changeset 463:4c686e19db60

document clean up
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 04 Mar 2017 11:05:40 +0900
parents e618db534987
children 037af9cf038c
files category.ind doc/category.ind doc/fig/Kli-orig.svg doc/fig/Kli.graffle doc/fig/Kli.svg doc/fig/Monad.svg doc/test.tex doc/test2.tex
diffstat 8 files changed, 3412 insertions(+), 1602 deletions(-) [+]
line wrap: on
line diff
--- a/category.ind	Sat Mar 04 10:54:26 2017 +0900
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1602 +0,0 @@
--title: Cateogry
-
---author: Shinji KONO <kono@ie.u-ryukyu.ac.jp>
-
-\usepackage{tikz}
-\usepackage{tikz-cd}
-
---Adjunction 
-
-\begin{eqnarray*}        
-Uε○ηU & = & 1_U \\
-εF○Fη & = & 1_F
-\end{eqnarray*}        
-
-$f: a -> Ub $
-
-----begin-comment:
-                       FU(b)
-                     ・   |
-                  ・      |
-          F(f) ・         |
-            ・         ε(b)
-         ・               |
-     ・      f*           v
-  F(a) -----------------> b
-
-            U(f*)
- UF(a) -----------------> Ub
-   ^                    ・
-   |                 ・
-   |              ・
-η(a)          ・  f
-   |       ・
-   |    ・    f = U(f*)η
-   |・
-   a
-
-----end-comment:
-
-\begin{tikzcd}
-\mbox{}                                      & FU(b) \arrow{d}{ε(b)}           \\
-F(a)  \arrow{ru}{F(f)} \arrow{r}{f*}         & b \\
-UF(a) \arrow{r}{U(f*)}                       & Ub \\
-a     \arrow{u}{η(a)} \arrow{ru}{f}          & \\
-\end{tikzcd}
-
-Universal mapping problem is
-for each $f:->Ub$, there exists $f*$ such that $f = U(f*)η$.
-
---Adjunction to Universal mapping
-
-In adjunction $(F,U,ε,η)$, put $f* = ε(b)F(f)$, 
-we are going to prove $f*$ is a solution of Universal mmapping problem. That is $U(f*)η = f$.
-
-\begin{tikzcd}
-UF(a)  \arrow{r}[swap]{UF(f)}  \arrow[bend left]{rr}{U(ε(b)F(f))=U(f*)}   
-& UFUb   \arrow{r}[swap]{U(ε(b))} & \mbox{?} \\
-a     \arrow{u}{η(a)} \arrow{r}[swap]{f} & Ub \arrow{u}{η(Ub)}  \\
-\end{tikzcd}
-
-\begin{tikzcd}
-UF(a) \arrow{rd}[swap]{U(f*)} \arrow{r}{UF(f)}    & UFUb \arrow[bend left]{d}{U(ε(b))} \\
-a     \arrow{u}{η(a)} \arrow{r}[swap]{f}          & Ub \arrow{u}{η(Ub)}  \\
-F(a)  \arrow{r}{F(f)} \arrow{rd}[swap]{f*}  & FU(b) \arrow{d}{ε(b)} \\
-\mbox{} & b \\
-\end{tikzcd}
-∵$   Uε○ηU = 1_U $
-
-\[   U(ε(b))η(U(b)) = 1_{U(b)} \] 
-
-means that 
-
-$ε(b) : FU(b)->b $ is solution of $1_{U(b)}$.
-
-naturality $ fη(U(b)) = U(F(f))η(a) $ 
-
-gives solution $ U(ε(b))UF(f) = U(F(f)ε(b)) $ for $f$.
-
-
-
-\[ U(f*)η(a)(a) = f(a) \]
-
-then 
-
-$U(ε(b)F(f))η(a)(a) = U(ε(b))UF(f)η(a)(a) $
-
-since $F$ is a functor. And we have
-
-$U(ε(b))UF(f)η(a)(a)  = U(ε(b))η(b)f(a)$
-
-because of naturality of $η$
-
-----begin-comment:
-       η(a)
-UF(a) <------- a    UF(f)η(a) = η(b)f 
-|             |
-|UF(f)       f|
-v             v
-UF(b) <------- b             
-       η(b)
-
-----end-comment:
-
-\begin{tikzcd}
-UF(a) \arrow[leftarrow]{r}{η(a)} \arrow{d}{UF(f)} & a \arrow{d}{f} &  UF(f)η(a) = η(b)f \\
-UF(b) \arrow[leftarrow]{r}{η(b)}        & b & 
-\end{tikzcd}
-
-too bad.... we need some thing more.
-
-
----Adjoint of η
-
-$   Uε○ηU = 1_U $
-
-----begin-comment:
-       F(f)              ε(b)
-F(a) ---------> FU(b)  -------->  b
-
-      UF(f)             U(ε(b))
-UF(a) --------> UFU(b)  --------> U(b)
-
-      η(a)              UF(f)            U(ε(b))
-a  --------->   UF(a) --------> UFU(b)  --------> U(b)
-
-       f                η(Ub)            U(ε(b))
-a  --------->   Ub    --------> UFU(b)  --------> U(b)
-
-                        η(Ub)            U(ε(b))  = 1
-                              ∵   Uε○ηU = 1_U
-
-----end-comment:
-
-\begin{tikzcd}
-F(a) \arrow{r}{F(f)} & FU(b) \arrow{r}{ε(b)} & b & \\
-UF(a) \arrow{r}{UF(f)} &  UFU(b)  \arrow{r}{U(ε(b))} &  U(b) & \\
-a  \arrow{r}{η(a)} &  UF(a) \arrow{r}{UF(f)} & UFU(b)  \arrow{r}{U(ε(b))}  & U(b) \\
-a  \arrow{r}{f} &  Ub  \arrow{r}{η(Ub)}[swap]{η(Ub)}  &  UFU(b) \arrow{r}{U(ε(b))}[swap]{U(ε(b))=1} &  U(b) \\
-\end{tikzcd}
-
-
-∵   $Uε○ηU = 1_U$
-
-naturality of $f:a->Ub$
-
-----begin-comment:
-
-      η(Ub)
-Ub  --------->   UF(Ub) 
-^                ^
-|                |
-f|                |UF(f)
-|     η(a)       |
-a  --------->   UF(a) 
-
-----end-comment:
-
-\begin{tikzcd}
-Ub  \arrow{r}{η(Ub)} &   UF(Ub)  \\
-a \arrow{u}{f} \arrow{r}{η(a)} & UF(a) \arrow{u}[swap]{UF(f)}
-\end{tikzcd}
-
-----begin-comment:
-
-       UF(f)   
-UF(a) ------------->UF(U(b))    UF(U(b))
-^                  ^             |
-|                  |             |
-η(a)|           η(U(b))|             |U(ε(U(b)))
-|        f         |             v
-a  --------------->U(b)         U(b) 
-
-----end-comment:
-
-\begin{tikzcd}
-UF(a) \arrow{r}{UF(f)} & UF(U(b)) & UF(U(b)) \arrow{d}{U(ε(U(b)))} & \mbox{} \\
-a \arrow{r}{f} \arrow{u}[swap]{η(a)} & U(b) \arrow{u}[swap]{η(U(b))} & U(b) & \mbox{} \\
-\end{tikzcd}
-
-Solution of universal mapping yields naturality of $Uε○ηU = 1_U$.
-
-----begin-comment:
-
-                           F(η(a)) 
-UF(a)               F(a) ----------> FUF(a)
-^                                   |
-|                                   |
-η(a)|                                   |ε(F(a))
-|       η(a)                        v
-a  --------------->UF(a)            F(a)
-
-----end-comment:
-
-$εF○Fη = 1_F$.
-
-\begin{tikzcd}
-UF(a) \arrow{rd}[swap]{1_{UF(a)}} & F(a) \arrow{r}{F(η(a))} \arrow{rd}{1_{F(a)}}[swap]{(1_{UF(a)})*}  & FUF(a) \arrow{d}{ε(F(a))} & \mbox{} \\
-a \arrow{r}[swap]{η(a)} \arrow{u}{η(a)} & UF(a) & F(a) & \mbox{} \\
-\end{tikzcd}
-
---Universal mapping to adjunction
-
-Functor $U$, mapping $F(a)$ and $(f)*, U(f*)η(a) = f $  are given.
