view limit-to.agda @ 427:531b739a1d7c

add Nil
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 26 Mar 2016 12:31:14 +0900
parents 1290d6876129
children 7f8b9f1f1bba
line wrap: on
line source

open import Category -- https://github.com/konn/category-agda
open import Level

module limit-to where

open import cat-utility
open import HomReasoning
open import Relation.Binary.Core
open import Data.Maybe
open Functor




-- If we have limit then we have equalizer
---  two objects category
---
---          f
---       ------>
---     0         1
---       ------>
---          g



data  TwoObject {c₁ : Level}  : Set c₁ where
   t0 : TwoObject
   t1 : TwoObject

-- constrainted arrow
--    we need inverse of f to complete cases
data Arrow {c₁ c₂ : Level } ( t00 t11 :  TwoObject {c₁} ) : TwoObject {c₁}  -> TwoObject {c₁} -> Set c₂ where
   id-t0 : Arrow t00 t11 t00 t00
   id-t1 : Arrow t00 t11 t11 t11
   arrow-f :  Arrow t00 t11 t00 t11
   arrow-g :  Arrow t00 t11 t00 t11
   inv-f :  Arrow t00 t11 t11 t00

record TwoHom {c₁ c₂ : Level} (a b : TwoObject {c₁}  ) : Set   c₂ where
   field
       hom   :   Maybe ( Arrow {c₁} {c₂} t0 t1 a b )

open TwoHom

-- arrow composition


comp :  ∀ {c₁  c₂}  -> {a b c : TwoObject {c₁}} →  Maybe ( Arrow {c₁} {c₂} t0 t1 b c ) →  Maybe ( Arrow {c₁} {c₂} t0 t1 a b )  →  Maybe ( Arrow {c₁} {c₂} t0 t1 a c )
comp {_}  {_}  {_} {_} {_}  nothing     _                =   nothing 
comp {_}  {_}  {_} {_} {_}  (just _     ) nothing          =   nothing 
comp {_}  {_}  {t0} {t1} {t1}  (just id-t1 ) ( just arrow-f )  =   just arrow-f 
comp {_}  {_}  {t0} {t1} {t1}  (just id-t1 ) ( just arrow-g ) =   just arrow-g 
comp {_}  {_}  {t1} {t1} {t1}  (just id-t1 ) ( just id-t1   ) =   just id-t1 
comp {_}  {_}  {t1} {t1} {t0}  (just inv-f ) ( just id-t1   ) =   just inv-f 
comp {_}  {_}  {t0} {t0} {t1}  (just arrow-f ) ( just id-t0 )   =   just arrow-f 
comp {_}  {_}  {t0} {t0} {t1}  (just arrow-g ) ( just id-t0 )   =   just arrow-g 
comp {_}  {_}  {t0} {t0} {t0}  (just id-t0 ) ( just id-t0  )  =   just id-t0 
comp {_}  {_}  {t1} {t0} {t0}  (just id-t0 ) ( just inv-f )   =   just inv-f 
comp {_}  {_}  {_} {_} {_}  (just _ ) ( just _ )  =   nothing 


_×_ :  ∀ {c₁  c₂}  -> {a b c : TwoObject {c₁}} →  ( TwoHom {c₁}  {c₂} b c ) →  ( TwoHom {c₁} {c₂} a b )  →  ( TwoHom {c₁}  {c₂} a c )
_×_  {c₁}  {c₂}  {a} {b} {c} f g  = record { hom = comp  {c₁}  {c₂}  {a} {b} {c} (hom f) (hom g ) }


