## Mercurial > hg > Members > kono > Proof > ZF-in-agda

### view Todo @ 187:ac872f6b8692

Find changesets by keywords (author, files, the commit message), revision
number or hash, or revset expression.

add Todo

author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|

date | Tue, 23 Jul 2019 11:08:24 +0900 |

parents | 6e767ad3edc2 |

children | bca043423554 |

line wrap: on

line source

Tue Jul 23 11:02:50 JST 2019 define cardinals prove CH in OD→ZF define Ultra filter define L M : ZF ZFSet = M is an OD define L N : ZF ZFSet = N = G M (G is a generic fitler on M ) prove ¬ CH on L N prove no choice function on L N Mon Jul 8 19:43:37 JST 2019 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive remove ord-Ord and prove with some assuption in HOD.agda union, power set, replace, inifinite