-
-object $F(a):A -> B$
-
-$ η(a): a->UF(a)$ 
-
-put 
-\[    F(f) = (η(b)f)* \]
-\[ ε : FU -> 1_B        \]
-\[  ε(b) = (1_{U(b)})* \]
-
-----begin-comment:
-             f*
-  F(a) -----------------> b
-
-            U(f*)
- UF(a) -----------------> Ub
-   ^                    ・
-   |                 ・
-   |              ・
-η(a)          ・  f
-   |       ・
-   |    ・    f = U(f*)η
-   |・
-   a
-----end-comment:
-
-\begin{tikzcd}
-F(a) \arrow{r}{f*} & b \\
-UF(a) \arrow{r}{U(f*)} & Ub  \\
-a \arrow{u}{η(a)} \arrow{ur}{f}
-\end{tikzcd}
-
-$f = U(f*)η$
-
-Show F is a Functor, that is $F(fg) = F(f)F(g)$.
-
-Show naturality of $η(a)$.
-
-\[    f:a->b,   F(f) = (η(b)f)*\]
-
-Show naturality of $ε(b) = (1_U)*$.
-
----Definitions
-
-f's destination
-\[ f: a -> U(b) \] 
-universal mapping
-\[ U(f*)η(a) = f \] 
-defnition of F(f)
-\[    F(f) = (η(U(b))f)* \]
-definition of $ε$ 
-\[  ε(b) = (1_{U(b)})* \] 
-
-----begin-comment:
-
-               FU(f*) 
-      FUF(a)------------->FU(b)      
-       ^|                   |      
-       ||ε(F(a))            |       
-F(η(a))||                   |ε(b)=(1_U(b))*  
-       ||   (η(Ub)f)*=F(f)  |               
-       |v                   v              
-       F(a) --------------->b              
-                 f*
-               UF(f) 
-       UF(a)------------->UFU(b)           
-        ^                  ^|  
-        |       U(f*)      ||   
-    η(a)|           η(U(b))||U(ε(b))  
-        |                  ||  
-        |                  |v  
-        a  --------------->U(b) 
-                 f
-
-----end-comment:
-
-\begin{tikzcd}
-FUF(a) \arrow{r}{FU(f*)} \arrow{d}{ε(F(a))} & FU(b) \arrow{d}{ε(b)=(1_U(b))*} & \mbox{} \\
-F(a) \arrow{r}[swap]{f*} \arrow[bend left]{u}{F(η(a))} \arrow{ru}[swap]{F(f)} & b & \mbox{} \\
-UF(a) \arrow{r}{UF(f)} \arrow{rd}[swap]{U(f*)} & UFU(b) \arrow[bend left]{d}{U(ε(b))} & \mbox{} \\
-a \arrow{r}[swap]{f} \arrow{u}{η(a)} & U(b) \arrow{u}{η(U(b))} & \mbox{} \\
-\end{tikzcd}
-
-$εF○Fη = 1_F$,
-$ ε(b) = (1_{U(b)})* $,
-
-$ ε(F(a)) = (1_{UF(a)})* $
-
-
-----begin-comment:
-
-                            F(η(a))
-UF(a)              F(a) --------------> FUF(a)
- ^                                      |^
- |                                      ||
-η(a)|    U(1_{F(a)})     1_{F(a)}   ε(F(a))||F(η(a))
- |                                      ||
- |                                      v|
- a ---------------> U(F(a))            F(a)
-        η(a)
-
-----end-comment:
-
-\begin{tikzcd}
-UF(a) \arrow{rd}{U(1_{F(a)}) } & F(a) \arrow{r}{F(η(a))} \arrow{rd}[swap]{1_{F(a)}} & FUF(a) \arrow{d}[swap]{ε(F(a))} & \mbox{} \\
-a \arrow{r}[swap]{η(a)} \arrow{u}{η(a)} & U(F(a)) & F(a) \arrow[bend right]{u}[swap]{F(η(a))} & \mbox{} \\
-\end{tikzcd}
-
-
-
-
-
---- Functor F
-
-\[    F(f) = (η(b)f)* \]
-
-\[    U(F(f))η(a) = η(b)f \]
-
-
-show $F(fg) = F(f)F(g)$
-
-
-----begin-comment:
-  g        f
-a -----> Ub ----> UUc
-----end-comment:
-
-\begin{tikzcd}
-a \arrow{r}{g} &  Ub \arrow{r}{f} &  UUc
-\end{tikzcd}
-
-\begin{eqnarray*}
-U(F(g))η(a)  & = & η(Ub)g \\
-U(F(f))η(Ub) & = & η(UUc)f
-\end{eqnarray*}
-
-show
-\[
-U(F(f)F(g))η(a) = η(UUc)fg
-\]
-
-then $F(f)F(g) = F(fg)$
-
-\begin{eqnarray*}
-U(F(f)F(g))η(a) & = & UF(f)UF(g)η(a)  \\
-&                     = &  UF(f)η(Ub)g \\
-&                     = & η(UUc)fg
-\end{eqnarray*}
-\mbox{Q.E.D.}
-
-----begin-comment:
-                                FU(f)
-                       FU(b) -------------> FUU(c)
-                     ・   |                  |
-                  ・      |                  |
-          F(g) ・         |                  |
-            ・         ε(b)            ε(Uc) |
-         ・               |                  |
-     ・      g*           v       f*         v
-  F(a) -----------------> b ---------------> c
-
-                               U(F(f))
- UF(a)                  UFUb 
-   ^ ・                   ^ ・  
-   |     ・               |    ・ 
-   |        ・            |      ・
-η(a)           ・ UFg     |         ・ UFf
-   |              ・      η(Ub)       ・ 
-   |                ・    |              ・ 
-   |       g           ・ |          f     ・
-   a  -----------------> Ub ---------------> UU(c)
-----end-comment:
-
-
-\begin{tikzcd}
-F(a) \arrow{r}{F(g)} \arrow{rd}{g*}& FU(b) \arrow{r}{FU(f)} \arrow{d}{ε(b)} \arrow{rd}{f*} & FUU(c) \arrow{d}{ε(Uc)} \\
-\mbox{}   & b  &  U(c) \\
-\\
-UF(a) \arrow{rd}{U(g*)} \arrow{r}{UFg} &  UFUb  \arrow{rd}{Uf*} \arrow{r}{UFf} & UFUUc \\
-a  \arrow{r}{g}\arrow{u}{η(a)} &  Ub \arrow{r}{f} \arrow{u}[swap]{η(Ub)} &  UU(c) \arrow{u}[swap]{η(UUc)}
-\end{tikzcd}
-
---- naturality of η
-
-$  η: 1->UB $
-
-----begin-comment:
-
- UF(a)-----------------> UFb 
-   ^      UF(f)           ^
-   |                      |
-   |                      |
-η(a)                      η(b)
-   |                      |
-   |         f            | 
-   a  ----------------->  b
-----end-comment:
-
-\begin{tikzcd}
-UF(a) \arrow{r}[swap]{UF(f)} &  UFb  \\
-a  \arrow{r}{f} \arrow{u}{η(a)} &   b \arrow{u}{η(b)}
-\end{tikzcd}
-
-prove $η(b)f  =  UF(f)η(a) $
-\begin{eqnarray*}
-&   η(b)f: & a-> UFb \\
-F(f) & = & (η(b)f)*   \mbox{\hspace{1cm}(definition)} \\
-η(b)f & = & U(F(f))η(a)   
-\end{eqnarray*}
-\mbox{Q.E.D.}
-
---- naturality of ε
-
-\[
-ε : FU -> 1_B        
-\]
-\[
-U: B->A
-\]
-
-$  ε(b) = (1_{U(b)})*$
-
-$    U(ε(b))η(U(b)) = 1_{U(b)}$
-
-$    U(ε(b))η(U(b))U(b) = U(b)$
-
-
-----begin-comment:
-        FU(f)
-FU(b) -------------> FU(c)
- |                  |
- |                  |
-ε(b)                  | ε(c)
- |                  |
- v       f          v
- b ---------------> c
-----end-comment:
-
-\begin{tikzcd}
-FU(b) \arrow{r}{FU(f)} \arrow{d}{ε(b)} & FU(c) \arrow{d}{ε(c)}\\
-b \arrow{r}{f} &  c
-\end{tikzcd}
-
-prove $fε(b) = ε(c)FU(f)$
-
-
-\[       f = Ub -> Uc \]
-
-----begin-comment:
-
-             FU(f)              (1_U(c))*
-  F(Ub) --------------> FU(c)  ---------------> c
-
-             (1_U(b))*              f
-  F(Ub) ----------------> b  -----------------> c
-
-            U(1_U(b)*)             U(f)
- UF(Ub) ----------------> Ub -----------------> U(c)
-   ||                   ・                       ||
-   ||                ・                          ||
-   ||    UFU(f)   ・            U(1_U(c)*)       ||
- UF(Ub) ----- ・ ------>  UFUc ---------------> U(c) 
-   ^       ・             ^                      ||
-   |     ・               |                      ||