_==_ :  ∀{ c₁ c₂ a b }   ->  Rel (Maybe (Arrow {c₁} {c₂} t0 t1 a b )) (c₂)
_==_   =  Eq   _≡_

map2hom :  ∀{ c₁ c₂ } ->  {a b  : TwoObject {c₁}} →  Maybe ( Arrow  {c₁} {c₂} t0 t1 a b ) ->  TwoHom {c₁}  {c₂ } a b
map2hom {_} {_} {t1} {t1} (just id-t1)  = record { hom =  just id-t1 }
map2hom {_} {_} {t0} {t1} (just arrow-f) = record { hom =  just arrow-f }
map2hom {_} {_} {t0} {t1} (just arrow-g) = record { hom =  just arrow-g }
map2hom {_} {_} {t0} {t0} (just id-t0)   = record { hom =  just id-t0 }
map2hom {_} {_} {_} {_} _       = record { hom =  nothing }

record TwoHom1 {c₁ c₂ : Level}  (a : TwoObject {c₁}  ) (b : TwoObject {c₁}  ) : Set   c₂ where
   field
       Map       :   TwoHom {c₁}  {c₂ } a b
       iso-Map   :   Map ≡  map2hom ( hom Map )

open TwoHom1

==refl :  ∀{  c₁ c₂ a b }  ->  ∀ {x : Maybe (Arrow  {c₁} {c₂} t0 t1 a b )} → x == x
==refl {_} {_} {_} {_} {just x}  = just refl
==refl {_} {_} {_} {_} {nothing} = nothing

==sym :  ∀{  c₁ c₂ a b }   -> ∀ {x y :  Maybe (Arrow  {c₁}  {c₂} t0 t1 a b )} →  x == y →  y == x
==sym (just x≈y) = just (≡-sym x≈y)
==sym nothing    = nothing

==trans :  ∀{  c₁ c₂ a b }   -> ∀ {x y z :   Maybe (Arrow  {c₁}  {c₂} t0 t1 a b )  } →
         x == y → y == z  → x == z
==trans (just x≈y) (just y≈z) = just (≡-trans x≈y y≈z)
==trans nothing    nothing    = nothing

==cong :  ∀{  c₁ c₂ a b c d }   -> ∀ {x y :  Maybe (Arrow  {c₁}  {c₂} t0 t1 a b )} →  
        (f : Maybe (Arrow  {c₁}  {c₂} t0 t1 a b ) -> Maybe (Arrow  {c₁}  {c₂} t0 t1 c d ) ) -> x  ==  y →  f x == f y
==cong   {  c₁} {c₂} {a} {b } {c} {d} {nothing} {nothing} f nothing = ==refl
==cong   {  c₁} {c₂} {a} {b } {c} {d} {just x} {just .x} f (just refl)  = ==refl


module ==-Reasoning {c₁ c₂ : Level} where

        infixr  2 _∎
        infixr 2 _==⟨_⟩_ _==⟨⟩_
        infix  1 begin_


        data _IsRelatedTo_   {c₁ c₂ : Level}  {a b : TwoObject {c₁}  }  (x y : (Maybe (Arrow  {c₁}  {c₂} t0 t1 a b ))) :
                             Set  c₂ where
            relTo : (x≈y : x  == y  ) → x IsRelatedTo y

        begin_ :  { a b : TwoObject  {c₁} } {x : Maybe (Arrow  {c₁}  {c₂} t0 t1 a b ) } {y : Maybe (Arrow  {c₁}  {c₂} t0 t1 a b )} →
                   x IsRelatedTo y →  x ==  y
        begin relTo x≈y = x≈y

        _==⟨_⟩_ :  { a b : TwoObject  {c₁} } (x :  Maybe (Arrow  {c₁}  {c₂} t0 t1 a b )) {y z :  Maybe (Arrow  {c₁}  {c₂} t0 t1 a b ) } →
                    x == y  → y IsRelatedTo z → x IsRelatedTo z
        _ ==⟨ x≈y ⟩ relTo y≈z = relTo (==trans x≈y y≈z)

        
        _==⟨⟩_ :   { a b : TwoObject  {c₁} }(x : Maybe (Arrow  {c₁}  {c₂} t0 t1 a b )) {y : Maybe (Arrow  {c₁}  {c₂} t0 t1 a b  )}
                    → x IsRelatedTo y → x IsRelatedTo y
        _ ==⟨⟩ x≈y = x≈y

        _∎ :   { a b : TwoObject  {c₁} }(x :  Maybe (Arrow  {c₁}  {c₂} t0 t1 a b )) → x IsRelatedTo x
        _∎ _ = relTo ==refl


-- TwoHom1Eq :  {c₁  c₂ : Level } {a b : TwoObject  {c₁} } {f g :  ( TwoHom1 {c₁}  {c₂ } a b)}  →
--             hom (Map f) == hom (Map g) → f == g
-- TwoHom1Eq  = ?


