changeset 48:ac2f21a2d467

cleanup
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 21 Aug 2020 23:44:28 +0900
parents 1f8e1e7b5770
children 8b3b95362ca9
files Putil.agda Symmetric.agda
diffstat 2 files changed, 147 insertions(+), 148 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Putil.agda	Fri Aug 21 23:44:28 2020 +0900
@@ -0,0 +1,147 @@
+module Putil where
+
+open import Level hiding ( suc ; zero )
+open import Algebra
+open import Algebra.Structures
+open import Data.Fin hiding ( _<_  ; _≤_ ; _-_ ; _+_ )
+open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ) renaming ( <-cmp to <-fcmp )
+open import Data.Fin.Permutation
+open import Function hiding (id ; flip)
+open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
+open import Function.LeftInverse  using ( _LeftInverseOf_ )
+open import Function.Equality using (Π)
+open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n )
+open import Data.Nat.Properties -- using (<-trans)
+open import Relation.Binary.PropositionalEquality 
+open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ) renaming (reverse to rev )
+open import nat
+
+open import Symmetric
+
+
+open import Relation.Nullary
+open import Data.Empty
+open import  Relation.Binary.Core
+open import fin
+
+-- An inductive construction of permutation
+
+-- we already have refl and trans in the Symmetric Group
+
+pprep  : {n : ℕ }  → Permutation n n → Permutation (suc n) (suc n)
+pprep {n} perm =  permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
+   p→ : Fin (suc n) → Fin (suc n)
+   p→ zero = zero
+   p→ (suc x) = suc ( perm  ⟨$⟩ˡ x)
+
+   p← : Fin (suc n) → Fin (suc n)
+   p← zero = zero
+   p← (suc x) = suc ( perm  ⟨$⟩ʳ x)
+
+   piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x
+   piso← zero = refl
+   piso← (suc x) = cong (λ k → suc k ) (inverseˡ perm) 
+
+   piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x
+   piso→ zero = refl
+   piso→ (suc x) = cong (λ k → suc k ) (inverseʳ perm) 
+
+pswap  : {n : ℕ }  → Permutation n n → Permutation (suc (suc n)) (suc (suc  n ))
+pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
+   p→ : Fin (suc (suc n)) → Fin (suc (suc n)) 
+   p→ zero = suc zero 
+   p→ (suc zero) = zero 
+   p→ (suc (suc x)) = suc ( suc ( perm  ⟨$⟩ˡ x) )
+
+   p← : Fin (suc (suc n)) → Fin (suc (suc n)) 
+   p← zero = suc zero 
+   p← (suc zero) = zero 
+   p← (suc (suc x)) = suc ( suc ( perm  ⟨$⟩ʳ x) )
+   
+   piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x
+   piso← zero = refl
+   piso← (suc zero) = refl
+   piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm) 
+
+   piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x
+   piso→ zero = refl
+   piso→ (suc zero) = refl
+   piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) 
+
+-- enumeration
+
+psawpn : {n : ℕ} → 1 < n → Permutation n n
+psawpn {suc zero}  (s≤s ())
+psawpn {suc n} (s≤s (s≤s x)) = pswap pid 
+
+pfill : { n m : ℕ } → m ≤ n → Permutation  m m → Permutation n n
+pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where
+   pfill1 : (i : ℕ ) → i ≤ n  → Permutation (n - i) (n - i)  →  Permutation n n
+   pfill1 0 _ perm = perm
+   pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) )
+
+--
+--  psawpim (inseert swap at position m )
+--     not easy to write directory beacause left-inverse-of may contains Fin relations
+--
+psawpim : {n m : ℕ} → suc (suc m) ≤ n → Permutation n n
+psawpim {n} {m} m≤n = pfill m≤n ( psawpn (s≤s (s≤s z≤n)) )
+
+n≤ : (i : ℕ ) → {j : ℕ } → i ≤ i + j
+n≤ (zero) {j} = z≤n
+n≤ (suc i) {j} = s≤s ( n≤ i )
+
+lem0 : {n : ℕ } → n ≤ n
+lem0 {zero} = z≤n
+lem0 {suc n} = s≤s lem0
+
+lem00 : {n m : ℕ } → n ≡ m → n ≤ m
+lem00 refl = lem0
+
+-- pconcat :  {n m : ℕ } → Permutation  m m → Permutation n n → Permutation (m + n)  (m + n) 
+-- pconcat {n} {m} p q = pfill {n + m} {m} ? p ∘ₚ ?