-η(Ub) ・   1_Ub     η(Uc) |                      ||
-   |・                    |        1_Uc          ||
-   Ub ------------------> Uc -----------------> U(c)
-            U(f)
-
-----end-comment:
-
-\begin{tikzcd}
-F(Ub) \arrow{r}{(1_{U(b)})*} &  b \arrow{r}{f}  &  c  \\
-UF(Ub) \arrow{r}{U(1_{U(b)})*} \arrow{rd}[swap]{UFU(f)} & Ub \arrow{r}{U(f)} & U(c) \\
-\mbox{} & UFUc \arrow{ru}{U(1_U(c)*)} & \\
-Ub \arrow{r}{U(f)} \arrow{ruu}[swap]{1_{Ub}} \arrow{uu}{η(Ub)} &  Uc \arrow{ruu}[swap]{1_{Uc}} \arrow{u}{η(Uc)} \\
-F(Ub) \arrow{r}{FU(f)} &  FU(c)  \arrow{r}{(1_{U(c)})*} &  c \\
-\end{tikzcd}
-
-----begin-comment:
-
-\begin{tikzcd}
-\mbox{} & Ub \arrow{r}{U(f)} & U(c) \\
-UF(Ub) \arrow{ru}{U(1_U(b)*)} \arrow{r}[swap]{UFU(f)} & UFUc \arrow{ru}{U(1_U(c)*)} & \\
-Ub \arrow{r}{U(f)} \arrow{ruu}{1_Ub} \arrow{u}{η(Ub)} &  Uc \arrow{ruu}[swap]{1_Uc} \arrow{u}{η(Uc)} &  \mbox{}
-\end{tikzcd}
-
-
-\begin{tikzcd}
-UF(Ub) \arrow{d}{U(1_U(b)*)} \arrow{r}{UFU(f)} & UFUc \arrow{d}{U(1_U(c)*)}  \\
-Ub \arrow{r}{U(f)} & U(c) \\
-Ub \arrow{r}{U(f)} \arrow{u}{1_Ub} \arrow[bend left]{uu}{η(Ub)} &  Uc \arrow{u}[swap]{1_Uc} \arrow[bend right]{uu}[swap]{η(Uc)} 
-\end{tikzcd}
-
-----end-comment:
-
-
-show $ε(c)FU(f)$ and $fε(b)$ are both solution of $(1_{Uc})U(f) ( = U(f)(1_{Ub}))$
-
-\[
-(fε(b)))η(Ub)Ub = U(f))U(ε(b))η(Ub)Ub 
-\]
-\[
-= U(f)1_{U(b)}Ub = U(f)Ub = Ufb = U(f)(1_{Ub})Ub
-\]
-\[
-\mbox{∴}fε(b) = (U(f)(1_{Ub}))*
-\]
-
-$  UFU(f)η(Ub) = η(Uc)U(f)$    naturality  of η
-
-\[
-U(ε(c)FU(f))η(Ub)Ub = U(ε(c))UFU(f)η(Ub)Ub 
-\]
-\[
-= U(ε(c))η(Uc)U(f)Ub = 1_{U(c)}U(f)Ub = U(f)Ub = U(f)(1_{Ub})Ub
-\]
-\[
-\mbox{∵} U(ε(c))η(Uc) = 1_U(c)
-\]
-
-end of proof.
-
-----begin-comment:
-                       U(f*)
-c              U(c) <- ----------- U(b)             b   
-^              ^|                  |^             ^
-|       U(ε(c))||η(U(c))    η(U(b))||U(ε(b))      |
-|ε(c)          ||                  ||         ε(b)|
-|              |v      UFU(f)      v|             |
-FU(c)         UFU(c) <----------- UFU(b)           FU(b)
-----end-comment:
-
-\begin{tikzcd}
-c       \arrow[bend left,leftarrow]{rrr}{f}
-&       U(c) \arrow[leftarrow]{r}{U(f)} \arrow{d}{η(U(c))}  &  U(b)   \arrow{d}[swap]{η(U(b))}         &       b    \\
-FU(c) \arrow{u}{(1_{Uc})* = ε(c)} \arrow[bend right,leftarrow]{rrr}{FU(f)} &       
-UFU(c) \arrow[leftarrow]{r}{UFU(f)} \arrow[bend left]{u}{U(ε(c))} & UFU(b) \arrow[bend right]{u}[swap]{U(ε(b))} 
-&        FU(b) \arrow{u}[swap]{ε(b) = (1_{Ub})*} 
-\end{tikzcd}
-
-It also prove
-
-\[     Uε○ηU = 1_U\]
-
----$Uε○ηU = 1_U$
-
-$    ε(b) = (1_U(b))* $
-
-that is
-
-$    U((1_U(b)*)η(U(b)) = 1_U(b) $
-$    U(ε(b))η(U(b)) = 1_U(b) $
-
-$    \mbox{∴} Uε○ηU = 1_U $
-
---- $εF○Fη = 1_F$
-
-$   η(a) = U(1_F(a))η(a) $
-
-$=> (η(a))* = 1_F(a)$   ... (1)
-
-$   ε(F(a)) = (1_UF(a))*$
-
-$=> 1_UF(a) = U(ε(F(a)))η(UF(a))  $
-
-times $η(a)$ from left
-
-$   η(a) = U(ε(F(a)))η(UF(a))η(a)$
-
-$η(UF(a)) = UFη(a)$ naturality of $η$
-
-$   η(a) = U(ε(F(a)))(UFη(a))η(a) $ \\
-$        = U(ε(F(a)Fη(a)))η(a) $ \\
-$      => (η(a))* = ε(F(a))Fη(a)   .... (2)  $ \\
-
-from (1),(2), since $(η(a))*$ is unique
-
-\[       ε(F(a))Fη(a) = 1_F(a) \]
-
-----begin-comment:
-
-        F                U
-UF(a) --------> FUF(a) ----------> UFUF(a)         FUF(a)
-^               ^|                 |^              ^|
-|               ||                 ||              ||
-|η(a)    F(η(a))||ε(F(a))  U(εF(a))||η(UF(a))      ||ε(F(a))
-|               ||                 ||              ||
-|       F       |v       U         v|              |v
-a ------------> F(a) ------------> UF(a)           F(a)
-----end-comment:
-
-
-\begin{tikzcd}
-UF(a) \arrow{r}{F}&  FUF(a) \arrow{rr}{U} \arrow[bend left]{d}{ε(F(a))} & \mbox{} &  UFUF(a) \arrow[bend left]{d}{U(εF(a))} \\ 
-a \arrow{r}{F} \arrow{u}{η(a)} &  F(a) \arrow{rr}{U} \arrow[bend left]{u}{F(η(a))} & \mbox{} &  UF(a) \arrow[bend left]{u}{η(UF(a))} \\ 
-\mbox{} & F(a) \arrow{u}{(η(a))* = 1_{Fa}} \arrow{rr}{U} &  & UF(a) \arrow{u}[swap]{η(a) = U(εF(a))η(UF(a))}
-\end{tikzcd}
-
-\begin{tikzcd}
-UF(a) \arrow{r}{F} & FUF(a) \arrow{r}{U} \arrow[bend left]{d}{ε(F(a))} & UFUF(a) \arrow[bend right]{d}[swap]{U(εF(a))} & FUF(a) \arrow[bend left]{d}{ε(F(a))} & \mbox{} \\
-a \arrow{r}{F} \arrow{u}[swap]{η(a)} & F(a) \arrow{r}{U} \arrow[bend left]{u}{F(η(a))} & UF(a) \arrow[bend right]{u}[swap]{η(UF(a))} & F(a) \arrow{u}{} & \mbox{} \\
-\end{tikzcd}
-
-----begin-comment:
-               
-            UUF(a) 
-            ^ |   
-            | |  
-    η(UF(a))| |U(ε(Fa))    U(ε(F(a))η(UF(a)) = 1_UF(a)
-            | v              ε(F(a) = (1_UF(a))*
-            UF(a) 
-----end-comment:
-
-\begin{tikzcd}
-UUF(a)  \arrow[bend left]{d}{U(ε(Fa))} \\
-UF(a)  \arrow[bend left]{u}{η(UF(a))}
-\end{tikzcd}
-$U(ε(F(a)))η(UF(a)) = 1_UF(a) $ \\
-$ ε(F(a)) = (1_UF(a))* $
-
-
-----begin-comment:
-    FA -------->UFA
-     |          |
-     | Fη(A)    | UFηA
-     v          v
-    FUFA ------>UFUFA
-----end-comment:
-
-\begin{tikzcd}
-FA    \arrow{r} \arrow{d}{Fη(A)} &     UFA \arrow{d}{UFηA} \\
-FUFA  \arrow{r} &     UFUFA
-\end{tikzcd}
-
-$ε(FA)$の定義から $U(ε(FA)): UFUFA→UFA$
-
-唯一性から $ε(F(A)):FUFA→FA$  従って
-
-\[        ε(F(A))Fη(A)=1 \]
-
-ってなのを考えました。
-
-
-$    Uη(A') = U(1(FA'))η(A')$より \\
-$    η(A')*=1(FA')$、 \\
-$    Uη(A') = U(ε(FA')Fη(A'))η(A')$より \\
-$    η(A')*=ε(FA')Fη(A')$から \\
-$    1_F=εF.Fη$は言えました。 \\
-
-後者で$η$の自然性と$ε$の定義を使いました。
-
-
---おまけ
-
-$ εF○Fη=1_F, Uε○ηU = 1_U $ 
-----begin-comment:
-
-                    U                             
-       UFU(a) <--------------- FU(a)
-        ^|                      |
- η(U(a))||U(ε(a))               |ε(a)
-        |v                      v
-        U(a) <----------------  (a)
-                    U   
-
-                    F                             
-       FUF(a) <--------------- UF(a)
-        ^|                      ^
-   Fη(a)||εF(a)                 |η(a)
-        |v                      |
-        F(a) <----------------  (a)
-                    F   
-
-----end-comment:
-
-\begin{tikzcd}
-UFU(a) \arrow[leftarrow]{r}{U} \arrow[bend left]{d}{U(ε(a))} & FU(a) \arrow{d}{ε(a)} & \mbox{} \\
-U(a) \arrow[leftarrow]{r}[swap]{U} \arrow[bend left]{u}{η(U(a))} & (a) & \mbox{} \\
-FUF(a) \arrow[leftarrow]{r}{F} \arrow[bend left]{d}{εF(a)} & UF(a) & \mbox{} \\
-F(a) \arrow[leftarrow]{r}[swap]{F} \arrow[bend left]{u}{Fη(a)} & (a) \arrow{u}[swap]{η(a)} & \mbox{} \\
-\end{tikzcd}
-
-
-
-なら、 $ FU(ε(F(a))) = εF(a) $ ?
