comparison CCCGraph.agda @ 922:348ed0c473cc

PLS
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 04 May 2020 18:54:24 +0900
parents 625baac95ec8
children 8380d1af9890
comparison
equal deleted inserted replaced
921:625baac95ec8 922:348ed0c473cc
191 fmap (id a) x = x 191 fmap (id a) x = x
192 fmap (○ a) x = OneObj 192 fmap (○ a) x = OneObj
193 fmap < f , g > x = ( fmap f x , fmap g x ) 193 fmap < f , g > x = ( fmap f x , fmap g x )
194 fmap (iv x f) a = amap x ( fmap f a ) 194 fmap (iv x f) a = amap x ( fmap f a )
195 195
196 record PLHom (a b : Objs) : Set (c₁ ⊔ c₂) where
197 field
198 proof : Hom PL a b
199 func : fobj a → fobj b
200
201 open PLHom
202
203 PLS : Category c₁ (c₁ ⊔ c₂) (c₁ ⊔ c₂)
204 PLS = record {
205 Obj = Objs;
206 Hom = PLHom ;
207 _o_ = λ{a} {b} {c} x y → record { proof = proof x ・ proof y ; func = λ z → func x ( func y z ) } ;
208 _≈_ = λ x y → func x ≡ func y ;
209 Id = λ{a} → record { proof = id a ; func = λ x → x } ;
210 isCategory = record {
211 isEquivalence = record {refl = refl ; trans = trans ; sym = sym} ;
212 identityL = λ {a b f} → refl ;
213 identityR = λ {a b f} → refl ;
214 o-resp-≈ = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ;
215 associative = λ{a b c d f g h } → refl
216 }
217 } where
218 o-resp-≈ : {A B C : Objs} {f g : PLHom A B} {h i : PLHom B C} →
219 func f ≡ func g → func h ≡ func i → (λ z → func h (func f z) ) ≡ (λ z → func i (func g z) )
220 o-resp-≈ refl refl = refl
221
222
196 -- CS is a map from Positive logic to Sets 223 -- CS is a map from Positive logic to Sets
197 -- Sets is CCC, so we have a cartesian closed category generated by a graph 224 -- Sets is CCC, so we have a cartesian closed category generated by a graph
198 -- as a sub category of Sets 225 -- as a sub category of Sets
199 226
200 CS : Functor PL (Sets {c₁ ⊔ c₂ }) 227 CS : Functor PL PLS
201 FObj CS a = fobj a 228 FObj CS a = a
202 FMap CS {a} {b} f = fmap {a} {b} f 229 FMap CS {a} {b} f = record { func = fmap {a} {b} f ; proof = f }
203 isFunctor CS = isf where 230 isFunctor CS = isf where
204 _+_ = Category._o_ PL 231 _+_ = Category._o_ PL
205 ++idR = IsCategory.identityR ( Category.isCategory PL ) 232 ++idR = IsCategory.identityR ( Category.isCategory PL )
206 distr : {a b c : Obj PL} { f : Hom PL a b } { g : Hom PL b c } → (z : fobj a ) → fmap (g + f) z ≡ fmap g (fmap f z) 233 distr : {a b c : Obj PL} { f : Hom PL a b } { g : Hom PL b c } → (z : fobj a ) → fmap (g + f) z ≡ fmap g (fmap f z)
207 distr {a} {a₁} {a₁} {f} {id a₁} z = refl 234 distr {a} {a₁} {a₁} {f} {id a₁} z = refl
209 distr {a} {b} {c ∧ d} {f} {< g , g₁ >} z = cong₂ (λ j k → j , k ) (distr {a} {b} {c} {f} {g} z) (distr {a} {b} {d} {f} {g₁} z) 236 distr {a} {b} {c ∧ d} {f} {< g , g₁ >} z = cong₂ (λ j k → j , k ) (distr {a} {b} {c} {f} {g} z) (distr {a} {b} {d} {f} {g₁} z)
210 distr {a} {b} {c} {f} {iv {_} {_} {d} x g} z = adistr (distr {a} {b} {d} {f} {g} z) x where 237 distr {a} {b} {c} {f} {iv {_} {_} {d} x g} z = adistr (distr {a} {b} {d} {f} {g} z) x where
211 adistr : fmap (g + f) z ≡ fmap g (fmap f z) → 238 adistr : fmap (g + f) z ≡ fmap g (fmap f z) →
212 ( x : Arrow d c ) → fmap ( iv x (g + f) ) z ≡ fmap ( iv x g ) (fmap f z ) 239 ( x : Arrow d c ) → fmap ( iv x (g + f) ) z ≡ fmap ( iv x g ) (fmap f z )
213 adistr eq x = cong ( λ k → amap x k ) eq 240 adistr eq x = cong ( λ k → amap x k ) eq
214 isf : IsFunctor PL Sets fobj fmap 241 isf : IsFunctor PL PLS (λ x → x) (λ {a} {b} f → record { func = fmap {a} {b} f ; proof = f } )
215 IsFunctor.identity isf = extensionality Sets ( λ x → refl ) 242 IsFunctor.identity isf = extensionality Sets ( λ x → refl )
216 IsFunctor.≈-cong isf refl = refl 243 IsFunctor.≈-cong isf refl = refl
217 IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) 244 IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z )
