view SetsCompleteness.agda @ 550:c2ce1c6a3570

close this
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 06 Apr 2017 03:24:44 +0900
parents adef39d19884
children
line wrap: on
line source


open import Category -- https://github.com/konn/category-agda                                                                                     
open import Level
open import Category.Sets renaming ( _o_ to _*_ )

module SetsCompleteness where


open import cat-utility
open import Relation.Binary.Core
open import Function
import Relation.Binary.PropositionalEquality
-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂

≡cong = Relation.Binary.PropositionalEquality.cong 

lemma1 :  { c₂ : Level  } {a b  : Obj (Sets { c₂})} {f g : Hom Sets a b} →
   Sets [ f ≈ g ] → (x : a ) → f x  ≡ g x
lemma1 refl  x  = refl

record Σ {a} (A : Set a) (B : Set a) : Set a where
  constructor _,_
  field
    proj₁ : A
    proj₂ : B 

open Σ public


SetsProduct :  {  c₂ : Level} → CreateProduct ( Sets  {  c₂} )
SetsProduct { c₂ } = record { 
         product =  λ a b →    Σ a  b
       ; π1 = λ a b → λ ab → (proj₁ ab)
       ; π2 = λ a b → λ ab → (proj₂ ab)
       ; isProduct =  λ a b → record {
              _×_  = λ f g  x →   record { proj₁ = f  x ;  proj₂ =  g  x }     -- ( f x ,  g x ) 
              ; π1fxg=f = refl
              ; π2fxg=g  = refl
              ; uniqueness = refl
              ; ×-cong   =  λ {c} {f} {f'} {g} {g'} f=f g=g →  prod-cong a b f=f g=g
          }
      } where
          prod-cong : ( a b : Obj (Sets {c₂}) ) {c : Obj (Sets {c₂}) } {f f' : Hom Sets c a } {g g' : Hom Sets c b }
              → Sets [ f ≈ f' ] → Sets [ g ≈ g' ]
              → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ]
          prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl


record iproduct {a} (I : Set a)  ( pi0 : I → Set a ) : Set a where
    field
       pi1 : ( i : I ) → pi0 i

open iproduct

SetsIProduct :  {  c₂ : Level} → (I : Obj Sets) (ai : I → Obj Sets ) 
     → IProduct ( Sets  {  c₂} ) I
SetsIProduct I fi = record {
       ai =  fi
       ; iprod = iproduct I fi
       ; pi  = λ i prod  → pi1 prod i
       ; isIProduct = record {
              iproduct = iproduct1
            ; pif=q = pif=q
            ; ip-uniqueness = ip-uniqueness
            ; ip-cong  = ip-cong
       }
   } where
       iproduct1 : {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (iproduct I fi)
       iproduct1 {q} qi x = record { pi1 = λ i → (qi i) x  }
       pif=q : {q : Obj Sets} (qi : (i : I) → Hom Sets q (fi i)) {i : I} → Sets [ Sets [ (λ prod → pi1 prod i) o iproduct1 qi ] ≈ qi i ]
       pif=q {q} qi {i} = refl
       ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (iproduct I fi)} → Sets [ iproduct1 (λ i → Sets [ (λ prod → pi1 prod i) o h ]) ≈ h ]
       ip-uniqueness = refl
       ipcx : {q :  Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 qi x ≡ iproduct1 qi' x
       ipcx {q} {qi} {qi'} qi=qi x  = 
              begin
                record { pi1 = λ i → (qi i) x  }
             ≡⟨ ≡cong ( λ QIX → record { pi1 = QIX } ) ( extensionality Sets (λ i → ≡cong ( λ f → f x )  (qi=qi i)  )) ⟩
                record { pi1 = λ i → (qi' i) x  }
             ∎  where
                  open  import  Relation.Binary.PropositionalEquality 
                  open ≡-Reasoning 
       ip-cong  : {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → Sets [ iproduct1 qi ≈ iproduct1  qi' ]
       ip-cong {q} {qi} {qi'} qi=qi  = extensionality Sets ( ipcx qi=qi )