-
-----begin-comment:
-                        U                             
-           UFU(F(a)) <--------------- FU(F(a))
-            ^|                         |
-     η(U(a))||U(ε(F(a)))               |ε(F(a))
-            |v                         v
-            U(F(a)) <----------------  F(a)
-                        U   
-
-                        FU                             
-          FUFU(F(a)) <--------------- FU(F(a))
-            ^|                         |
-    Fη(U(a))||FU(ε(F(a)))              |ε(F(a))
-            |v                         v
-           FU(F(a)) <----------------  F(a)
-                        FU   
-
-                        F                             
-           FUF(a) <--------------- UF(a)
-            ^|                      ^
-       Fη(a)||εF(a)                 |η(a)
-            |v                      |
-            F(a) <----------------  (a)
-                        F   
-----end-comment:
-
-\begin{tikzcd}
-UFU(F(a)) \arrow[leftarrow]{r}{U} \arrow[bend left]{d}{U(ε(F(a)))} & FU(F(a)) \arrow{d}{ε(F(a))} & \mbox{} \\
-U(F(a)) \arrow[leftarrow]{r}[swap]{U} \arrow[bend left]{u}{η(U(a))} & F(a) & \mbox{} \\
-FUFU(F(a)) \arrow[leftarrow]{r}{FU} \arrow[bend left]{d}{FU(ε(F(a)))} & FU(F(a)) \arrow{d}{ε(F(a))} & \mbox{} \\
-FU(F(a)) \arrow[leftarrow]{r}[swap]{FU} \arrow[bend left]{u}{Fη(U(a))} & F(a) & \mbox{} \\
-FUF(a) \arrow[leftarrow]{r}{F} \arrow[bend left]{d}{εF(a)} & UF(a) & \mbox{} \\
-F(a) \arrow[leftarrow]{r}[swap]{F} \arrow[bend left]{u}{Fη(a)} & (a) \arrow{u}[swap]{η(a)} & \mbox{} \\
-\end{tikzcd}
-
---Monad 
-
-$(T,η,μ)$
-
-$    T: A -> A $
-
-$    η: 1_A -> T $
-
-$    μ: T^2 -> T $
-
-$  μ○Tη = 1_T = μ○ηT $  Unity law
-
-$  μ○μT  = μ○Tμ $      association law
-
-----begin-comment:
-         Tη                      μT
-   T ---------> T^2        T^3---------> T^2
-   |・          |           |            |
-   |  ・1_T     |           |            |
- ηT|     ・     |μ        Tμ|            |μ
-   |       ・   |           |            |
-   v         ・ v           v            v
-   T^2 -------> T          T^2 --------> T
-         μ                        μ
-----end-comment:
-
-\begin{tikzcd}
-T \arrow{r}{Tη} \arrow{d}[swap]{ηT} \arrow{rd}{1_T} & T^2 \arrow{d}{μ} & T^3 \arrow{r}{μT} \arrow{d}[swap]{Tμ}& T^2 \arrow{d}{μ} & \mbox{} \\
-T^2 \arrow{r}[swap]{μ} & T & T^2 \arrow{r}[swap]{μ}  & T & \mbox{} \\
-\end{tikzcd}
-
-
---Adjoint to Monad
-
-Monad (UF, η, UεF) on adjoint (U,F, η, ε)
-
-\begin{eqnarray*}
-εF○Fμ & = & 1_F   \\
-Uε○μU & = & 1_U   \\
-\end{eqnarray*}
-
-\begin{eqnarray*}
-μ○Tη & = & (UεF)○(UFη)   =   U (εF○Fη)   =   U 1_F    =   1_{UF}  \\
-μ○ηT & = & (UεF)○(ηUF)   =   (Uε○ηU) F   =   1_U F    =   1_{UF}  \\
-\end{eqnarray*}
-
-\begin{eqnarray*}
-(UεF)○(ηUF) & = & (U(ε(F(b))))(UF(η(b)))  \\
-& = &  U(ε(F(b))F(η(b)))   =   U(1_F)    \\
-\end{eqnarray*}
-
-----begin-comment:
-
-            UεFUF                       εFUF                    ε(a)
-     UFUFUF-------> UFUF          FUFUF-------> FUF       FU(a)---------->a 
-      |             |               |            |         |              |
-      |             |               |            |         |              |
- UFUεF|             |UεF        FUεF|            |εF  FU(f)|              |f
-      |             |               |            |         |              |
-      v             v               v            v         v              v
-     UFUF --------> UF             FUF --------> F        FU(b)---------> b
-            UεF                           εF                    ε(b)
-
-----end-comment:
-
-\begin{tikzcd}
-UFUFUF \arrow{r}{UεFUF} \arrow{d}[swap]{UFUεF} & UFUF \arrow{d}{UεF} & FUFUF \arrow{r}{εFUF} \arrow{d}[swap]{FUεF} & FUF \arrow{d}{εF} & FU(a) \arrow{r}{ε(a)} \arrow{d}[swap]{FU(f)} & a \arrow{d}[swap]{f} & \mbox{} \\
-UFUF \arrow{r}{UεF} & UF & FUF \arrow{r}[swap]{εF} & F & FU(b) \arrow{r}[swap]{ε(b)} & b & \mbox{} \\
-\end{tikzcd}
-
-association law
-
-\begin{eqnarray*}
-μ     ○   μ   T     & = & μ   ○   T   μ      \\
-Uε(a)F   ○   Uε(a)F   FU  & = & Uε(a)F   ○   FU   Uε(a)F \\
-\end{eqnarray*}
-
-$UεF○UεFFU=UεF○FUUεF$
-
-naturality  of $ε$
-
-$ ε(b)FU(f)(a) = fε(a) $
-
-$    a = FUF(a), b = F(a),   f = εF $
-
-\begin{eqnarray*}
-ε(F(a))(FU(εF))(a) & = & (εF)(εFUF(a)) \\
-U(ε(F(a))(FU(εF))(a)) & = & U((εF)(εFUF(a))) \\
-U(ε(F(a))(FU(εF))(a)) & = & U((εF)(εFUF(a))) \\
-UεF○FUUεF & = UεF○UεFFU \\
-\end{eqnarray*}
-
-----begin-comment:
-
-          FU(ε(F(a)))
- FUF(a) <-------------FUFUF(a)
-     |                  |
-     |ε(F(a))           |ε(FUF(a))
-     |                  |
-     v                  v
-   F(a) <------------- FUF(a)
-            ε(F(a))
-
-----end-comment:
-
-\begin{tikzcd}
-FUF(a) \arrow[leftarrow]{r}{FU(ε(F(a)))} \arrow{d}{ε(F(a))} & FUFUF(a) \arrow{d}{ε(FUF(a))} & \mbox{} \\
-F(a) \arrow[leftarrow]{r}[swap]{ε(F(a))} & FUF(a) & \mbox{} \\
-\end{tikzcd}
-
---Eilenberg-Moore category
-
-$(T,η,μ)$
-
-$A^T$ object $(A,φ)$
-
-$  φη(A) = 1_A, φμ(A) = φT(φ) $
-
-arrow $f$.
