactly one value.  Those
+     values can be substituted as any other copy/const propagated
+     value using substitute_and_fold.  */
+  single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
+
+  do_value_subst_p = false;
+  for (i = 0; i < num_ssa_names; i++)
+    if (vr_value[i]
+	&& vr_value[i]->type == VR_RANGE
+	&& vr_value[i]->min == vr_value[i]->max)
+      {
+	single_val_range[i].value = vr_value[i]->min;
+	do_value_subst_p = true;
+      }
+
+  if (!do_value_subst_p)
+    {
+      /* We found no single-valued ranges, don't waste time trying to
+	 do single value substitution in substitute_and_fold.  */
+      free (single_val_range);
+      single_val_range = NULL;
+    }
+
+  substitute_and_fold (single_val_range, true);
+
+  if (warn_array_bounds)
+      check_all_array_refs ();
+
+  /* We must identify jump threading opportunities before we release
+     the datastructures built by VRP.  */
+  identify_jump_threads ();
+
+  /* Free allocated memory.  */
+  for (i = 0; i < num_ssa_names; i++)
+    if (vr_value[i])
+      {
+	BITMAP_FREE (vr_value[i]->equiv);
+	free (vr_value[i]);
+      }
+
+  free (single_val_range);
+  free (vr_value);
+  free (vr_phi_edge_counts);
+
+  /* So that we can distinguish between VRP data being available
+     and not available.  */
+  vr_value = NULL;
+  vr_phi_edge_counts = NULL;
+}
+
+
+/* Main entry point to VRP (Value Range Propagation).  This pass is
+   loosely based on J. R. C. Patterson, ``Accurate Static Branch
+   Prediction by Value Range Propagation,'' in SIGPLAN Conference on
+   Programming Language Design and Implementation, pp. 67-78, 1995.
+   Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
+
+   This is essentially an SSA-CCP pass modified to deal with ranges
+   instead of constants.
+
+   While propagating ranges, we may find that two or more SSA name
+   have equivalent, though distinct ranges.  For instance,
+
+     1	x_9 = p_3->a;
+     2	p_4 = ASSERT_EXPR <p_3, p_3 != 0>
+     3	if (p_4 == q_2)
+     4	  p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
+     5	endif
+     6	if (q_2)
+	
+   In the code above, pointer p_5 has range [q_2, q_2], but from the
+   code we can also determine that p_5 cannot be NULL and, if q_2 had
+   a non-varying range, p_5's range should also be compatible with it.
+
+   These equivalences are created by two expressions: ASSERT_EXPR and
+   copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
+   result of another assertion, then we can use the fact that p_5 and
+   p_4 are equivalent when evaluating p_5's range.
+
+   Together with value ranges, we also propagate these equivalences
+   between names so that we can take advantage of information from
+   multiple ranges when doing final replacement.  Note that this
+   equivalency relation is transitive but not symmetric.
+   
+   In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
+   cannot assert that q_2 is equivalent to p_5 because q_2 may be used
+   in contexts where that assertion does not hold (e.g., in line 6).
+
+   TODO, the main difference between this pass and Patterson's is that
+   we do not propagate edge probabilities.  We only compute whether
+   edges can be taken or not.  That is, instead of having a spectrum
+   of jump probabilities between 0 and 1, we only deal with 0, 1 and
+   DON'T KNOW.  In the future, it may be worthwhile to propagate
+   probabilities to aid branch prediction.  */
+
+static unsigned int
+execute_vrp (void)
+{
+  int i;
+  edge e;
+  switch_update *su;
+
+  loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
+  rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
+  scev_initialize ();
+
+  insert_range_assertions ();
+
+  to_remove_edges = VEC_alloc (edge, heap, 10);
+  to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
+
+  vrp_initialize ();
+  ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
+  vrp_finalize ();
+
+  /* ASSERT_EXPRs must be removed before finalizing jump threads
+     as finalizing jump threads calls the CFG cleanup code which
+     does not properly handle ASSERT_EXPRs.  */
+  remove_range_assertions ();
+
+  /* If we exposed any new variables, go ahead and put them into
+     SSA form now, before we handle jump threading.  This simplifies
+     interactions between rewriting of _DECL nodes into SSA form
+     and rewriting SSA_NAME nodes into SSA form after block
+     duplication and CFG manipulation.  */
+  update_ssa (TODO_update_ssa);
+
+  finalize_jump_threads ();
+
+  /* Remove dead edges from SWITCH_EXPR optimization.  This leaves the
+     CFG in a broken state and requires a cfg_cleanup run.  */
+  for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
+    remove_edge (e);
+  /* Update SWITCH_EXPR case label vector.  */
+  for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
+    {
+      size_t j;
+      size_t n = TREE_VEC_LENGTH (su->vec);
+      tree label;
+      gimple_switch_set_num_labels (su->stmt, n);
+      for (j = 0; j < n; j++)
+	gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
+      /* As we may have replaced the default label with a regular one
+	 make sure to make it a real default label again.  This ensures
+	 optimal expansion.  */
+      label = gimple_switch_default_label (su->stmt);
+      CASE_LOW (label) = NULL_TREE;
+      CASE_HIGH (label) = NULL_TREE;
+    }
+
+  if (VEC_length (edge, to_remove_edges) > 0)
+    free_dominance_info (CDI_DOMINATORS);
+
+  VEC_free (edge, heap, to_remove_edges);
+  VEC_free (switch_update, heap, to_update_switch_stmts);
+
+  scev_finalize ();
+  loop_optimizer_finalize ();
+  return 0;
+}
+
+static bool
+gate_vrp (void)
+{
+  return flag_tree_vrp != 0;
+}
+
+struct gimple_opt_pass pass_vrp =
+{
+ {
+  GIMPLE_PASS,
+  "vrp",				/* name */
+  gate_vrp,				/* gate */
+  execute_vrp,				/* execute */
+  NULL,					/* sub */
+  NULL,					/* next */
+  0,					/* static_pass_number */
+  TV_TREE_VRP,				/* tv_id */
+  PROP_ssa | PROP_alias,		/* properties_required */
+  0,					/* properties_provided */
+  0,					/* properties_destroyed */
+  0,					/* todo_flags_start */
+  TODO_cleanup_cfg
+    | TODO_ggc_collect
+    | TODO_verify_ssa
+    | TODO_dump_func
+    | TODO_update_ssa			/* todo_flags_finish */
+ }
+};