        --
        --         e             f
        --    c  -------→ a ---------→ b        f ( f' 
        --    ^        .     ---------→
        --    |      .            g
        --    |k   .
        --    |  . h
        --y : d

        -- cf. https://github.com/danr/Agda-projects/blob/master/Category-Theory/Equalizer.agda

data sequ {c : Level} (A B : Set c) ( f g : A → B ) :  Set c where
    elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g

equ  :  {  c₂ : Level}  {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } → ( sequ a b  f g ) →  a
equ  (elem x eq)  = x 

fe=ge0  :  {  c₂ : Level}  {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } →  
     (x : sequ a b f g) → (Sets [ f o (λ e → equ e) ]) x ≡ (Sets [ g o (λ e → equ e) ]) x
fe=ge0 (elem x eq )  =  eq

irr : { c₂ : Level}  {d : Set c₂ }  { x y : d } ( eq eq' :  x  ≡ y ) → eq ≡ eq'
irr refl refl = refl

open sequ

--           equalizer-c = sequ a b f g
--          ; equalizer = λ e → equ e

SetsIsEqualizer :  {  c₂ : Level}  →  (a b : Obj (Sets {c₂}) )  (f g : Hom (Sets {c₂}) a b) → IsEqualizer Sets (λ e → equ e )f g
SetsIsEqualizer {c₂} a b f g = record { 
               fe=ge  = fe=ge
             ; k = k
             ; ek=h = λ {d} {h} {eq} → ek=h {d} {h} {eq}
             ; uniqueness  = uniqueness
       } where
           fe=ge  :  Sets [ Sets [ f o (λ e → equ e ) ] ≈ Sets [ g o (λ e → equ e ) ] ]
           fe=ge  =  extensionality Sets (fe=ge0 ) 
           k :  {d : Obj Sets} (h : Hom Sets d a) → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g)
           k {d} h eq = λ x → elem  (h x) ( ≡cong ( λ y → y x ) eq )
           ek=h : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e )  o k h eq ] ≈ h ]
           ek=h {d} {h} {eq} = refl 
           injection :  { c₂ : Level  } {a b  : Obj (Sets { c₂})} (f  : Hom Sets a b) → Set c₂
           injection f =  ∀ x y  → f x ≡ f y →  x  ≡ y
           elm-cong :   (x y : sequ a b f g) → equ x ≡ equ y →  x  ≡ y
           elm-cong ( elem x eq  ) (elem .x eq' ) refl   =  ≡cong ( λ ee → elem x ee ) ( irr eq eq' )
           lemma5 :   {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
                Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x)
           lemma5 refl  x  = refl   -- somehow this is not equal to lemma1
           uniqueness :   {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} →
                Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh  ≈ k' ]
           uniqueness  {d} {h} {fh=gh} {k'} ek'=h =  extensionality Sets  ( λ ( x : d ) →  begin
                k h fh=gh x
             ≡⟨ elm-cong ( k h fh=gh x) (  k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x )  ⟩
                k' x
             ∎  ) where
                  open  import  Relation.Binary.PropositionalEquality
                  open ≡-Reasoning


open Functor

----
-- C is locally small i.e. Hom C i j is a set c₁
--
record Small  {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ )
                : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
   field
     hom→ : {i j : Obj C } →    Hom C i j →  I  
     hom← : {i j : Obj C } →  ( f : I ) →  Hom C i j 
     hom-iso : {i j : Obj C } →  { f : Hom C i j } →   hom← ( hom→ f )  ≡ f 
     -- ≈-≡ : {a b : Obj C } { x y : Hom C a b } →  (x≈y : C [ x ≈ y ] ) → x ≡ y

open Small 

ΓObj :  {  c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I :  Set  c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))  
   (i : Obj C ) →  Set c₁
ΓObj s  Γ i = FObj Γ i