-
-$ φT(f) = fφ $
-
-
-----begin-comment:
-
-           η(a)                         μ(a)                     T(f)
-      a-----------> T(a)         T^2(a)--------> T(a)     T(a)---------->T(b) 
-                    |               |            |         |              |
-                    |               |            |         |              |
-                    |φ          T(φ)|            |φ       φ|              |φ'
-                    |               |            |         |              |
-                    v               v            v         v              v
-      _             a              T(a)-------->T(a)       a------------> b
-                                          φ                      f   
-
-----end-comment:
-
-\begin{tikzcd}
-a \arrow{r}{η(a)} \arrow{rd}{1_a} & T(a) \arrow{d}{φ} & T^2(a) \arrow{r}{μ(a)} \arrow{d}[swap]{T(φ)} & T(a) \arrow{d}{φ} & T(a) \arrow{r}{T(f)} \arrow{d}[swap]{φ} & T(b) \arrow{d}{φ'} & \mbox{} \\
-\mbox{} & a & T(a) \arrow{r}[swap]{φ} & T(a) & a \arrow{r}[swap]{f} & b & \mbox{} \\
-\end{tikzcd}
-
---EM on monoid
-
-$f: a-> b$
-
-$T: a -> (m,a) $
-
-$η: a -> (1,a) $
-
-$μ: (m,(m',a)) -> (mm',a) $
-
-$φ: (m,a) -> φ(m,a) = ma $
-
-----begin-comment:
-
-           η(a)                         μ(a)                     T(f)
-      a----------->(1,a)     (m,(m',a))-----> (mm',a)   (m,a)----------->(m,f(a))
-                    |               |            |         |              |
-                    |               |            |         |              |
-                    |φ          T(φ)|            |φ       φ|              |φ'
-                    |               |            |         |              |
-                    v               v            v         v              v
-      _            1a           (m,m'a)-------->mm'a      ma------------> mf(a)=f(ma)
-                                          φ                      f   
-----end-comment:
-
-\begin{tikzcd}
-a \arrow{r}{η(a)} \arrow{rd}{1_a} & (1,a) \arrow{d}{φ} & (m,(m',a)) \arrow{r}{μ(a)} \arrow{d}[swap]{T(φ)} & (mm',a) \arrow{d}{φ} & (m,a) \arrow{r}{T(f)} \arrow{d}[swap]{φ} & (m,f(a)) \arrow{d}{φ'} & \mbox{} \\
-\mbox{} & 1a & (m,m'a) \arrow{r}[swap]{φ} & mm'a & ma \arrow{r}[swap]{f} & mf(a)=f(ma) & \mbox{} \\
-\end{tikzcd}
-
-object $(a,φ)$. arrow $f$.
-
-$ φT(f)(m,a) = fφ(m,a) $
-
-$ φ(m,f(a)) = f(a) $
-
-$ U^T : A^T->A $
-
-$     U^T(a,φ) = a, U^T(f) = f $
-
-$ F^T : A->A^T$
-
-$     F^T(a) = (T(a),μ(a)), F^T(f) = T(F) $
-
---Comparison Functor $K^T$
-
-$   K^T(B) = (U(B),Uε(B))a, K^T(f) = U(g)   $
-
-$   U^T K^T (b) = U(b) $
-
-$   U^TK^T(f) = U^TU(f) = U(f) $
-
-$   K^TF(a)  = (UF(a),Uε(F(a))) = (T(a), μ(a)) = F^T(a) $
-
-$   K^TF(f) = UF(f) = T(f) = F^T(f) $
-
-$   ηU(a,φ) = η(a), Uε(a,φ) = ε^TK^T(b) = Uε(b) $
-
-----begin-comment:
-
-
-     _             Ba            _
-                   |^
-                   ||
-                   ||
-       K_T        F||U       K^T
-                   ||
-                   ||
-                   ||
-           U_T     v|   F^T
-     A_T---------> A  ---------> A^T
-        <---------    <--------
-            F_T         U^T
-
-----end-comment:
-
-
-\begin{tikzcd}
-\mbox{} & B \arrow{r}{K^T} \arrow{rd}{F} \arrow[leftarrow]{rd}[swap]{U} & A^T \arrow{d}{U^T} & \mbox{} \\
-\mbox{} & A_T \arrow{r}[swap]{U_T} \arrow[leftarrow]{r}{F_T} \arrow{u}[swap]{K_T} & A \arrow{u}{F^T} & \mbox{} \\
-\\
-\mbox{} & B \arrow{d}{F} \arrow{rd}{K^T} & \mbox{} \\
-A_T \arrow{r}{U_T} \arrow{ru}[leftarrow]{K_T} & A \arrow{r}{F^T} \arrow{u}{U} & A^T & \mbox{} \\
-\end{tikzcd}
-
---Kleisli Category
-
-Object of $A$.
-
-Arrow $f: a -> T(a)$ in $A$. In $A_T$, $f: b -> c, g: c -> d$,
-
-$  g * f = μ(d)T(g)f $
-
-$η(b):b->T(b)$ is an identity.
-
-$ f * η(b) = μ(c)T(f)η(b) = μ(c)η(T(c))f = 1_T(c) f = f $
-
-and
-
-$ η(c) * f = μ(c)Tη(c)f = 1_T(c) f = f $
-
-association law $ g * (f * h) = (g * f) * h $,
-
-$h: a -> T(b), f: b -> T(c), g: c -> T(d) $,
-
-naturality of $μ$
-
-----begin-comment:
-
-                                                       μ(c)                  T(f)             h
-f*h     _             _                     T(c) <---------------- T^2(c) <------- T(b) <----------- a
-
-
-              μ(d)               T(g)                  μ(c)                  T(f)             h
-g*(f*h) T(d)<--------T^2(d) <-------------- T(c) <---------------- T^2(c) <------- T(b) <----------- a
-
-
-              μ(d)               μ(d)T                 T^2(g)                T(f)               h
-(g*f)*h T(d)<--------T^2(d) <---------------T^3(d) <-------------- T^2(c) <------- T(b) <----------- a
-
-
-              μ(d)               Tμ(d)                 T^2(g)                T(f)               h
-(g*f)*h T(d)<--------T^2(d) <---------------T^3(d) <-------------- T^2(c) <------- T(b) <----------- a
-
-
-                                   μ(d)                 T(g)                   f
-(g*f)    _             T(d) <---------------T^2(d) <-------------- T(c) <----------- b                _
-
-
-
-
-              Tμ(d)                T^2(g)
-      T^2(d)<-----------T^2(T(d))<--------  T^2(c)
-      |                 |                    |
-      |                 |                    |
-  μ(d)|                 |μ(T(d))             |μ(c)
-      |                 |                    |
-      v        μ(d)     v           T(g)     v
-      T(d) <----------- T(T(d)) <---------- T(c)
-
-
-
-----end-comment:
-
-\begin{tikzcd}
-f*h & \mbox{} & \mbox{} & T(c) \arrow[leftarrow]{r}{μ(c)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
-g*(f*h) & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{T(g)} & T(c) \arrow[leftarrow]{r}{μ(c)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
-(g*f)*h & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{μ(d)T} & T^3(d) \arrow[leftarrow]{r}{T^2(g)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
-(g*f)*h & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{Tμ(d)} & T^3(d) \arrow[leftarrow]{r}{T^2(g)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
-g*f & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{T(g)} & T(c) \arrow[leftarrow]{r}{f} & b & \mbox{} \\
-\mbox{} &  T^2(d) \arrow[leftarrow]{r}{Tμ(d)} \arrow{d}[swap]{μ(d)} & T^2(T(d)) \arrow[leftarrow]{r}{T^2(g)} \arrow{d}{μ(T(d))} & T^2(c) \arrow{d}{μ(c)}& \mbox{} \\
-\mbox{} & T(d) \arrow[leftarrow]{r}{μ(d)} & T(T(d)) \arrow[leftarrow]{r}{T(g)} & T(c)  & \mbox{} \\
-\end{tikzcd}
-
-
-\begin{eqnarray*}
-g * (f * h)  & = & g * (μ(c)T(f)h) \\
-\mbox{}              & = & μ(d)(T(g))(μ(c)T(f)h) \\
-\mbox{}              & = & μ(d)  T(g)μ(c)  T(f)h \\
-\\
-(g * f) * h  & = & (μ(d)T(g)f) * h \\
-\mbox{}              & = & μ(d)T(μ(d)T(g)f)h \\
-\mbox{}              & = & μ(d)  T(μ(d))T^2(g)  T(f)h \\
-\end{eqnarray*}
-
-$ μ(d)μ(d)T = μ(d)Tμ(d) $
-
-$ μ(T(d))T^2(g) = T(g)μ(c) $ naturality of $μ$.