--          f    g    h
--       d <- c <- b <- a
--
--   It can be proved without Arrow constraints

assoc-× :   {c₁  c₂ : Level } {a b c d : TwoObject  {c₁} }
       {f : (TwoHom {c₁}  {c₂ } c d )} →
       {g : (TwoHom {c₁}  {c₂ } b c )} →
       {h : (TwoHom {c₁}  {c₂ } a b )} →
       hom ( f × (g × h)) == hom ((f × g) × h )
assoc-× {c₁} {c₂} {a} {b} {c} {d} {f} {g} {h} with  hom f | hom g | hom h
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t0} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t0} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t1} {t0} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | nothing | _ | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t0} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t0} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t1} {t0} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | just _ | nothing | _ = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | just id-t0   | just id-t0   | just id-t0  = ==refl
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just arrow-f | just id-t0   | just id-t0  = ==refl
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just arrow-g | just id-t0   | just id-t0  = ==refl
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just id-t1   | just arrow-f | just id-t0  = ==refl
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just id-t1   | just arrow-g | just id-t0  = ==refl
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1   | just id-t1   | just arrow-f = ==refl
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1   | just id-t1   | just arrow-g = ==refl
assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | just id-t1   | just id-t1   | just id-t1  = ==refl
--  remaining all failure case (except inf-f case )
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | just id-t0 | just id-t0 | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t0} {t0} {f} {g} {h} | just id-t0 | just id-t0 | nothing = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | nothing = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t0} {t0} {f} {g} {h} | just id-t0 | just inv-f | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t0} {t0} {f} {g} {h} | just id-t0 | just inv-f | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t0} {t1} {f} {g} {h} | just arrow-f | just id-t0 | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t0} {t1} {f} {g} {h} | just arrow-g | just id-t0 | nothing = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just arrow-f | just id-t0 | nothing = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} {f} {g} {h} | just arrow-g | just id-t0 | nothing = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just id-t1 | just arrow-f | nothing = nothing
assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} {f} {g} {h} | just id-t1 | just arrow-g | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t1} {t1} {f} {g} {h} | just id-t1 | just arrow-f | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t0} {t1} {t1} {f} {g} {h} | just id-t1 | just arrow-g | nothing = nothing
assoc-× {c₁} {c₂} {t0} {t1} {t1} {t0} {f} {g} {h} | just inv-f | just id-t1 | nothing = nothing
assoc-× {c₁} {c₂} {t1} {t1} {t1} {t0} {f} {g} {h} | just inv-f | just id-t1 | nothing = nothing
assoc-× {_} {_} {t0} {t0} {t1} {t0} {_} {_} {_} | (just _) | (just _) | nothing = nothing
assoc-× {_} {_} {t0} {t1} {t0} {t1} {_} {_} {_} | (just _) | (just _) | nothing = nothing
assoc-× {_} {_} {t1} {t0} {t1} {t0} {_} {_} {_} | (just _) | (just _) | nothing = nothing
assoc-× {_} {_} {t1} {t1} {t0} {t1} {_} {_} {_} | (just _) | (just _) | nothing = nothing
assoc-× {_} {_} {t0} {t0} {t1} {t0} {_} {_} {_} | (just _) | (just arrow-f) | (just id-t0) = nothing
assoc-× {_} {_} {t0} {t0} {t1} {t0} {_} {_} {_} | (just _) | (just arrow-g) | (just id-t0) = nothing
assoc-× {_} {_} {t0} {t1} {t0} {t0} {_} {_} {_} | (just id-t0) | (just inv-f) | (just _) = nothing
assoc-× {_} {_} {t0} {t1} {t0} {t1} {_} {_} {_} | (just _) | (just _) | (just _) = nothing
assoc-× {_} {_} {t0} {t1} {t1} {t0} {_} {_} {_} | (just inv-f) | (just id-t1) | (just arrow-f) = nothing
assoc-× {_} {_} {t0} {t1} {t1} {t0} {_} {_} {_} | (just inv-f) | (just id-t1) | (just arrow-g) = nothing
assoc-× {_} {_} {t1} {t0} {t0} {t0} {_} {_} {_} | (just id-t0) | (just id-t0) | (just inv-f) = ==refl
assoc-× {_} {_} {t1} {t0} {t0} {t1} {_} {_} {_} | (just arrow-f) | (just id-t0) | (just inv-f) = nothing
assoc-× {_} {_} {t1} {t0} {t0} {t1} {_} {_} {_} | (just arrow-g) | (just id-t0) | (just inv-f) = nothing
assoc-× {_} {_} {t1} {t0} {t1} {t0} {_} {_} {_} | (just _) | (just _) | (just _) = nothing
assoc-× {_} {_} {t1} {t0} {t1} {t1} {_} {_} {_} | (just id-t1) | (just arrow-f) | (just _) = nothing
assoc-× {_} {_} {t1} {t0} {t1} {t1} {_} {_} {_} | (just id-t1) | (just arrow-g) | (just _) = nothing
assoc-× {_} {_} {t1} {t1} {t0} {t0} {_} {_} {_} | (just id-t0) | (just inv-f) | (just id-t1) = ==refl
assoc-× {_} {_} {t1} {t1} {t0} {t1} {_} {_} {_} | (just arrow-f) | (just inv-f) | (just id-t1) = ==refl
assoc-× {_} {_} {t1} {t1} {t0} {t1} {_} {_} {_} | (just arrow-g) | (just inv-f) | (just id-t1) = ==refl
assoc-× {_} {_} {t1} {t1} {t1} {t0} {_} {_} {_} | (just inv-f) | (just id-t1) | (just id-t1) = ==refl