ΓMap :  {  c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I :  Set  c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} ))  
    {i j : Obj C } →  ( f : I ) →  ΓObj s Γ i → ΓObj  s Γ j 
ΓMap  s Γ {i} {j} f = FMap Γ ( hom← s f ) 

record snat   { c₂ }  { I OC :  Set  c₂ } ( sobj :  OC →  Set  c₂ ) 
     ( smap : { i j :  OC  }  → (f : I )→  sobj i → sobj j ) : Set  c₂ where
   field 
       snmap : ( i : OC ) → sobj i 
       sncommute : { i j : OC } → ( f :  I ) →  smap f ( snmap i )  ≡ snmap j

open snat

snmeq :  { c₂ : Level } { I OC :  Set  c₂ } { SO :  OC →  Set   c₂  } { SM : { i j :  OC  }  → (f : I )→  SO i → SO j }
          ( s t :  snat SO SM  ) → ( i : OC ) → 
         { snmapsi   snmapti : SO i } →  snmapsi ≡  snmapti → SO i
snmeq s t i {pi} {.pi} refl   = pi

snmc :  { c₂ : Level } { I OC :  Set  c₂ } { SO :  OC →  Set   c₂  } { SM : { i j :  OC  }  → (f : I )→  SO i → SO j }
          ( s t :  snat SO SM  ) → { i j : OC } → { f :  I } →
         { snmapsi   snmapti : SO i } →  (eqi : snmapsi ≡  snmapti ) → 
         { snmapsj   snmaptj : SO j } →  (eqj : snmapsj ≡  snmaptj ) 
         → ( SM f ( snmapsi )   ≡ snmapsj )
         → ( SM f ( snmapti )   ≡ snmaptj ) 
         → SM f (snmeq s t i (eqi)) ≡ snmeq s t j (eqj)
snmc s t refl refl refl refl = refl

snat1 :   { c₂ : Level }  { I OC :  Set  c₂ } ( SO :  OC →  Set  c₂ ) ( SM : { i j :  OC  }  → (f : I )→  SO i → SO j )
    →  ( s t :  snat SO SM   )
    → ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i ) 
     → ( eq2 : ( i j : OC ) ( f : I ) →  SM {i} {j} f ( snmap s i )   ≡ snmap s j )
     → ( eq3 : ( i j : OC ) ( f : I ) →  SM {i} {j} f ( snmap t i )   ≡ snmap t j )
    → snat SO SM
snat1  SO SM s t eq1 eq2 eq3 =  record { 
     snmap = λ i → snmeq s t i  (eq1 i ) ; 
     sncommute = λ {i} {j} f → snmc s t (eq1 i) (eq1 j) (eq2 i j f ) (eq3 i j f )
   }

≡cong2 : { c c' : Level } { A B : Set  c } { C : Set  c' } { a a' : A } { b b' : B } ( f : A → B → C ) 
    →  a  ≡  a'
    →  b  ≡  b'
    →  f a b  ≡  f a' b'
≡cong2 _ refl refl = refl

subst2 : { c c' : Level } { A B : Set  c } { C : Set  c' } { a a' : A } {  b b' : B } ( f : A → C ) ( g : B → C ) 
    →  f a  ≡  g b
    →  a  ≡  a'
    →  b  ≡  b'
    →  f a'  ≡  g  b'
subst2 {_} {_} {A} {B} {C} { a} {.a}  {b} {.b} f g f=g refl refl = f=g

snmeqeqs  : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I )→  SO i → SO j )
          ( s t :  snat SO SM  ) → ( i : OC ) →  ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i ) →
           snmap s i ≡ snmeq s t i  (eq1 i )  
snmeqeqs SO SM s t i eq1  = lemma  (eq1 i) refl where
    lemma  :  { snmapsi   snmapti sm : SO i } → ( eq1 : snmapsi ≡  snmapti ) → ( snmapsi  ≡ sm ) →
          sm  ≡ snmeq s t i  eq1  
    lemma refl refl  = refl
    
snmeqeqt  : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I )→  SO i → SO j )
          ( s t :  snat SO SM  ) → ( i : OC ) →  ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i ) →
           snmap t i ≡ snmeq s t i  (eq1 i )  
snmeqeqt SO SM s t i eq1  = lemma  (eq1 i) refl where
    lemma  :  { snmapsi   snmapti sm : SO i } → ( eq1 : snmapsi ≡  snmapti ) → ( snmapti  ≡ sm ) →
          sm  ≡ snmeq s t i  eq1  
    lemma refl refl  = refl