-
-$ μ(d)Tμ(d)T^2(g) = μ(d)μ(T(d))T^2(g) = μ(d)T(g)μ(c) $
-
-----begin-comment:
-
-              T^2(g)
-    T^3(d) <----------- T^2(c)
-       |                 |
-       |μ(T(d))          |μ(c)
-       |                 |
-       v                 v
-     T^2(d)<------------ T(c)
-                T(g)
-
-----end-comment:
-
-\begin{tikzcd}
-T^3(d) \arrow[leftarrow]{r}{T^2(g)} \arrow{d}{μ(T(d))} & T^2(c) & \mbox{} \\
-T^2(d) \arrow[leftarrow]{r}[swap]{T(g)} & T(c) \arrow{u}{μ(c)} & \mbox{} \\
-\end{tikzcd}
-
-$ μ(T(d)) = Tμ(d) ? $ 
-
-$    (m,(m'm'',a)) = (mm',(m'',a))$ No, but
-
-$ μμ(T(d)) = μTμ(d)  $.
-
-
---Ok
-
-$ T(g)μ(c) = T(μ(d))T^2(g) $ であれば良いが。
-
-$  μ(d)T^2(g) = T(g)μ(c) $
-
-ちょっと違う。 $ μ(d)  T(μ(d))T^2(g) $ が、
-
-$ μ(d)  μ(d)T^2(g) $ 
-
-となると良いが。
-
-$    μ(d)T(μ(d))  = μ(d)μ(T(d)) $
-
-
---monoid in Kleisli category
-
-$ T : a -> (m,a) $
-
-$ T : f -> ((m,a)->(m,f(a)))  $
-
-$ μ(a) : (m,(m',a)) -> (mm',a)  $
-
-$ f: a ->  (m,f(a)) $
-
-\begin{eqnarray*}
-g * f (b) & = & μ(d)T(g)f(b) = μ(d)T(g)(m,f(b)) \\ & = & μ(m,(m',gf(b))) = (mm',gf(b))   \\
-(g * f) * h(a) & = & μ(d)T(μ(d)T(g)f)h(a)  = μ(d)T(μ(d))(TT(g))T(f)(m,h(a))   \\
-\mbox{}    & = & μ(d)T(μ(d))(TT(g))(m,(m',fh(a))) \\ & = & μ(d)T(μ(d)(m,(m',(m'',gfh(a)))) =  (mm'm'',gfh(a))  \\
-g * (f * h)(a) & = & (μ(d)(T(g)))μ(c)T(f)h(a)  = (μ(d)(T(g)))μ(c)T(f)(m,h(a))  \\
-\mbox{}   & =  & (μ(d)(T(g)))μ(c)(m,(m',fh(a))) \\ &  = & μ(d)T(g)(mm',fh(a)) = (mm'm'',gfh(a))  \\
-\end{eqnarray*}
-
-
---Resolution of Kleiseli category
-
-$f : a-> b, g: b->c $
-
-$   U_T : A_T -> A $
-
-$   U_T(a) = T(a) $
-
-$   U_T(f) = μ(b)T(f) $
-
-$  g * f = μ(d)T(g)f $
-
-\begin{eqnarray*}
-U_T(g*f) & = & U_T(μ(c)T(g)f) \\        & = & μ(c) T(μ(c)T(g)f)  \\ & = & μ(c) μ(c)T(T(g)f))  =  μ(c)μ(c) TT(g) T(f) \mbox{ association law} \\
-U_T(g)U_T(f) & =  & μ(c)T(g)μ(b)T(f)  = μ(c)   μ(c) TT(g) T(f)   \\
-T(g)μ(b) & = & μ(c)TT(g)  \\
-\end{eqnarray*}
-
-
-
-----begin-comment:
-
-           TT(g)
-    TT <--------------TT
-     |                |
-     |μ(c)            |μ(b)
-     |                |
-     v      T(g)      v
-     T<---------------T
-
-----end-comment:
-
-\begin{tikzcd}
-TT \arrow[leftarrow]{r}{TT(g)} \arrow{d}{μ(c)} & TT \arrow{d}{μ(b)} & \mbox{} \\
-T \arrow[leftarrow]{r}{T(g)} & T & \mbox{} \\
-\end{tikzcd}
-
-
-$   F_T : A -> A_T $
-
-$   F_T(a) = a $
-
-$   F_T(f) = η(b) f $
-
-$   F_T(1_a) = η(a) = 1_{F_T(a)} $ 
-
-\begin{eqnarray*}
-F_T(g)*F_T(f) & = & μ(c)T(F_T(g))F_T(f) \\& = & μ(c)T(η(c)g)η(b)f  \\ & = &  μ(c)T(η(c))T(g)η(b)f \\& =  & T(g)η(b) f \mbox{  unity law} \\
-\mbox{}                                                &  =  &  η(c)gf =  F_T(gf)  
-\end{eqnarray*}
-
-$ η(c)g = T(g)η(b) $
-
-----begin-comment:
-
-            g   
-     c<---------------b
-     |                |
-     |η(c)            |η(b)
-     |                |
-     v      T(g)      v
-    T(b)<-------------T(b)
-
-----end-comment:
-
-\begin{tikzcd}
-c \arrow[leftarrow]{r}{g} \arrow{d}{η(c)} & b \arrow{d}{η(b)} & \mbox{} \\
-T \arrow[leftarrow]{r}{T(g)} & T & \mbox{} \\
-\end{tikzcd}
-
-
-$       μ○Tη = 1_T = μ○ηT $  Unity law
-
-\begin{eqnarray*}
-\mbox{}   ε_T(a) & = & 1_{T(a)}  \\
-\mbox{}\\
-\mbox{}\\
-\mbox{}  U_T ε_T F_T & = & μ \\
-\mbox{}\\
-\mbox{}   U_T ε_T F_Ta(a) & = & U_T ε_T (a) =  U_T(1_{T(a)} = μ(a) \\
-\mbox{}\\
-\mbox{}   ε_T(F_T(a))*F_T(η(a)) & = &   ε_T(a) * F_T(η(a)) \\ & = &  1_{T(a)} * (F_T(η(a)))  \\ & = &  1_{T(a)}   * (η(T(a))η(a)))   \\
-\mbox{}          & = & μ(T(a)) T (1_{T(a)} ) (η(T(a))η(a)))  \\    & = &  μ(T(a))η(T(a))η(a)   \\
-\mbox{}          & = & η(a) = 1_{F_T} \\ 
-\end{eqnarray*}
-
-
-
-\begin{eqnarray*}
-U_T(ε_T(a))η(U_T(a)) & = &  U_T(1_{T(a)} η( T(a)) )  \\ & = &  μ(T(a))T(1_{T(a)}) η(T(a))  \\ & = &  μ(T(a)) η(T(a)) 1_{T(a)}   \\ 
-& = &  1_{T(a)}  = T(1_a)   =  1_{U_T}  \\
-\end{eqnarray*}
-
-
-
----Comparison functor $K_T$
-
-Adjoint $(B,U,F,ε)$, $K_T : A_T -> B $,
-
-$ g : b -> c$.
