changeset 245:0d1f7bbea9bc

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 09 Sep 2013 12:02:48 +0900
parents d9317fe71ed6
children 80d9ef47566b
files equalizer.agda
diffstat 1 files changed, 46 insertions(+), 38 deletions(-) [+]
line wrap: on
line diff
--- a/equalizer.agda	Mon Sep 09 10:22:09 2013 +0900
+++ b/equalizer.agda	Mon Sep 09 12:02:48 2013 +0900
@@ -35,23 +35,23 @@
 --
 record Burroni { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  {c a b : Obj A} (f g : Hom A a b) (e : Hom A c a) : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
    field
-      α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) →  {e : Hom A c a } → Hom A c a
+      α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) →  (e : Hom A c a ) → Hom A c a
       γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) →  Hom A d c
-      δ : {a b c : Obj A } → {e : Hom A c a } → (f : Hom A a b) → Hom A a c
+      δ : {a b c : Obj A } → (e : Hom A c a ) → (f : Hom A a b) → Hom A a c
       cong-α : {a b c :  Obj A } → { e : Hom A c a }
-          → {f g g' : Hom A a b } →  A [ g ≈ g' ] → A [ α f g {e} ≈ α f g' {e} ] 
+          → {f g g' : Hom A a b } →  A [ g ≈ g' ] → A [ α f g e ≈ α f g' e ] 
       cong-γ : {a _ c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } →  A [ h ≈ h' ] 
          → A [ γ {a} {b} {c} {d} f g h ≈ γ f g h' ] 
-      cong-δ : {a b c : Obj A } → {f f' : Hom A a b} → A [ f ≈ f' ] →  A [ δ f ≈ δ f' ] 
-      b1 : A [ A [ f  o α {a} {b} {c}  f g {e} ] ≈ A [ g  o α {a} {b} {c} f g {e} ] ]
-      b2 :  {d : Obj A } → {h : Hom A d a } → A [ A [ ( α {a} {b} {c} f g {e} ) o (γ {a} {b} {c} f g h) ] ≈ A [ h  o α (A [ f o h ]) (A [ g o h ]){id1 A d} ] ]
-      b3 : {a b d : Obj A} → (f : Hom A a b ) → {h : Hom A d a } → A [ A [ α {a} {b} {d} f f {h} o δ {a} {b} {d} {h} f ] ≈ id1 A a ]
+      cong-δ : {a b c : Obj A } → {e : Hom A c a} → {f f' : Hom A a b} → A [ f ≈ f' ] →  A [ δ e f ≈ δ e f' ] 
+      b1 : A [ A [ f  o α {a} {b} {c}  f g e ] ≈ A [ g  o α {a} {b} {c} f g e ] ]
+      b2 :  {d : Obj A } → {h : Hom A d a } → A [ A [ ( α {a} {b} {c} f g e ) o (γ {a} {b} {c} f g h) ] ≈ A [ h  o α (A [ f o h ]) (A [ g o h ]) (id1 A d) ] ]
+      b3 : {a b d : Obj A} → (f : Hom A a b ) → {h : Hom A d a } → A [ A [ α {a} {b} {d} f f h o δ {a} {b} {d} h f ] ≈ id1 A a ]
       -- b4 :  {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o  k ] ) ≈ k ]
       b4 :  {d : Obj A } {k : Hom A d c} → 
-           A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g {e} o k ] ) o ( δ {d} {b} {d} {id1 A d} (A [ f o A [ α {a} {b} {c} f g {e} o  k ] ] )  )] ≈ k ]
+           A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g e o k ] ) o ( δ {d} {b} {d} (id1 A d) (A [ f o A [ α {a} {b} {c} f g e o  k ] ] )  )] ≈ k ]
    --  A [ α f g o β f g h ] ≈ h
    β : { d a b : Obj A}  → (f : Hom A a b) → (g : Hom A a b ) →  (h : Hom A d a ) → Hom A d c
-   β {d} {a} {b} f g h =  A [ γ {a} {b} {c} f g h o δ {d} {b} {d} {id1 A d} (A [ f o h ]) ]
+   β {d} {a} {b} f g h =  A [ γ {a} {b} {c} f g h o δ {d} {b} {d} (id1 A d) (A [ f o h ]) ]
 