scomm2 : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I )→  SO i → SO j )
          ( s t :  snat SO SM  ) → ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i ) 
         → ( i j : OC ) → ( f :  I )
         → SM f ( snmap s i )   ≡ snmap s j 
         → {x :  ( i : OC ) → SO i } → (x  ≡  λ i → snmeq s t i  (eq1 i )  )
         → SM f (x i) ≡  x j
scomm2 SO SM s t eq1 i j f eq2 refl =  lemma eq2 (snmeqeqs SO SM s t i eq1) (snmeqeqs SO SM s t j eq1)    where
    lemma : { si sni : SO i} { sj snj : SO j  } →  ( SM f si  ≡ sj ) →  (si  ≡ sni )  →  (sj  ≡ snj ) → ( SM f sni  ≡ snj )
    lemma eq1 eq2 eq3 = subst2 (λ x → SM f x) (λ y → y ) eq1 eq2 eq3

tcomm2 : { c₂ : Level } { I OC :  Set  c₂ } ( SO :  OC →  Set   c₂  ) ( SM : { i j :  OC  }  → (f : I )→  SO i → SO j )
          ( s t :  snat SO SM  ) → ( eq1 : ( i : OC ) → snmap s i ≡  snmap t i ) 
         → ( i j : OC ) → ( f :  I )
         → SM f ( snmap t i )   ≡ snmap t j 
         → SM f (snmeq s t i (eq1 i)) ≡ snmeq s t j (eq1 j)
tcomm2 SO SM s t eq1 i j f eq2 =  lemma eq2 (snmeqeqt SO SM s t i eq1) (snmeqeqt SO SM s t j eq1)    where
    lemma : { si sni : SO i} { sj snj : SO j  } →  ( SM f si  ≡ sj ) →  (si  ≡ sni )  →  (sj  ≡ snj ) → ( SM f sni  ≡ snj )
    lemma eq1 eq2 eq3 = subst2 (λ x → SM f x) (λ y → y ) eq1 eq2 eq3


snat-cong :  { c : Level }  { I OC :  Set  c }  ( SObj :  OC →  Set  c  ) ( SMap : { i j :  OC  }  → (f : I )→  SObj i → SObj j)  
         { s t :  snat SObj SMap   }
     → (( i : OC ) → snmap s i ≡  snmap t i )
     → ( ( i j : OC ) ( f : I ) →  SMap {i} {j} f ( snmap s i )   ≡ snmap s j )
     → ( ( i j : OC ) ( f : I ) →  SMap {i} {j} f ( snmap t i )   ≡ snmap t j )
     → s ≡ t
snat-cong {_} {I} {OC} SO SM {s} {t}  eq1  eq2 eq3 =  begin
     record { snmap = λ i →  snmap s i ; sncommute  = λ {i} {j} f → sncommute s f  }
 ≡⟨ 
    ≡cong2 ( λ x y →
      record { snmap = λ i → x i  ; sncommute  = λ {i} {j} f → y ? i j f } )  (  extensionality Sets  ( λ  i  →  snmeqeqs SO SM s t i eq1  ) )
           ( extensionality Sets  ( λ  x  → 
           ( extensionality Sets  ( λ  i  → 
             ( extensionality Sets  ( λ  j  → 
               ( extensionality Sets  ( λ  f  →  scomm2 SO SM s t eq1 i j f (eq2 i j f  ) x
             ))))))))

     record { snmap = λ i → snmeq s t i  (eq1 i )  ; sncommute  = λ {i} {j} f →  snmc s t (eq1 i) (eq1 j) (eq2 i j f ) (eq3 i j f ) }
 ≡⟨ {!!} ⟩
     record { snmap = λ i →  snmap t i ; sncommute  = λ {i} {j} f → sncommute t f  }
             ∎   where
                  open  import  Relation.Binary.PropositionalEquality
                  open ≡-Reasoning