218 245
219 open import subcat 246 open import subcat
220 247
221 CSC = FCat PL (Sets {c₁ ⊔ c₂ }) CS 248 CSC = FCat PL PLS CS
222 249
223 cc1 : CCC CSC -- SCS is CCC 250 cc1 : CCC CSC -- SCS is CCC
224 cc1 = record { 251 cc1 = record {
225 1 = ⊤ ; 252 1 = ⊤ ;
226 ○ = λ a x → OneObj ; 253 ○ = λ a → record { func = λ z → OneObj ; proof = ○ a} ;
227 _∧_ = λ x y → x ∧ y ; 254 _∧_ = λ x y → x ∧ y ;
228 <_,_> = λ f g x → ( f x , g x ) ; 255 <_,_> = λ f g → record { func = λ x → ( (func f) x , (func g) x ) ; proof = < proof f , proof g > } ;
229 π = proj₁ ; 256 π = record { func = proj₁ ; proof = iv π (id _) } ;
230 π' = proj₂ ; 257 π' = record { func = proj₂ ; proof = iv π' (id _) } ;
231 _<=_ = λ b a → b <= a ; 258 _<=_ = λ b a → b <= a ;
232 _* = λ f x y → f ( x , y ) ; 259 _* = λ f → record { func = λ x y → (func f )( x , y ) ; proof = iv ((proof f) *) (id _) } ;
233 ε = λ x → ( proj₁ x) (proj₂ x) ; 260 ε = record { func = λ x → ( proj₁ x) (proj₂ x) ; proof = iv ε (id _)} ;
234 isCCC = record { 261 isCCC = record {
235 e2 = λ {a} {f} → extensionality Sets ( λ x → e20 {a} {f} x ) ; 262 e2 = λ {a} {f} → extensionality Sets ( λ x → e20 {a} {f} x ) ;
236 e3a = refl ; 263 e3a = refl ;
237 e3b = refl ; 264 e3b = refl ;
238 e3c = refl ; 265 e3c = refl ;
239 π-cong = π-cong ; 266 π-cong = π-cong ;
240 e4a = refl ; 267 e4a = refl ;
241 e4b = refl ; 268 e4b = refl ;
242 *-cong = *-cong 269 *-cong = λ {a} {b} {c} {f} {f'} → *-cong {a} {b} {c} {f} {f'}
243 } 270 }
244 } where 271 } where
245 e20 : {a : Obj CSC } {f : Hom CSC a ⊤} (x : fobj a ) → f x ≡ OneObj 272 e20 : {a : Obj CSC } {f : Hom CSC a ⊤} (x : fobj a ) → (func f) x ≡ OneObj
246 e20 {a} {f} x with f x 273 e20 {a} {f} x with (func f) x
247 e20 x | OneObj = refl 274 e20 x | OneObj = refl
248 π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → 275 π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} →
249 Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ] 276 Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ]
250 π-cong refl refl = refl 277 π-cong refl refl = refl
251 *-cong : {a b c : Obj CSC } {f f' : Hom CSC (a ∧ b) c} → 278 *-cong : {a b c : Obj CSC} {f f' : Hom CSC (a ∧ b) c} →
252 Sets [ f ≈ f' ] → Sets [ (λ x y → f (x , y)) ≈ (λ x y → f' (x , y)) ] 279 CSC [ f ≈ f' ] →
280 CSC [ record { proof = iv (proof f *) (id (FObj CS a)) ; func = λ x y → func f (x , y) }
281 ≈ record { proof = iv (proof f' *) (id (FObj CS a)) ; func = λ x y → func f' (x , y) } ]
253 *-cong refl = refl 282 *-cong refl = refl
254
255 data plcase {b : vertex G} : {a : Objs } → (f : Hom PL a (atom b)) → ( sf : Hom CSC a (atom b)) → Set (c₁ ⊔ c₂) where
256 pid : plcase (id (atom b)) (id1 CSC (atom b))
257 parrow : {a : Objs } {c : vertex G} → (x : edge G c b) → (f : Arrows a (atom c))
258 → plcase (iv (arrow x) f) ( λ y z → graphtocat.next x (fmap f y z ))
259 pπ : {a c : Objs } (f : Arrows a ((atom b) ∧ c))
260 → plcase (iv π f) (λ y → proj₁ (fmap f y ))
261 pπ' : {a c : Objs } (f : Arrows a (c ∧ (atom b) ))
262 → plcase (iv π' f) (λ y → proj₂ (fmap f y ))
263 pε : {a c : Objs } (f : Arrows a ((atom b <= c) ∧ c))
264 → plcase (iv ε f) (λ y → proj₁ (fmap f y ) (proj₂ (fmap f y )) )
265
266 rev : {a : Objs } → {b : vertex G} → ( sf : Hom CSC a (atom b)) → {f : Hom PL a (atom b)} → Hom PL a (atom b)
267 rev {a} {b} sf {f} with plcase f sf
268 ... | t = {!!}
269
270 283
271 --- 284 ---
272 --- SubCategoy SC F A is a category with Obj = FObj F, Hom = FMap 285 --- SubCategoy SC F A is a category with Obj = FObj F, Hom = FMap
273 --- 286 ---
274 --- CCC ( SC (CS G)) Sets have to be proved 287 --- CCC ( SC (CS G)) Sets have to be proved
412 open ccc-from-graph.Objs 425 open ccc-from-graph.Objs
413 open ccc-from-graph.Arrow 426 open ccc-from-graph.Arrow