TwoId :  {c₁  c₂ : Level } (a : TwoObject  {c₁} ) ->  (TwoHom {c₁}  {c₂ } a a )
TwoId {_} {_} t0 = record { hom =  just id-t0 }
TwoId {_} {_} t1 = record { hom =  just id-t1 }

open import maybeCat

--        identityL  {c₁}  {c₂}  {_} {b} {nothing}  =   let open ==-Reasoning  {c₁}  {c₂} in
--                begin
--                   (TwoId b × nothing)
--                ==⟨ {!!}  ⟩
--                  nothing
--                ∎

open import Relation.Binary
TwoCat : {c₁ c₂ ℓ : Level  } ->  Category   c₁  c₂  c₂
TwoCat   {c₁}  {c₂} {ℓ} = record {
    Obj  = TwoObject  {c₁} ;
    Hom = λ a b →    ( TwoHom {c₁}  {c₂ } a b ) ;
    _o_ =  \{a} {b} {c} x y -> _×_ {c₁ } { c₂} {a} {b} {c} x y ;
    _≈_ =  \x y -> hom x == hom y ;
    Id  =  \{a} -> TwoId {c₁ } { c₂} a ;
    isCategory  = record {
            isEquivalence =  record {refl = ==refl ; trans = ==trans ; sym = ==sym } ;
            identityL  = \{a b f} -> identityL {c₁}  {c₂ } {a} {b} {f} ;
            identityR  = \{a b f} -> identityR {c₁}  {c₂ } {a} {b} {f} ;
            o-resp-≈  = \{a b c f g h i} ->  o-resp-≈  {c₁}  {c₂ } {a} {b} {c} {f} {g} {h} {i} ;
            associative  = \{a b c d f g h } -> assoc-×   {c₁}  {c₂} {a} {b} {c} {d} {f} {g} {h}
       }
   }  where
        identityL :  {c₁  c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁}  {c₂ } A B) } →  hom ((TwoId B)  × f)  == hom f
        identityL  {c₁}  {c₂}  {_} {_} {f}  with hom f
        identityL  {c₁}  {c₂}  {t0} {t0} {_} | nothing  = nothing
        identityL  {c₁}  {c₂}  {t0} {t1} {_} | nothing  = nothing
        identityL  {c₁}  {c₂}  {t1} {t0} {_} | nothing  = nothing
        identityL  {c₁}  {c₂}  {t1} {t1} {_} | nothing  = nothing
        identityL  {c₁}  {c₂}  {t1} {t0} {_} | just inv-f  = ==refl
        identityL  {c₁}  {c₂}  {t1} {t1} {_} | just id-t1  = ==refl
        identityL  {c₁}  {c₂}  {t0} {t0} {_} | just id-t0 = ==refl
        identityL  {c₁}  {c₂}  {t0} {t1} {_} | just arrow-f = ==refl
        identityL  {c₁}  {c₂}  {t0} {t1} {_} | just arrow-g = ==refl
        identityR :  {c₁  c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁}  {c₂ } A B) } →   hom ( f × TwoId A )  == hom f
        identityR  {c₁}  {c₂}  {_} {_} {f}  with hom f
        identityR  {c₁}  {c₂}  {t0} {t0} {_} | nothing  = nothing
        identityR  {c₁}  {c₂}  {t0} {t1} {_} | nothing  = nothing
        identityR  {c₁}  {c₂}  {t1} {t0} {_} | nothing  = nothing
        identityR  {c₁}  {c₂}  {t1} {t1} {_} | nothing  = nothing
        identityR  {c₁}  {c₂}  {t1} {t0} {_} | just inv-f  = ==refl
        identityR  {c₁}  {c₂}  {t1} {t1} {_} | just id-t1  = ==refl
        identityR  {c₁}  {c₂}  {t0} {t0} {_} | just id-t0 = ==refl
        identityR  {c₁}  {c₂}  {t0} {t1} {_} | just arrow-f = ==refl
        identityR  {c₁}  {c₂}  {t0} {t1} {_} | just arrow-g = ==refl
        o-resp-≈ :  {c₁  c₂ : Level } {A B C : TwoObject  {c₁} } {f g :  ( TwoHom {c₁}  {c₂ } A B)} {h i : ( TwoHom B C)} →
            hom f == hom g → hom h == hom i → hom ( h × f ) == hom ( i × g )
        o-resp-≈  {c₁}  {c₂} {a} {b} {c} {f} {g} {h} {i}  f==g h==i  = 
          let open  ==-Reasoning {c₁} {c₂ } in begin
                    hom ( h × f )
                ==⟨⟩
                    comp (hom h) (hom f)
                ==⟨ ==cong (\ x  -> comp ( hom h ) x )  f==g ⟩
                    comp (hom h) (hom g)
                ==⟨ ==cong (\ x  -> comp x ( hom g ) )  h==i ⟩
                    comp (hom i) (hom g)
                ==⟨⟩
                    hom ( i × g )


record  Nil {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)  :  Set   ( c₁ ⊔ c₂ ⊔ ℓ ) where
     field 
         nil : {a b : Obj A } -> Hom A a b
         nil-idL : {a b c : Obj A } -> { f : Hom A a b } -> A [ A [ nil {b} {c} o f ]   ≈ nil {a} {c} ]
         nil-idR : {a b c : Obj A } -> { f : Hom A b c } -> A [ A [ f o nil {a} {b} ]   ≈ nil {a} {c} ]