open import HomReasoning
open NTrans

Cone : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I )  ( Γ : Functor C (Sets  {c₁} ) ) 
    → NTrans C Sets (K Sets C (snat  (ΓObj s Γ) (ΓMap s Γ) ) ) Γ
Cone C I s  Γ  =  record {
               TMap = λ i →  λ sn →  snmap sn i 
             ; isNTrans = record { commute = comm1 }
      } where
    comm1 :  {a b : Obj C} {f : Hom C a b} →
        Sets [ Sets [ FMap Γ f o (λ sn → snmap sn a) ] ≈
        Sets [ (λ sn →  (snmap sn b)) o FMap (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ))) f ] ]
    comm1 {a} {b} {f} = extensionality Sets  ( λ  sn  →  begin
                 FMap Γ f  (snmap sn  a )
             ≡⟨ ≡cong ( λ f → ( FMap Γ f (snmap sn  a ))) (sym ( hom-iso s  )) ⟩
                 FMap Γ ( hom← s ( hom→ s f))  (snmap sn  a )
             ≡⟨⟩
                 ΓMap s Γ (hom→ s f) (snmap sn a ) 
             ≡⟨ sncommute sn (hom→ s  f) ⟩
                 snmap sn b
             ∎  ) where
                  open  import  Relation.Binary.PropositionalEquality
                  open ≡-Reasoning


SetsLimit : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets  {c₁} ) ) 
    → Limit Sets C Γ
SetsLimit { c₂} C I s Γ = record { 
           a0 =  snat  (ΓObj s Γ) (ΓMap s Γ) 
         ; t0 = Cone C I s Γ
         ; isLimit = record {
               limit  = limit1
             ; t0f=t = λ {a t i } → t0f=t {a} {t} {i}
             ; limit-uniqueness  =  λ {a t i }  → limit-uniqueness   {a} {t} {i}
          }
       }  where
          a0 : Obj Sets
          a0 =  snat  (ΓObj s Γ) (ΓMap s Γ) 
          comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I) 
             → ΓMap s Γ f (TMap t i x) ≡ TMap t j x
          comm2 {a} {x} t f =  ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) )
          limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ)) 
          limit1 a t = λ x →  record { snmap = λ i →  ( TMap t i ) x ;
              sncommute = λ f → comm2 t f }
          t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o limit1 a t ] ≈ TMap t i ]
          t0f=t {a} {t} {i} =  extensionality Sets  ( λ  x  →  begin
                 ( Sets [ TMap (Cone C I s Γ) i o limit1 a t ]) x
             -- ≡⟨⟩
                 -- snmap ( record { snmap = λ i →  ( TMap t i ) x ; sncommute = λ {i j} f → comm2 {a} {x} {i} {j} t f }  ) i
             ≡⟨⟩
                 TMap t i x
             ∎  ) where
                  open  import  Relation.Binary.PropositionalEquality
                  open ≡-Reasoning
          limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ))} →
                ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ]
          limit-uniqueness {a} {t} {f} cif=t = extensionality Sets  ( λ  x  →  begin
                  limit1 a t x
             ≡⟨⟩
                  record { snmap = λ i →  ( TMap t i ) x ; sncommute = λ f → comm2 t f }
             ≡⟨ snat-cong (ΓObj s Γ) (ΓMap s Γ) (eq1 x) (eq2 x ) (eq3 x ) ⟩
                  record { snmap = λ i →  snmap  (f x ) i  ; sncommute = sncommute (f x ) }
             ≡⟨⟩
                  f x
             ∎  ) where
                  open  import  Relation.Binary.PropositionalEquality
                  open ≡-Reasoning
                  eq1 : (x : a ) (i : Obj C) → TMap t i x ≡ snmap (f x) i
                  eq1 x i = sym ( ≡cong ( λ f → f x ) cif=t  )
                  eq2 : (x : a ) (i j : Obj C) (f : I) → ΓMap s Γ f (TMap t i x) ≡ TMap t j x
                  eq2 x i j f =  ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) )
                  eq3 :  (x : a ) (i j : Obj C) (k : I) → ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j
                  eq3 x i j k =  sncommute (f x )  k