414 open ccc-from-graph.Arrows 427 open ccc-from-graph.Arrows
415 open graphtocat.Chain 428 open graphtocat.Chain
416 429
430 open ccc-from-graph.PLHom
431
417 ccc-graph-univ : {c₁ : Level } → UniversalMapping (Grph {c₁} {c₁} ) (Cart {c₁} {c₁} {c₁} ) UX 432 ccc-graph-univ : {c₁ : Level } → UniversalMapping (Grph {c₁} {c₁} ) (Cart {c₁} {c₁} {c₁} ) UX
418 ccc-graph-univ {c₁} = record { 433 ccc-graph-univ {c₁} = record {
419 F = λ g → csc g ; 434 F = λ g → csc g ;
420 η = λ a → record { vmap = λ y → atom y ; emap = λ f x y → next f (x y) } ; 435 η = λ a → record { vmap = λ y → atom y ; emap = λ f → record { func = λ x y → next f (x y) ; proof = iv (arrow f ) (id _) } } ;
421 _* = solution ; 436 _* = solution ;
422 isUniversalMapping = record { 437 isUniversalMapping = record {
423 universalMapping = {!!} ; 438 universalMapping = {!!} ;
424 uniquness = {!!} 439 uniquness = {!!}
425 } 440 }
426 } where 441 } where
427 csc : Graph → Obj Cart 442 csc : Graph → Obj Cart
428 csc g = record { cat = CSC ; ccc = cc1 ; ≡←≈ = λ eq → eq } where 443 csc g = record { cat = CSC ; ccc = cc1 ; ≡←≈ = λ eq → {!!} } where
429 open ccc-from-graph g 444 open ccc-from-graph g
430 cobj : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} → Hom Grph g (FObj UX c) → Obj (cat (csc g)) → Obj (cat c) 445 cobj : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} → Hom Grph g (FObj UX c) → Obj (cat (csc g)) → Obj (cat c)
431 cobj {g} {c} f (atom x) = vmap f x 446 cobj {g} {c} f (atom x) = vmap f x
432 cobj {g} {c} f ⊤ = CCC.1 (ccc c) 447 cobj {g} {c} f ⊤ = CCC.1 (ccc c)
433 cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) 448 cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y)
434 cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) 449 cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a)
435 c-map : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} {A B : Obj (cat (csc g))} 450 c-map : {g : Obj Grph} {c : Obj (Cart {c₁} {c₁} {c₁})} {A B : Obj (cat (csc g))}
436 → (f : Hom Grph g (FObj UX c) ) → Hom (cat (csc g)) A B → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) 451 → (f : Hom Grph g (FObj UX c) ) → Hom (cat (csc g)) A B → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B)
437 c-map {g} {c} {a} {atom x} f y = ? 452 c-map {g} {c} {a} {atom x} f y with proof y
453 c-map {g} {c} {atom x} {atom x} f y | id (atom x) = {!!}
454 c-map {g} {c} {a} {atom x} f y | iv {_} {_} {atom d} (arrow z) t with (func y) ? d
455 ... | t11 = {!!}
456 c-map {g} {c} {a} {atom x} f y | iv π t = {!!} -- c-map f ( record { func = λ z → proj₁ ? ; proof = t } )
457 c-map {g} {c} {a} {atom x} f y | iv π' t = {!!}
458 c-map {g} {c} {a} {atom x} f y | iv ε t = {!!}
438 c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) 459 c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a)
439 c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ w → proj₁ (z w))) (c-map f (λ w → proj₂ (z w))) 460 c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (record { func = (λ w → proj₁ ((func z) w )); proof = iv π (proof z)} ))
440 c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ w → x (proj₁ w) (proj₂ w))) 461 (c-map f record { func = λ w → proj₂ ((func z) w) ; proof = iv π' (proof z)} )
462 c-map {g} {c} {d} {b <= a} f x = {!!} -- CCC._* (ccc c) ( c-map f record { func = λ w → (func x) (proj₁ w) (proj₂ w) ;
441 solution : {g : Obj Grph} {c : Obj Cart} → Hom Grph g (FObj UX c) → Hom Cart (csc g) c 463 solution : {g : Obj Grph} {c : Obj Cart} → Hom Grph g (FObj UX c) → Hom Cart (csc g) c
442 solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f x ; FMap = c-map {g} {c} f ; isFunctor = {!!} } ; ccf = {!!} } 464 solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f x ; FMap = c-map {g} {c} f ; isFunctor = {!!} } ; ccf = {!!} }
443 465
444 466