open Nil

justFunctor :  {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ->  Nil A -> Functor  (MaybeCat A ) A
justFunctor{c₁} {c₂} {ℓ} A none =  record {
         FObj = λ a → fobj a
       ; FMap = λ {a} {b} f → fmap {a} {b} f
       ; isFunctor = record {
             identity = \{x} -> identity {x}
             ; distr = \ {a} {b} {c} {f} {g}   -> distr2 {a} {b} {c} {f} {g}
             ; ≈-cong = \ {a} {b} {c} {f}   -> ≈-cong  {a} {b} {c} {f}
       }
      } where
          MA = MaybeCat A
          fobj :  Obj MA -> Obj A
          fobj = \x -> x
          fmap :  {x y : Obj MA } ->  Hom MA x y -> Hom A x y 
          fmap {x} {y} f with MaybeHom.hom f
          fmap {x} {y} _ | nothing =  nil none
          fmap {x} {y} _ | (just f)  = f
          identity  : {x : Obj MA} -> A [ fmap (id1 MA  x) ≈ id1 A (fobj x) ]
          identity  =  let open ≈-Reasoning (A) in  refl-hom
          distr2 :  {a : Obj MA} {b : Obj MA} {c : Obj MA} {f : Hom MA a b} {g : Hom MA b c} → A [ fmap (MA [ g o f ]) ≈ A [ fmap g o fmap f ] ]
          distr2 {a} {b} {c} {f} {g} with MaybeHom.hom f  | MaybeHom.hom g
          distr2 | nothing | nothing = let open ≈-Reasoning (A) in  sym ( nil-idR none  )
          distr2 | nothing | just ga = let open ≈-Reasoning (A) in  sym ( nil-idR none  )
          distr2 | just fa | nothing = let open ≈-Reasoning (A) in  sym ( nil-idL none  )
          distr2 | just f | just g   = let open ≈-Reasoning (A) in  refl-hom
          ≈-cong : {a : Obj MA} {b : Obj MA} {f g : Hom MA a b}  →   MA [ f ≈ g ] → A [ fmap f ≈ fmap g ]
          ≈-cong {a} {b} {f} {g} eq with MaybeHom.hom f  | MaybeHom.hom g
          ≈-cong {a} {b} {f} {g} nothing | nothing  | nothing = let open ≈-Reasoning (A) in  refl-hom
          ≈-cong {a} {b} {f} {g} (just eq) | just _ | just _ = eq


