comparison zf.agda @ 65:164ad5a703d8

¬∅=→∅∈ : {n : Level} → { x : OD {suc n} } → ¬ ( x == od∅ {suc n} ) → x ∋ od∅ {suc n} ¬∅=→∅∈ {n} {x} ne = def-subst (lemma (od→ord x) (subst (λ k → ¬ (k == od∅ {suc n} )) (sym oiso) ne )) oiso refl where lemma : (ox : Ordinal {suc n}) → ¬ (ord→od ox == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n} lemma ox = TransFinite {suc n} {λ ox → ¬ (ord→od ox == od∅ {suc n} ) → ord→od ox ∋ od∅ {suc n} } { }0 { }1 { }2 ox
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 30 May 2019 01:02:47 +0900
parents 33fb8228ace9
children 93abc0133b8a
comparison
equal deleted inserted replaced
64:87df00599a0e 65:164ad5a703d8
66 field 66 field
67 empty : ∀( x : ZFSet ) → ¬ ( ∅ ∋ x ) 67 empty : ∀( x : ZFSet ) → ¬ ( ∅ ∋ x )
68 -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) ) 68 -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) )
69 power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → _⊆_ t A {x} 69 power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → _⊆_ t A {x}
70 power← : ∀( A t : ZFSet ) → ∀ {x} → _⊆_ t A {x} → Power A ∋ t 70 power← : ∀( A t : ZFSet ) → ∀ {x} → _⊆_ t A {x} → Power A ∋ t
71 -- extentionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) 71 -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w )
72 extentionality : ( A B z : ZFSet ) → (( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B 72 extensionality : ( A B z : ZFSet ) → (( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B
73 -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) 73 -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) )
74 minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet 74 minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet
75 regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimul x not ∈ x ∧ ( minimul x not ∩ x ≈ ∅ ) ) 75 regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimul x not ∈ x ∧ ( minimul x not ∩ x ≈ ∅ ) )
76 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) 76 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) )
77 infinity∅ : ∅ ∈ infinite 77 infinity∅ : ∅ ∈ infinite