view whileTestPrim.agda @ 10:bc819bdda374

proof completed
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 15 Dec 2018 16:59:52 +0900
parents e4f087b823d4
children a622d1700a1b
line wrap: on
line source

module whileTestPrim where

open import Function
open import Data.Nat
open import Data.Bool hiding ( _≟_ )
open import Level renaming ( suc to succ ; zero to Zero )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality

open import utilities

record Env : Set where
  field
    varn : ℕ
    vari : ℕ
open Env

PrimComm : Set
PrimComm = Env → Env

Cond : Set
Cond = (Env → Bool) 

data Comm : Set where
  Skip  : Comm
  Abort : Comm
  PComm : PrimComm -> Comm
  Seq   : Comm -> Comm -> Comm
  If    : Cond -> Comm -> Comm -> Comm
  While : Cond -> Comm -> Comm

---------------------------

program : Comm
program = 
    Seq ( PComm (λ env → record env {varn = 10}))
    $ Seq ( PComm (λ env → record env {vari = 0}))
    $ While (λ env → lt zero (varn env ) )
      (Seq (PComm (λ env → record env {vari = ((vari env) + 1)} ))
        $ PComm (λ env → record env {varn = ((varn env) - 1)} ))

simple : Comm
simple = 
    Seq ( PComm (λ env → record env {varn = 10}))
    $  PComm (λ env → record env {vari = 0})

{-# TERMINATING #-}
interpret : Env → Comm → Env
interpret env Skip = env
interpret env Abort = env
interpret env (PComm x) = x env
interpret env (Seq comm comm1) = interpret (interpret env comm) comm1
interpret env (If x then else) with x env
... | true = interpret env then
... | false = interpret env else
interpret env (While x comm) with x env
... | true = interpret (interpret env comm) (While x comm)
... | false = env

test1 : Env
test1 =  interpret ( record { vari = 0  ; varn = 0 } ) program

eval-proof : vari test1 ≡ 10
eval-proof = refl

tests : Env
tests =  interpret ( record { vari = 0  ; varn = 0 } ) simple


empty-case : (env : Env) → (( λ e → true ) env ) ≡ true 
empty-case _ = refl


Axiom : Cond -> PrimComm -> Cond -> Set
Axiom pre comm post = ∀ (env : Env) →  (pre env) ⇒ ( post (comm env)) ≡ true

Tautology : Cond -> Cond -> Set
Tautology pre post = ∀ (env : Env) →  (pre env)  ⇒ (post env) ≡ true

_and_ :  Cond -> Cond -> Cond
x and y =  λ env → x env ∧ y env 

neg :  Cond -> Cond 
neg x  =  λ env → not ( x env )

data HTProof : Cond -> Comm -> Cond -> Set where
  PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} ->
             (pr : Axiom bPre pcm bPost) ->
             HTProof bPre (PComm pcm) bPost
  SkipRule : (b : Cond) -> HTProof b Skip b
  AbortRule : (bPre : Cond) -> (bPost : Cond) ->
              HTProof bPre Abort bPost
  WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} ->
                {bPost' : Cond} -> {bPost : Cond} ->
                Tautology bPre bPre' ->
                HTProof bPre' cm bPost' ->
                Tautology bPost' bPost ->
                HTProof bPre cm bPost
  SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} ->
            {cm2 : Comm} -> {bPost : Cond} ->
            HTProof bPre cm1 bMid ->
            HTProof bMid cm2 bPost ->
            HTProof bPre (Seq cm1 cm2) bPost
  IfRule : {cmThen : Comm} -> {cmElse : Comm} ->
           {bPre : Cond} -> {bPost : Cond} ->
           {b : Cond} ->
           HTProof (bPre and b) cmThen bPost ->
           HTProof (bPre and neg b) cmElse bPost ->
           HTProof bPre (If b cmThen cmElse) bPost
  WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} ->
              HTProof (bInv and b) cm bInv ->
              HTProof bInv (While b cm) (bInv and neg b)