+
+-- inductivley enmumerate permutations
+--    from n-1 length create n length inserting new element at position m
+
+-- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] 
+-- 1 ∷ 0 ∷ 2 ∷ 3 ∷ []    plist ( pins {3} (n≤ 1) )
+-- 1 ∷ 2 ∷ 0 ∷ 3 ∷ []
+-- 1 ∷ 2 ∷ 3 ∷ 0 ∷ []
+
+pins  : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n)
+pins {_} {zero} _ = pid
+pins {suc _} {suc zero} _ = pswap pid
+pins {suc (suc n)} {suc m} (s≤s m<n) =  pins1 (suc m) (suc (suc n)) lem0 where
+    pins1 : (i j : ℕ ) → j ≤ suc (suc n)  → Permutation (suc (suc (suc n ))) (suc (suc (suc n)))
+    pins1 _ zero _ = pid
+    pins1 zero _ _ = pid
+    pins1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j}  (s≤s (s≤s si≤n))  ∘ₚ  pins1 i j (≤-trans si≤n refl-≤s ) 
+
+plist  : {n  : ℕ} → Permutation n n → List ℕ
+plist {0} perm = []
+plist {suc j} perm = rev (plist1 j a<sa) where
+    n = suc j
+    plist1 : (i : ℕ ) → i < n → List ℕ
+    plist1  zero _           = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ {zero} (s≤s z≤n))) ∷ []
+    plist1  (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt)))         ∷ plist1  i (<-trans lt a<sa) 
+
+all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) )
+all-perm n = pls6 n where
+   lem1 : {i n : ℕ } → i ≤ n → i < suc n
+   lem1 z≤n = s≤s z≤n
+   lem1 (s≤s lt) = s≤s (lem1 lt)
+   lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n
+   lem2 i≤n = ≤-trans i≤n ( refl-≤s )
+   pls4 :  ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n))  → List (Permutation (suc n) (suc n)) 
+   pls4 zero n i≤n perm x = (pprep perm ∘ₚ pins i≤n ) ∷ x
+   pls4 (suc i) n i≤n  perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (pprep perm ∘ₚ pins {n} {suc i} i≤n  ∷ x)
+   pls5 :  ( n : ℕ ) → List (Permutation n n) → List (Permutation (suc n) (suc n))  → List (Permutation (suc n) (suc n)) 
+   pls5 n [] x = x
+   pls5 n (h ∷ x) y = pls5  n x (pls4 n n lem0 h y)
+   pls6 :  ( n : ℕ ) → List (Permutation (suc n) (suc n)) 
+   pls6 zero = pid ∷ []
+   pls6 (suc n) =  pls5 (suc n) (rev (pls6 n) ) []   -- rev to put id first
+
+pls : (n : ℕ ) → List (List ℕ )
+pls n = Data.List.map plist (all-perm n) where
--- a/Symmetric.agda	Fri Aug 21 19:24:56 2020 +0900
+++ b/Symmetric.agda	Fri Aug 21 23:44:28 2020 +0900
@@ -73,151 +73,3 @@
            j ⟨$⟩ˡ q
            ∎ where open ≡-Reasoning
 
-open import Relation.Nullary
-open import Data.Empty
-open import  Relation.Binary.Core
-open import fin
-
--- An inductive construction of permutation
-
--- we already have refl and trans
-
-pprep  : {n : ℕ }  → Permutation n n → Permutation (suc n) (suc n)
-pprep {n} perm =  permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
-   p→ : Fin (suc n) → Fin (suc n)
-   p→ zero = zero
-   p→ (suc x) = suc ( perm  ⟨$⟩ˡ x)
-
-   p← : Fin (suc n) → Fin (suc n)
-   p← zero = zero