indexFunctor :  {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (none : Nil A) ( a b : Obj (MaybeCat A )) ( f g : Hom A a b ) ->  Functor (TwoCat {c₁} {c₂} {c₂} ) A
indexFunctor  {c₁} {c₂} {ℓ} A none a b f g = record {
         FObj = λ a → fobj a
       ; FMap = λ {a} {b} f → fmap {a} {b} f
       ; isFunctor = record {
             identity = \{x} -> identity {x}
             ; distr = \ {a} {b} {c} {f} {g}   -> distr1 {a} {b} {c} {f} {g}
             ; ≈-cong = \ {a} {b} {c} {f}   -> ≈-cong  {a} {b} {c} {f}
       }
      } where
          I = TwoCat  {c₁} {c₂} {ℓ}
          fobj :  Obj I -> Obj A
          fobj t0 = a
          fobj t1 = b
          fmap :  {x y : Obj I } ->  (TwoHom {c₁}  {c₂} x y  ) -> Hom A (fobj x) (fobj y)
          fmap  {x} {y} h with hom h
          fmap  {t0} {t0} h | just id-t0 = id1 A a
          fmap  {t1} {t1} h | just id-t1 = id1 A b
          fmap  {t0} {t1} h | just arrow-f = f
          fmap  {t0} {t1} h | just arrow-g = g
          fmap  {_} {_} h | _  = nil none
          open  ≈-Reasoning A
          ≈-cong :   {a : Obj I} {b : Obj I} {f g : Hom I a b}  → I [ f ≈ g ]  → A [ fmap f ≈ fmap g ]
          ≈-cong   {a} {b} {f1} {g1} f≈g with hom f1 | hom g1
          ≈-cong   {t0} {t0} {f1} {g1} nothing | nothing | nothing = refl-hom
          ≈-cong   {t0} {t1} {f1} {g1} nothing | nothing | nothing = refl-hom
          ≈-cong   {t1} {t0} {f1} {g1} nothing | nothing | nothing = refl-hom
          ≈-cong   {t1} {t1} {f1} {g1} nothing | nothing | nothing = refl-hom
          ≈-cong   {t0} {t0} {f1} {g1} (just refl) | just id-t0 | just id-t0 = refl-hom
          ≈-cong   {t1} {t1} {f1} {g1} (just refl) | just id-t1 | just id-t1 = refl-hom
          ≈-cong   {t0} {t1} {f1} {g1} (just refl) | just arrow-f | just arrow-f = refl-hom
          ≈-cong   {t0} {t1} {f1} {g1} (just refl) | just arrow-g | just arrow-g = refl-hom
          ≈-cong   {t1} {t0} {f1} {g1} (just refl) | just inv-f | just inv-f = refl-hom
          identity :  {x : Obj I} → A [ fmap ( id1 I x ) ≈  id1 A (fobj x) ]
          identity {t0}  =  refl-hom
          identity {t1}  =  refl-hom
          distr1 : {a₁ : Obj I} {b₁ : Obj I} {c : Obj I} {f₁ : Hom I a₁ b₁} {g₁ : Hom I b₁ c} →
               A [ fmap (I [ g₁ o f₁ ])  ≈  A [ fmap g₁ o fmap f₁ ] ]
          distr1 {a1} {b1} {c1} {f1} {g1}   with hom g1 | hom f1
          distr1 {t0} {t0} {t0} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t0} {t0} {t1} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t0} {t1} {t0} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t0} {t1} {t1} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t1} {t0} {t0} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t1} {t0} {t1} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t1} {t1} {t0} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t1} {t1} {t1} {f1} {g1} | nothing | nothing   =  sym ( nil-idR none )