initCond : Cond
initCond env = true

stmt1Cond : Cond
stmt1Cond env = Equal (varn env) 10

stmt2Cond : Cond
stmt2Cond env = (Equal (varn env) 10) ∧ (Equal (vari env) 0)

whileInv : Cond
whileInv env = Equal ((varn env) + (vari env)) 10

whileInv' : Cond
whileInv' env = Equal ((varn env) + (vari env)) 11 ∧ lt zero (varn env)

termCond : Cond
termCond env = Equal (vari env) 10

proofs : HTProof initCond simple stmt2Cond
proofs =
      SeqRule {initCond} ( PrimRule empty-case )
    $ PrimRule {stmt1Cond} {_} {stmt2Cond} lemma
  where
     lemma : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond
     lemma env with stmt1Cond env
     lemma env | false = refl
     lemma env | true = refl

open import Data.Empty

open import Data.Nat.Properties

proof1 : HTProof initCond program termCond
proof1 =
      SeqRule {λ e → true} ( PrimRule empty-case )
    $ SeqRule {λ e →  Equal (varn e) 10} ( PrimRule lemma1   )
    $ WeakeningRule {λ e → (Equal (varn e) 10) ∧ (Equal (vari e) 0)}  lemma2 (
            WhileRule {_} {λ e → Equal ((varn e) + (vari e)) 10}
            $ SeqRule (PrimRule {λ e →  whileInv e  ∧ lt zero (varn e) } lemma3 )
                     $ PrimRule {whileInv'} {_} {whileInv}  lemma4 ) lemma5
  where
     lemma1 : Axiom stmt1Cond (λ env → record { varn = varn env ; vari = 0 }) stmt2Cond
     lemma1 env with stmt1Cond env
     lemma1 env | false = refl
     lemma1 env | true = refl
     lemma21 : {env : Env } → stmt2Cond env ≡ true → varn env ≡ 10
     lemma21 eq = Equal→≡ (∧-pi1 eq)
     lemma22 : {env : Env } → stmt2Cond env ≡ true → vari env ≡ 0
     lemma22 eq = Equal→≡ (∧-pi2 eq)
     lemma23 :  {env : Env } → stmt2Cond env ≡ true → varn env + vari env ≡ 10
     lemma23 {env} eq = let open ≡-Reasoning  in
          begin
            varn env + vari env
          ≡⟨ cong ( \ x -> x + vari env ) (lemma21 eq  ) ⟩
            10 + vari env
          ≡⟨ cong ( \ x -> 10 + x) (lemma22 eq  ) ⟩
            10

     lemma2 :  Tautology stmt2Cond whileInv
     lemma2 env = bool-case (stmt2Cond env) (
        λ eq → let open ≡-Reasoning  in
          begin
            (stmt2Cond env)  ⇒  (whileInv env)
          ≡⟨⟩
            (stmt2Cond env)  ⇒ ( Equal (varn env + vari env) 10 )
          ≡⟨  cong ( \ x -> (stmt2Cond env)  ⇒ ( Equal x 10 ) ) ( lemma23 {env} eq ) ⟩
            (stmt2Cond env)  ⇒ (Equal 10 10)
          ≡⟨⟩
            (stmt2Cond env)  ⇒  true
          ≡⟨ ⇒t ⟩
            true

        ) (
         λ ne → let open ≡-Reasoning  in
          begin
            (stmt2Cond env)  ⇒  (whileInv env)
          ≡⟨ cong ( \ x -> x  ⇒  (whileInv env) ) ne ⟩
             false  ⇒  (whileInv env)
          ≡⟨ f⇒ {whileInv env} ⟩
            true