-
-
-\begin{eqnarray*}
-K_T(a) & = & F(a)   \\
-K_T(g) & = & ε(F(c)) F(g)   \\
-K_T F_T(a) & = & K_T(a) = F(a)  \\
-K_T F_T(f) & = & K_T(η(b) f) \\& = & ε(F(b))F(μ(b)f)  \\ & = &  ε(F(b))F(μ(b))F(f)  = F(f)  \\
-\end{eqnarray*}
-
-
-\begin{eqnarray*}
-K_T (η(b))  & = &  ε(F(b))F(η(b)) = 1_{F(b)}  \\
-K_T (η(T(c))g)  & = &  ε(F(T(c)))F(η(T(c))g) = F(g)   \\
-K_T (g) K_T(f) & = &  ε(F(c))F(g) ε(F(b))F(f) = ε(F(c)) ε(F(c)) FUF(g) F(f)  \\
-K_T (g*f) & = &  ε(F(c)) F(μ(c)UF(g)f) =        ε(F(c)) F(μ(c)) FUF(g) F(f)  \\
-ε(F(c))FUF(g) & = &  F(g) ε(F(b))  \\
-\end{eqnarray*}
-
-----begin-comment: 
-
-            FU(F(g))   
-  FU(F(c))<-------------FU(F(b))
-     |                   |
-     |ε(F(c))            |ε(F(b))
-     |                   |
-     v        F(g)       v
-   F(c)<----------------F(b)
-
-----end-comment: 
-
-\begin{tikzcd}
-FU(F(c)) \arrow[leftarrow]{r}{FU(F(g))} \arrow{d}{ε(F(c))} & FU(F(b)) \arrow{d}{ε(F(b))} & \mbox{} \\
-F(c) \arrow[leftarrow]{r}{F(g)} & F(b) & \mbox{} \\
-\end{tikzcd}
-
-$   ε(F(c)) F(μ(c)) = ε(F(c)) ε(F(c))  $ ?
-
-$   ε(F(c)) F(μ(c)) = ε(F(c)) FUε(F(c)) $
-
-----begin-comment: 
-
-            FUε(F(c))   
- FUFU(c)<---------------FUFU(F(c))
-     |                   |
-     |εF(c))             |ε(F(c))
-     |                   |
-     v       ε(F(c))     v
-  FU(c)<----------------FU(F(c))
-
-
-----end-comment: 
-
-\begin{tikzcd}
-FUFU(c) \arrow[leftarrow]{r}{FUε(F(c))} \arrow{d}{εF(c))} & FUFU(F(c)) \arrow{d}{ε(F(c))} & \mbox{} \\
-FU(c) \arrow[leftarrow]{r}{ε(F(c))} & FU(F(c)) & \mbox{} \\
-\end{tikzcd}
-
-
-
-$  UK_T(a) = UF(a) = T(a) = U_T(a)  $
-
-$  UK_T(g) = U(ε((F(c))F(g))) = U(ε(F(c)))UF(g) =  μ(c)T(g) = U_T(g) $
-
-
-
-
-
-
---Monoid
-
-
-$T :  A -> M x A$
-
-$T(a) = (m,a)$
-
-$T(f) : T(A) -> T(f(A))$
-
-$T(f)(m,a) = (m,f(a))$
-
-$T(fg)(m,a) = (m,fg(a)) $
-
--- association of Functor
-
-$T(f)T(g)(m,a) = T(f)(m,g(a)) = (m,fg(a)) = T(fg)(m,a)$
-
-
-$μ : T x T -> T$
-
-$μ_a(T(T(a)) = μ_A((m,(m',a))) = (m*m',a) $
-
--- $TT$
-
-$TT(a) = (m,(m',a))$
-
-$TT(f)(m,(m',a)) = (m,(m',f(a))$
-
-
-
--- naturality of $μ$
-
-----begin-comment:
-           μ(a)
-   TT(a) ---------> T(a)
-      |              |
- TT(f)|              |T(f)
-      |              |
-      v    μ(b)       v
-   TT(b) ---------> T(b)
-----end-comment:
-
-\begin{tikzcd}
-TT(a) \arrow{r}{μ(a)} \arrow{d}{TT(f)} & T(a) \arrow{d}{T(f)} \\
-TT(b) \arrow{r}{μ(b)} & T(b)
-\end{tikzcd}
-
-
-$  μ(b)TT(f)TT(a) = T(f)μ(a)TT(a)$
-
-$  μ(b)TT(f)TT(a) = μ(b)((m,(m',f(a))) = (m*m',f(a))$
-
-$  T(f)μ(a)(TT(a)) = T(f)(m*m',a) = (m*m',f(a))$
-
---μ○μ
-
-Horizontal composition of $μ$
-
-$f -> μ_TT(a)$
-
-$a -> TT(a)$
-
-$μ_T(a) TTT(a) = μ_T(a) (m,(m',(m'',a))) = (m*m',(m'',a)) $
-
-----begin-comment:
-               μ(TTT(a))
-      TTTT(a) ----------> TTT(a)
-           |               |
- TT(μ(T(a))|               |T(μ(T(a)))
-           |               |
-           v   μ(TT(a))    v
-       TTT(a) -----------> TT(a)
-----end-comment:
-
-\begin{tikzcd}
-TTTT(a) \arrow{r}{μ(TTT(a))} \arrow{d}[swap]{TT(μ)} & TTT(a) \arrow{d}{T(μ)} & \mbox{} \\
-TTT(a) \arrow{r}{μ(TT(a))} & TT(a) & \mbox{} \\
-\end{tikzcd}
-
-
-\begin{eqnarray*}
-T(μ_a)μ_aTTTT(a)   & = &  T(μ_a)μ_a(m_0,(m_1,(m_2,(m_3,a))))) \\& = &   T(μ_a)(m_0*m_1,(m_2,(m_3,a))) = (m_0*m_1,(m_2*m_3,a)) \\
-μ_bTT(μ_a)TTTT(a) & = &  μ_bTT(μ_a)(m_0,(m_1,(m_2,(m_3,a))))) \\& = &  μ_b    (m_0,(m_1,(m_2*m_3,a))) = (m_0*m_1,(m_2*m_3,a)) \\
-\end{eqnarray*}
-
--Horizontal composition of natural transformation
-
-
---Natural transformation $ε$ and Functor $F: A->B, U:B->A$
-
-
-$    ε: FUFU->FU$
-
-$    ε: FU->1_B$
-
-Naturality of $ε$
-
-----begin-comment:
-                 ε(a)
-         FU(a)  ------> a
-     FU(f)|             |f
-          v      ε(b)   v
-         FU(b)  ------> b        ε(b)FU(f)a = fε(a)a
-
-                   ε(FU(a))
-       FUFU(a)  -----------> FU(a)
-   FUFU(f)|                   |FU(f)
-          v        ε(FU(b))   v
-       FUFU(b)  -----------> FU(b)
-
-                           ε((FU(b))FUFU(f)FU(a) = FU(f)ε(FU(a))FU(a)
-----end-comment:
-
-\begin{tikzcd}
-FU(a)  \arrow{r}{ε(a)} \arrow{d}{FU(f)} &  a \arrow{d}{f} \\
-FU(b) \arrow{r}{ε(b)}  & b &       ε(b)FU(f)a = fε(a)a \\
-FUFU(a) \arrow{r}{ε(FU(a))} \arrow{d}{FUFU(f)}&  FU(a) \arrow{d}{FU(f)} \\
-FUFU(b) \arrow{r}{ε(FU(b))} &  FU(b) \\
-& &                           ε((FU(b))FUFU(f)FU(a) = FU(f)ε(FU(a))FU(a) \\
-\end{tikzcd}
-
-
---Vertcial Compositon  $ε・ε$
-
-$  ε・ε : FUFU -> 1B$
-
-----begin-comment:
-                 ε(FU(a))           ε(a)
-       FUFU(a)  ---------> FU(a)   ------> a
-   FUFU(f)|                |FU(f)          |f
-          v      ε(FU(b))  v        ε(b)   v
-       FUFU(b)  ---------> FU(b)   ------> b
-----end-comment:
-
-\begin{tikzcd}
-FUFU(a) \arrow{r}{ε(FU(a))} \arrow{d}{FUFU(f)} &   FU(a) \arrow{r}{ε(a)}\arrow{d}{FU(f)} &  a\arrow{d}{f} \\
-FUFU(b) \arrow{r}{ε(FU(b))} &  FU(b)  \arrow{r}{ε(b)}  & b
-\end{tikzcd}
-
-
---Horizontal Composition  $ε○ε$
-
-----begin-comment:
-          FUFU  <-----  FU   <------  B
-                  FU              FU
-                   |               |
-                   |ε              |ε
-                   v               v
-                  1_B             1_B
-           B   <-----    B    <------  B
-----end-comment:
-
-\begin{tikzcd}
-FUFU  \arrow[leftarrow]{rr}  & &  FU \arrow[leftarrow]{rr}  & & B \\
-& FU \arrow{d}{ε} & & FU \arrow{d}{ε}& & \\
-& 1_B & & 1_B & & \\
-B   \arrow[leftarrow]{rr}  & &  B  \arrow[leftarrow]{rr} &  & B \\
-\end{tikzcd}
-
-cf. $FUFU, FU$ has objects of $B$.