          distr1 {t0} {t0} {t0} {f1} {g1} | nothing | just id-t0   =  sym ( nil-idL none )
          distr1 {t0} {t0} {t1} {f1} {g1} | nothing | just id-t0   =  sym ( nil-idL none )
          distr1 {t1} {t1} {t0} {f1} {g1} | nothing | just id-t1   =  sym ( nil-idL none )
          distr1 {t1} {t1} {t1} {f1} {g1} | nothing | just id-t1   =  sym ( nil-idL none )
          distr1 {t0} {t1} {t1} {f1} {g1} | nothing | just arrow-f   =  sym ( nil-idL none )
          distr1 {t0} {t1} {t0} {f1} {g1} | nothing | just arrow-f   =  sym ( nil-idL none )
          distr1 {t0} {t1} {t1} {f1} {g1} | nothing | just arrow-g   =  sym ( nil-idL none )
          distr1 {t0} {t1} {t0} {f1} {g1} | nothing | just arrow-g   =  sym ( nil-idL none )
          distr1 {t1} {t0} {t0} {f1} {g1} | nothing | just inv-f   =  sym ( nil-idL none )
          distr1 {t1} {t0} {t1} {f1} {g1} | nothing | just inv-f   =  sym ( nil-idL none )
          distr1 {t0} {t0} {t0} {f1} {g1} | just id-t0 | nothing    = sym ( nil-idR none )
          distr1 {t1} {t0} {t0} {f1} {g1} | just id-t0 | nothing    = sym ( nil-idR none )
          distr1 {t0} {t1} {t1} {f1} {g1} | just id-t1 | nothing    = sym ( nil-idR none )
          distr1 {t1} {t1} {t1} {f1} {g1} | just id-t1 | nothing    = sym ( nil-idR none )
          distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-f | nothing    = sym ( nil-idR none )
          distr1 {t1} {t0} {t1} {f1} {g1} | just arrow-f | nothing    = sym ( nil-idR none )
          distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-g | nothing    = sym ( nil-idR none )
          distr1 {t1} {t0} {t1} {f1} {g1} | just arrow-g | nothing    = sym ( nil-idR none )
          distr1 {t0} {t1} {t0} {f1} {g1} | just inv-f | nothing    = sym ( nil-idR none )
          distr1 {t1} {t1} {t0} {f1} {g1} | just inv-f | nothing    = sym ( nil-idR none )
          distr1 {t0} {t0} {t0} {f1} {g1} | just id-t0 | just id-t0   = sym idL
          distr1 {t1} {t0} {t0} {f1} {g1} | just id-t0 | just inv-f   = sym idL
          distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-f | just id-t0   = sym idR
          distr1 {t0} {t0} {t1} {f1} {g1} | just arrow-g | just id-t0   = sym idR
          distr1 {t1} {t1} {t1} {f1} {g1} | just id-t1 | just id-t1   = sym idL
          distr1 {t0} {t1} {t1} {f1} {g1} | just id-t1 | just arrow-f   = sym idL
          distr1 {t0} {t1} {t1} {f1} {g1} | just id-t1 | just arrow-g   = sym idL
          distr1 {t1} {t1} {t0} {f1} {g1} | just inv-f | just id-t1   = sym ( nil-idL none )
          distr1 {t0} {t1} {t0} {_} {_} | (just inv-f) | (just _) = sym ( nil-idL none )
          distr1 {t1} {t0} {t1} {_} {_} | (just arrow-f) |  (just _) = sym ( nil-idR none )
          distr1 {t1} {t0} {t1} {_} {_} | (just arrow-g) |  (just _) = sym ( nil-idR none )