 open Equalizer
 open Burroni
@@ -231,13 +231,13 @@
          ( eqa : {a b c : Obj A} → (f g : Hom A a b)  → {e : Hom A c a }  → Equalizer A e f g ) 
               → Burroni A {c} {a} {b} f g e
 lemma-equ1  {a} {b} {c} f g e eqa  = record {
-      α = λ {a} {b} {c}  f g {e}  →  equalizer (eqa {a} {b} {c} f g {e} ) ; -- Hom A c a
+      α = λ {a} {b} {c}  f g e  →  equalizer (eqa {a} {b} {c} f g {e} ) ; -- Hom A c a
       γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h  o (equalizer ( eqa (A [ f  o  h ] ) (A [ g o h ] ))) ] ) 
                             (lemma-equ4 {a} {b} {c} {d} f g h ) ;  -- Hom A c d
-      δ =  λ {a} {b} {c} {e} f → k (eqa {a} {b} {c} f f {e} ) (id1 A a)  (lemma-equ2 f); -- Hom A a c
+      δ =  λ {a} {b} {c} e f → k (eqa {a} {b} {c} f f {e} ) (id1 A a)  (lemma-equ2 f); -- Hom A a c
       cong-α = cong-α1 ;
       cong-γ = cong-γ1 ;
-      cong-δ = λ {a b c f f'} f=f' → cong-δ1 {a} {b} {c} {f} {f'} f=f'  ;
+      cong-δ = λ {a b c e f f'} f=f' → cong-δ1 {a} {b} {c} {e} {f} {f'} f=f'  ;
       b1 = fe=ge (eqa {a} {b} {c} f g {e}) ;
       b2 = lemma-b2 ;
       b3 = lemma-b3 ;
@@ -276,6 +276,26 @@
              ≈↑⟨ assoc ⟩
                    g o ( h o equalizer (eqa (f o h) ( g o h )))

+     cong-α1 : {a b c :  Obj A } → { e : Hom A c a }
+          → {f g g' : Hom A a b } →  A [ g ≈ g' ] → A [ equalizer (eqa {a} {b} {c} f g {e} )≈ equalizer (eqa {a} {b} {c} f g' {e} ) ] 
+     cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq = let open ≈-Reasoning (A) in refl-hom 
+     cong-γ1 :  {a _ c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } →  A [ h ≈ h' ] →  
+                     A [  k (eqa f g ) {d} ( A [ h  o (equalizer ( eqa (A [ f  o  h  ] ) (A [ g o h  ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) 
+                       ≈  k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' )  ]
+     cong-γ1 {a} {_} {c} {d} {f} {g} {h} {h'} h=h' = let open ≈-Reasoning (A) in begin
+                 k (eqa f g ) {d} ( A [ h  o (equalizer ( eqa (A [ f  o  h  ] ) (A [ g o h  ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h )
+             ≈⟨ uniqueness (eqa f g) ( begin
+                 {!!}  o {!!}
+                 ≈⟨ {!!} ⟩
+                 h o equalizer (eqa ( f o h ) ( g o h )) 
+             ∎ )⟩    
+                 {!!}  o {!!} 
+             ≈↑⟨ uniqueness (eqa f g) {!!} ⟩    
+                 k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' )
+             ∎
+     cong-δ1 : {a b c : Obj A} {e : Hom A c a } {f f' : Hom A a b} → A [ f ≈ f' ] →  A [ k (eqa {a} {b} {c} f f {e} ) (id1 A a)  (lemma-equ2 f)  ≈ 
+                                                                            k (eqa {a} {b} {c} f' f' {e} ) (id1 A a)  (lemma-equ2 f') ]
+     cong-δ1 =  {!!} 
      lemma-b2 :  {d : Obj A} {h : Hom A d a} → A [
                       A [ equalizer (eqa f g) o k (eqa f g) (A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} {c} f g h) ]
                     ≈ A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ]
@@ -316,22 +336,10 @@
                 ≈⟨ idR ⟩
                     j

-     cong-α1 : {a b c :  Obj A } → { e : Hom A c a }
-          → {f g g' : Hom A a b } →  A [ g ≈ g' ] → A [ equalizer (eqa {a} {b} {c} f g {e} )≈ equalizer (eqa {a} {b} {c} f g' {e} ) ] 
-     cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq = let open ≈-Reasoning (A) in refl-hom 
-     cong-γ1 :  {a _ c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } →  A [ h ≈ h' ] →  
-                     A [  k (eqa f g ) {d} ( A [ h  o (equalizer ( eqa (A [ f  o  h  ] ) (A [ g o h  ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) 
-                       ≈  k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' )  ]
-     cong-γ1 = {!!} 
---  {a₁ b₁ c₃ : Obj A} {f₁ f' : Hom A a₁ b₁} → A [ f₁ ≈ f' ] →
---     A [ k (eqa f₁ f₁) (id1 A a₁) (lemma-equ2 f₁) ≈ k (eqa f' f') (id1 A a₁) (lemma-equ2 f') ]
-     cong-δ1 : {a b c : Obj A} {f f' : Hom A a b} → A [ f ≈ f' ] →  { e : Hom A c a } → A [ k (eqa {a} {b} {c} f f {e} ) (id1 A a)  (lemma-equ2 f)  ≈ 
-                                                                            k (eqa {a} {b} {c} f' f' {e} ) (id1 A a)  (lemma-equ2 f') ]
-     cong-δ1 =  {!!} 
 