-   p← (suc x) = suc ( perm  ⟨$⟩ʳ x)
-
-   piso← : (x : Fin (suc n)) → p→ ( p← x ) ≡ x
-   piso← zero = refl
-   piso← (suc x) = cong (λ k → suc k ) (inverseˡ perm) 
-
-   piso→ : (x : Fin (suc n)) → p← ( p→ x ) ≡ x
-   piso→ zero = refl
-   piso→ (suc x) = cong (λ k → suc k ) (inverseʳ perm) 
-
-pswap  : {n : ℕ }  → Permutation n n → Permutation (suc (suc n)) (suc (suc  n ))
-pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where
-   p→ : Fin (suc (suc n)) → Fin (suc (suc n)) 
-   p→ zero = suc zero 
-   p→ (suc zero) = zero 
-   p→ (suc (suc x)) = suc ( suc ( perm  ⟨$⟩ˡ x) )
-
-   p← : Fin (suc (suc n)) → Fin (suc (suc n)) 
-   p← zero = suc zero 
-   p← (suc zero) = zero 
-   p← (suc (suc x)) = suc ( suc ( perm  ⟨$⟩ʳ x) )
-   
-   piso← : (x : Fin (suc (suc n)) ) → p→ ( p← x ) ≡ x
-   piso← zero = refl
-   piso← (suc zero) = refl
-   piso← (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseˡ perm) 
-
-   piso→ : (x : Fin (suc (suc n)) ) → p← ( p→ x ) ≡ x
-   piso→ zero = refl
-   piso→ (suc zero) = refl
-   piso→ (suc (suc x)) = cong (λ k → suc (suc k) ) (inverseʳ perm) 
-
--- enumeration
-
-psawpn : {n : ℕ} → 1 < n → Permutation n n
-psawpn {suc zero}  (s≤s ())
-psawpn {suc n} (s≤s (s≤s x)) = pswap pid 
-
-pfill : { n m : ℕ } → m ≤ n → Permutation  m m → Permutation n n
-pfill {n} {m} m≤n perm = pfill1 (n - m) (n-m<n n m ) (subst (λ k → Permutation k k ) (n-n-m=m m≤n ) perm) where
-   pfill1 : (i : ℕ ) → i ≤ n  → Permutation (n - i) (n - i)  →  Permutation n n
-   pfill1 0 _ perm = perm
-   pfill1 (suc i) i<n perm = pfill1 i (≤to< i<n) (subst (λ k → Permutation k k ) (si-sn=i-n i<n ) ( pprep perm ) )
-
-psawpim : {n m : ℕ} → suc (suc m) ≤ n → Permutation n n
-psawpim {n} {m} m≤n = pfill m≤n ( psawpn (s≤s (s≤s z≤n)) )
-
-n≤ : (i : ℕ ) → {j : ℕ } → i ≤ i + j
-n≤ (zero) {j} = z≤n
-n≤ (suc i) {j} = s≤s ( n≤ i )
-
-lem0 : {n : ℕ } → n ≤ n
-lem0 {zero} = z≤n
-lem0 {suc n} = s≤s lem0
-
-lem00 : {n m : ℕ } → n ≡ m → n ≤ m
-lem00 refl = lem0
-
--- pconcat :  {n m : ℕ } → Permutation  m m → Permutation n n → Permutation (m + n)  (m + n) 
--- pconcat {n} {m} p q = pfill {n + m} {m} ? p ∘ₚ ?
-
--- inductivley enmumerate permutations
---    from n-1 length create n length inserting new element at position m
-
-eperm  : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n)
-eperm {_} {zero} _ = pid
-eperm {suc _} {suc zero} _ = pswap pid
-eperm {suc (suc n)} {suc m} (s≤s m<n) =  eperm1 (suc m) (suc (suc n)) lem0 where
-    eperm1 : (i j : ℕ ) → j ≤ suc (suc n)  → Permutation (suc (suc (suc n ))) (suc (suc (suc n)))
-    eperm1 _ zero _ = pid
-    eperm1 zero _ _ = pid
-    eperm1 (suc i) (suc j) (s≤s si≤n) = psawpim {suc (suc (suc n))} {j}  (s≤s (s≤s si≤n))  ∘ₚ  eperm1 i j (≤-trans si≤n refl-≤s ) 
-
-
-plist  : {n  : ℕ} → Permutation n n → List ℕ
-plist {0} perm = []
-plist {suc j} perm = rev (plist1 j a<sa) where