---  Equalizer
---                     f
---          e       ------>
---     c ------>  a         b
---     ^      /     ------>
---     |k   h          g
---     |   /
---     |  /            ^
---     | /             |
---     |/              | Γ
---     d _             |
---      |\             |
---        \ K          af
---         \        ------>
---          \     t0        t1
---                  ------>
---                     ag
---      
---      

open Limit

I' :  {c₁ c₂ ℓ : Level} ->  Category   c₁  c₂  c₂
I' {c₁} {c₂} {ℓ} = TwoCat {c₁} {c₂} {ℓ}

lim-to-equ :  {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)  ( none : Nil A )
      (lim :  ( Γ : Functor (I' {c₁} {c₂} {ℓ}) A ) → {a0 : Obj A } 
               {u : NTrans I' A ( K A  I' a0 )  Γ } → Limit A I' Γ a0 u ) -- completeness
        →  {a b c : Obj A}      (f g : Hom A  a b )
        → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g
lim-to-equ  {c₁} {c₂} {ℓ } A none  lim {a} {b} {c}  f g e fe=ge = record {
        fe=ge =  fe=ge
        ; k = λ {d} h fh=gh → k {d} h fh=gh
        ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh
        ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k'
     } where
         I = I'   {c₁} {c₂} {ℓ} 
         Γ = indexFunctor  {c₁} {c₂} {ℓ} A  none a b f g
         nmap :  (x : Obj I ) ( d : Obj (A)  ) (h : Hom A d a ) -> Hom A (FObj (K A I d) x) (FObj Γ x)
         nmap x d h with x 
         ... | t0 = h
         ... | t1 =  A [ f o  h ] 
         commute1 : {x y : Obj I}  {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) ->  A [ A [ f  o  h ] ≈ A [ g  o h ] ]
                 → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A I d) f' ] ]
         commute1  {x} {y} {f'} d h fh=gh = {!!}
         nat : (d : Obj A) → (h : Hom A d a ) →  A [ A [ f  o  h ] ≈ A [ g  o h ] ]   → NTrans I A (K A I d) Γ
         nat d h fh=gh = record {
            TMap = λ x → nmap x d h ;
            isNTrans = record {
                commute = λ {x} {y} {f'} -> commute1 {x} {y} {f'} d h fh=gh
            }
          }
         k : {d : Obj A}  (h : Hom A d a) → A [ A [ f  o  h ] ≈ A [ g  o h ] ] → Hom A d c
         k {d} h fh=gh  = limit (lim Γ  {c} {nat c e fe=ge }) d (nat d h fh=gh ) 
         ek=h :  (d : Obj A ) (h : Hom A d a ) ->  ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ] )  -> A [ A [ e o k h fh=gh ] ≈ h ]
         ek=h d h fh=gh = {!!}
         uniquness :  (d : Obj A ) (h : Hom A d a ) ->  ( fh=gh : A [ A [ f  o  h ] ≈ A [ g  o h ] ] )  ->
                 ( k' : Hom A d c )
                -> A [ A [ e o k' ] ≈ h ] → A [ k h fh=gh ≈ k' ]
         uniquness d h fh=gh = {!!}