 
 lemma-equ2 : {a b c : Obj A} (f g : Hom A a b)  (e : Hom A c a )
-         → ( bur : Burroni A {c} {a} {b} f g e ) → Equalizer A {c} {a} {b} (α bur f g) f g 
+         → ( bur : Burroni A {c} {a} {b} f g e ) → Equalizer A {c} {a} {b} (α bur f g e) f g 
 lemma-equ2 {a} {b} {c} f g e bur = record {
       fe=ge = fe=ge1 ;  
       k = k1 ;
@@ -340,38 +348,38 @@
    } where
       k1 :  {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c
       k1 {d} h fh=gh = β bur {d} {a} {b} f g h
-      fe=ge1 : A [ A [ f o (α bur f g) ] ≈ A [ g o (α bur f g) ] ]
+      fe=ge1 : A [ A [ f o (α bur f g e) ] ≈ A [ g o (α bur f g e) ] ]
       fe=ge1 = b1 bur
-      ek=h1 : {d : Obj A}  → ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  A [ A [ (α bur f g)  o k1 {d} h eq ] ≈ h ]
+      ek=h1 : {d : Obj A}  → ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  A [ A [ (α bur f g e)  o k1 {d} h eq ] ≈ h ]
       ek=h1 {d} {h} {eq} =  let open ≈-Reasoning (A) in
              begin
-                 α bur f g o k1 h eq 
+                 α bur f g e o k1 h eq 
              ≈⟨⟩
-                 α bur f g o ( γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} {id1 A d} (f o h) )
+                 α bur f g e o ( γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id1 A d) (f o h) )
              ≈⟨ assoc ⟩
-                 ( α bur f g o  γ bur {a} {b} {c} f g h ) o δ bur {d} {b} {d} {id1 A d} (f o h) 
+                 ( α bur f g e o  γ bur {a} {b} {c} f g h ) o δ bur {d} {b} {d} (id1 A d) (f o h) 
              ≈⟨ car (b2 bur) ⟩
-                  ( h o ( α bur ( f o h ) ( g o h ))) o δ bur {d} {b} {d} {id1 A d} (f o h) 
+                  ( h o ( α bur ( f o h ) ( g o h ) (id1 A d))) o δ bur {d} {b} {d} (id1 A d) (f o h) 
              ≈↑⟨ assoc ⟩
-                   h o ((( α bur ( f o h ) ( g o h ))) o δ bur {d} {b} {d} {id1 A d} (f o h)  )
+                   h o ((( α bur ( f o h ) ( g o h ) (id1 A d) )) o δ bur {d} {b} {d} (id1 A d) (f o h)  )
              ≈↑⟨ cdr ( car ( cong-α bur eq)) ⟩
-                   h o ((( α bur ( f o h ) ( f o h ))) o δ bur {d} {b} {d} {id1 A d} (f o h)  )
+                   h o ((( α bur ( f o h ) ( f o h ) (id1 A d)))o δ bur {d} {b} {d} (id1 A d) (f o h)  )
              ≈⟨ cdr (b3 bur {d} {b} {d} (f  o h) {id1 A d} ) ⟩
                    h o id1 A d
              ≈⟨ idR ⟩
                  h 

       uniqueness1 : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } →
-              A [ A [ (α bur f g)  o k' ] ≈ h ] → A [ k1 {d} h eq  ≈ k' ]
+              A [ A [ (α bur f g e) o k' ] ≈ h ] → A [ k1 {d} h eq  ≈ k' ]
       uniqueness1 {d} {h} {eq} {k'} ek=h =   let open ≈-Reasoning (A) in
              begin
                 k1 {d} h eq
              ≈⟨⟩
-                γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} {id1 A d} (f o h)
+                γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id1 A d) (f o h)
              ≈↑⟨ car (cong-γ bur {a} {b} {c} {d} ek=h ) ⟩
-                γ bur f g (A [ α bur f g o k' ]) o δ bur {d} {b} {d} {id1 A d} (f o h)
-             ≈↑⟨ cdr (cong-δ bur {d} {a} {d} (resp {d} {d} {a} {id1 A d} refl-hom ek=h )) ⟩
-                γ bur f g (A [ α bur f g o k' ]) o δ bur (A [ f o A [ α bur f g o k' ] ])
+                γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id1 A d) (f o h)
+             ≈↑⟨ cdr (cong-δ bur (resp ek=h refl-hom )) ⟩
+                γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id1 A d) ( f o ( α bur f g e o k') ) 
              ≈⟨ b4 bur ⟩
                  k'