        ) 
     lemma3 :   Axiom (λ e → whileInv e ∧ lt zero (varn e)) (λ env → record { varn = varn env ; vari = vari env + 1 }) whileInv'
     lemma3 env = impl⇒ ( λ cond →  let open ≡-Reasoning  in
          begin
            whileInv' (record { varn = varn env ; vari = vari env + 1 }) 
          ≡⟨⟩
             Equal (varn env + (vari env + 1)) 11 ∧ (lt 0 (varn env) )
          ≡⟨ cong ( λ z → Equal (varn env + (vari env + 1)) 11 ∧ z ) (∧-pi2 cond )  ⟩
             Equal (varn env + (vari env + 1)) 11 ∧ true
          ≡⟨ ∧true ⟩
            Equal (varn env + (vari env + 1)) 11
          ≡⟨ cong ( \ x -> Equal x 11 ) (sym (+-assoc (varn env) (vari env) 1)) ⟩
            Equal ((varn env + vari env) + 1) 11
          ≡⟨ cong ( \ x -> Equal x 11 ) +1≡suc ⟩
            Equal (suc (varn env + vari env)) 11
          ≡⟨ sym Equal+1 ⟩
            Equal ((varn env + vari env) ) 10
          ≡⟨ ∧-pi1  cond ⟩
            true
          ∎ )
     lemma41 : (env : Env ) → (varn env + vari env) ≡ 11 → lt 0 (varn env) ≡ true  → Equal ((varn env - 1) + vari env) 10 ≡ true
     lemma41 env c1 c2 =  let open ≡-Reasoning  in
          begin
            Equal ((varn env - 1) + vari env) 10
          ≡⟨ cong ( λ z → Equal ((z - 1 ) +  vari env ) 10 ) (sym (suc-predℕ=n c2) )  ⟩
            Equal ((suc (predℕ {varn env} c2 ) - 1) + vari env) 10
          ≡⟨⟩
            Equal ((predℕ {varn env} c2 ) + vari env) 10
          ≡⟨  Equal+1 ⟩
            Equal ((suc (predℕ {varn env} c2 )) + vari env) 11
          ≡⟨ cong ( λ z → Equal (z  +  vari env ) 11 ) (suc-predℕ=n c2 )  ⟩
            Equal (varn env + vari env) 11
          ≡⟨ cong ( λ z → (Equal z 11 )) c1 ⟩
            Equal 11 11
          ≡⟨⟩
            true

     lemma4 :  Axiom whileInv' (λ env → record { varn = varn env - 1 ; vari = vari env }) whileInv
     lemma4 env = impl⇒ ( λ cond → let open ≡-Reasoning  in
          begin
            whileInv (record { varn = varn env - 1 ; vari = vari env })
          ≡⟨⟩
            Equal ((varn env - 1) + vari env) 10
          ≡⟨ lemma41 env (Equal→≡ (∧-pi1  cond)) (∧-pi2  cond) ⟩
            true

        )
     lemma51 : (z : Env ) → neg (λ z → lt zero (varn z)) z ≡ true → varn z ≡ zero
     lemma51 z cond with lt zero (varn z) | (suc zero) ≤? (varn z)
     lemma51 z () | false | yes p
     lemma51 z () | true | yes p
     lemma51 z refl | _ | no ¬p with varn z
     lemma51 z refl | _ | no ¬p | zero = refl
     lemma51 z refl | _ | no ¬p | suc x = ⊥-elim ( ¬p (s≤s z≤n ) )
     lemma5 :  Tautology ((λ e → Equal (varn e + vari e) 10) and (neg (λ z → lt zero (varn z)))) termCond
     lemma5 env = impl⇒ ( λ cond → let open ≡-Reasoning  in
         begin
            termCond env
          ≡⟨⟩
             Equal (vari env) 10 
          ≡⟨⟩
             Equal (zero + vari env) 10 
          ≡⟨ cong ( λ z →  Equal (z + vari env) 10 )  (sym ( lemma51 env ( ∧-pi2  cond ) )) ⟩
             Equal (varn env + vari env) 10 
          ≡⟨ ∧-pi1  cond  ⟩
             true

        )