-    n = suc j
-    plist1 : (i : ℕ ) → i < n → List ℕ
-    plist1  zero _           = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ {zero} (s≤s z≤n))) ∷ []
-    plist1  (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt)))         ∷ plist1  i (<-trans lt a<sa) 
-
-testi0 = plist   (pprep (pid {3}) )                                                          -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ []
-testi01 = plist  (psawpim {4} {2} (n≤ 4 {0}) )                                               -- 1 ∷ 0 ∷ 2 ∷ 3 ∷ []
-testi02 = plist  (psawpim {4} {2} (n≤ 4 {0}) ∘ₚ psawpim {4} {1}  (n≤ 3))                     -- 1 ∷ 2 ∷ 0 ∷ 3 ∷ []
-testi03 = plist ((psawpim (n≤  4 {0}) ∘ₚ psawpim  (n≤ 3) ) ∘ₚ psawpim {4} {0}  (n≤ 2 ))      -- 1 ∷ 2 ∷ 3 ∷ 0 ∷ []
-ttt0 =  testi0 ∷ testi01 ∷ testi02 ∷ testi03 ∷ []
-
-tt0 = plist (eperm {3} {0} (n≤ 0)) ∷ plist ( eperm {3} {1} (n≤ 1 )) ∷ plist ( eperm {3} {2} (n≤ 2 )) ∷ plist ( eperm {3} {3} (n≤ 3 )) ∷ [] 
-
-c0 = pid {2} -- pprep ( eperm {3} (n≤ 3) pid)
--- e0 =  pprep ( eperm {3} (n≤ 3) pid)
-ct0 = c0 ∘ₚ eperm {1} (n≤ 0 ) 
-ct1 = c0 ∘ₚ eperm {1} (n≤ 1 ) 
-ttt1 = plist ct0 ∷ plist ct1 ∷ [] 
-
-d0 = pid {3} -- pprep ( eperm {3} (n≤ 3) pid)
--- e0 =  pprep ( eperm {3} (n≤ 3) pid)
-dt0 = d0 ∘ₚ eperm {2} (n≤ 0 ) 
-dt1 = d0 ∘ₚ eperm {2} (n≤ 1 ) 
-dt2 = d0 ∘ₚ eperm {2} (n≤ 2 ) 
-ttt3 = plist dt0 ∷ plist dt1 ∷ plist dt2 ∷ [] 
-
--- e0 = pid {4} -- eperm (n≤ 2) (eperm (n≤ 2) (eperm (n≤ 1) (pid {1})))
-e0 = pid {5} -- pprep ( eperm {3} (n≤ 3) pid)
--- e0 =  pprep ( eperm {3} (n≤ 3) pid)
-et0 = e0 ∘ₚ eperm {4} {4} (n≤ 4 ) 
-et1 = e0 ∘ₚ eperm {4} {3} (n≤ 3 ) 
-et2 = e0 ∘ₚ eperm {4} (n≤ 2 ) 
-et3 = e0 ∘ₚ eperm {4} (n≤ 1 ) 
-et4 = e0 ∘ₚ eperm {4} (n≤ 0 ) 
-ttt2 = plist et0 ∷ plist et1 ∷ plist et2 ∷  plist et3 ∷ plist et4 ∷ [] 
-
-pls : (n : ℕ ) → List (List ℕ )
-pls n = Data.List.map plist (pls6 n) where
-   lem1 : {i n : ℕ } → i ≤ n → i < suc n
-   lem1 z≤n = s≤s z≤n
-   lem1 (s≤s lt) = s≤s (lem1 lt)
-   lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n
-   lem2 i≤n = ≤-trans i≤n ( refl-≤s )
-   pls4 :  ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation n n → List (Permutation (suc n) (suc n))  → List (Permutation (suc n) (suc n)) 
-   pls4 zero n i≤n perm x = (pprep perm ∘ₚ eperm i≤n ) ∷ x
-   pls4 (suc i) n i≤n  perm x = pls4 i n (≤-trans refl-≤s i≤n ) perm (pprep perm ∘ₚ eperm {n} {suc i} i≤n  ∷ x)
-   pls5 :  ( n : ℕ ) → List (Permutation n n) → List (Permutation (suc n) (suc n))  → List (Permutation (suc n) (suc n)) 
-   pls5 n [] x = x
-   pls5 n (h ∷ x) y = pls5  n x (pls4 n n lem0 h y)
-   pls6 :  ( n : ℕ ) → List (Permutation (suc n) (suc n)) 
-   pls6 zero = pid ∷ []
-   pls6 (suc n) =  pls5 (suc n) (pls6 n) []
-   pls7 : List (List ℕ )
-   pls7 = Data.List.map plist (pls4 2 2 lem0 (eperm (n≤ 0 ) ) (pls4 2 2 lem0 (eperm (n≤ 1 ) ) [] ))