-
-$   ε○ε : FUFU -> 1_B 1_B$
-
-----begin-comment:
-                 εFU(b)
-     FUFU(b)  ------------> 1_AFU(b)
-       |                     |
-       |FUε(b)               |1_aε(b)
-       |                     |
-       v         ε(b)        v
-     FU1_B(b) ------------> 1_B1_B(b)
-
-----end-comment:
-
-\begin{tikzcd}
-FUFU(b) \arrow{r}{εFU(b)} \arrow{d}{FUε(b)} & 1_A \arrow{d}{1_aε(b)} & \mbox{} \\
-FU1_B(b) \arrow{r}{ε(b)} & 1_B & \mbox{} \\
-\end{tikzcd}
-
-that is
-      
-----begin-comment:
-                 εFU(b)
-     FUFU(b)  ------------>  FU(b)
-       |                     |
-       |FUε(b)               |ε(b)
-       |                     |
-       v         ε(b)        v
-     FU(b)    ------------>  b
-----end-comment:
-
-\begin{tikzcd}
-FUFU(b) \arrow{r}{εFU(b)} \arrow{d}{FUε(b)} & FU(b) \arrow{d}{ε(b)} & \mbox{} \\
-FU(b) \arrow{r}{ε(b)} & b & \mbox{} \\
-\end{tikzcd}
-
-
-$ε(b) : b -> ε(b)$    arrow of $B$
-
-$     ε: FU -> 1_B$
-
-$         ε(b) : FU(b) -> b$
-
-----begin-comment:
-        U          F            ε(b)
-     b ----> U(b) ----> FU(b) -------> b
-----end-comment:
-
-\begin{tikzcd}
-b \arrow{r}{U} & U(b) \arrow{r}{F} & FU(b) \arrow{r}{ε(b)} & b & \mbox{} \\
-\end{tikzcd}
-
-replace $f$ by $ε(b)$, $a$ by $FU(b)$  in naturality $ε(b)FU(f)a = fε(a)a$
-
-$   ε(b)FU(ε(b))FU(b) = εε(FU(b))FU(b)$
-
-remove $FU(b)$ on right, 
-
-$   ε(b)FU(ε(b)) = ε(b)ε(FU(b))$
-
-this shows commutativity of previous diagram
-
-$   ε(b)ε(FU(b)) = ε(b)FU(ε(b))$
-
-that is
-
-$  εεFU = εFUε$
-
-
-
---Yoneda Functor
-
-
-$ Y:  A -> Sets^{A^{op}} $
-
-$ Hom_A : A^{op} \times A -> Sets $
-
-$ g:a'->a, h:b->b' $
-
-$ Hom_A((g,h)) : Home_A(a,b)  -> \{hfg | f \in Home_A(a,b) \}   $
-
-$ Hom_A((g,h)○(g',h') : Home_A(a,b)  -> \{hh'fgg' | f \in Home_A(a,b) \}   $
-
-$ Hom_A((g,h)) Hom_A((g',h')) : Home_A(a,b)  -> \{h'fg' | f \in Home_A(a,b) \} -> \{hh'fgg' | f \in Home_A(a,b) \}   $
-
-----begin-comment:
-
-         g'        g
-     a -----> a' -----> a''
-              |         |
-              |         |f
-         h'   v    h    v
-     b<-------b' <----- b''
-
-----end-comment:
-
-\begin{tikzcd}
-a \arrow{r}{g'} & a' \arrow{r}{g} \arrow{d}{} & a'' \arrow{d}{f} & \mbox{} \\
-b \arrow[leftarrow]{r}{h'} & b' \arrow[leftarrow]{r}{h} & b'' & \mbox{} \\
-\end{tikzcd}
-
-$ Hom^*_A : A^{op} -> Sets^{A}  $
-
-$    f^{op}: a->c   ( f : c->a ) $
-
-$    g^{op}: c->d   ( g : d->c ) $
-
-$   Home^*_A(a) : a -> λ b . Hom_A(a,b)   $
-
-$   Home^*_A(f^{op})  : (a -> λ b . Hom_A(a,b)) -> (c -> λ b . Hom_A(f(c),b))  $
-
-$   Home^*_A(g^{op}f^{op}) : (a -> λ b . Hom_A(a,b)) -> (d -> λ b . Hom_A(fg(d),b))  $
-
-$   Home^*_A(g^{op}) Home^*_A(f^{op}) : (a -> λ b . Hom_A(a,b)) -> (c -> λ b . Hom_A(f(c),b)) -> (d -> λ b . Hom_A(fg(d),b)) $
-
-
-$ Hom^*_{A^{op}} : A -> Sets^{A^{op}}  $
-
-$     f : c->b  $
-$     g : d->c  $
-
-$   Home^*_{A^{op}}(b) : b -> λ a . Hom_{A^{op}}(a,b)   $
-
-$   Home^*_{A^{op}}(f)  : (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c)))  $
-
-$   Home^*_{A^{op}}(gf) : (b -> λ a . Hom_{A^{op}}(a,b)) -> (d -> λ a . Hom_{A^{op}}(a,gf(d)))  $
-
-$   Home^*_{A^{op}}(g) Home^*_{A^{op}}(f) : (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c))) -> (d -> λ a . Hom_{A^{op}}(a,gf(d))) $
-
-
-Arrows in $ Set^{A^{op}} $?
-
-$ f: b->c =  (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c)))  $
-
-$ Set^{A^{op}} : A^{op} -> Set $
-
-an object $ b =  λ a . Hom_{A^{op}}(a,b)   $ is a functor from $A^{op}$ to $ Set $.
-
-$ t:  (λ a . Hom_{A^{op}}(a,b)) -> (λ a . Hom_{A^{op}}(a,t(c)))  $ should be a natural transformatin.
-
-$ f^{op}: (b : A^{op}) -> (c : A^{op} )  = f : c->b $
-
-
-----begin-comment:
-
-                            t(c)     
-Hom_{A^{op}}(a,c) ------------------------->Hom_{A^{op}}(a,t(c))
-    |                                                 ^
-    |                                                 |
-    |Home^*{A^{op}}(a,f)                              |Home^*{A^{op}}(a,f)
-    |                                                 | 
-    v                       t(b)                      |
-Hom_{A^{op}}(a,b) ------------------------->Hom_{A^{op}}(a,t(b))
-
-
-
-----end-comment:
-
-\begin{tikzcd}
-Hom_{A^{op}}(a,c) \arrow{r}{t(c)} \arrow{d}{Home^*{A^{op}}(a,f)} & Hom_{A^{op}}(a,t(c)) & \mbox{} \\
-Hom_{A^{op}}(a,b) \arrow{r}{t(b)} & Hom_{A^{op}}(a,t(b)) \arrow{u}[swap]{Home^*{A^{op}}(a,f)} & \mbox{} \\
-\end{tikzcd}
-
-
----Contravariant functor
-
-$   h_a = Hom_A(-,a)   $
-
-$   f:b->c,  Hom_A(f,1_a): Hom_A(c,a) -> Hom_A(b,a)  $
-
-
-
-
-
-
-
-
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc/category.ind	Sat Mar 04 11:05:40 2017 +0900
@@ -0,0 +1,1602 @@
+-title: Cateogry
+
+--author: Shinji KONO <kono@ie.u-ryukyu.ac.jp>
+
+\usepackage{tikz}
+\usepackage{tikz-cd}
+
+--Adjunction 
+
+\begin{eqnarray*}        
+Uε○ηU & = & 1_U \\
+εF○Fη & = & 1_F
+\end{eqnarray*}        
+
+$f: a -> Ub $
+
+----begin-comment:
+                       FU(b)
+                     ・   |
+                  ・      |
+          F(f) ・         |
+            ・         ε(b)
+         ・               |
+     ・      f*           v
+  F(a) -----------------> b
+
+            U(f*)
+ UF(a) -----------------> Ub
+   ^                    ・
+   |                 ・
+   |              ・
+η(a)          ・  f
+   |       ・
+   |    ・    f = U(f*)η
+   |・
+   a
+
+----end-comment:
+
+\begin{tikzcd}
+\mbox{}                                      & FU(b) \arrow{d}{ε(b)}           \\
+F(a)  \arrow{ru}{F(f)} \arrow{r}{f*}         & b \\
+UF(a) \arrow{r}{U(f*)}                       & Ub \\
+a     \arrow{u}{η(a)} \arrow{ru}{f}          & \\
+\end{tikzcd}
+
+Universal mapping problem is
+for each $f:->Ub$, there exists $f*$ such that $f = U(f*)η$.
+
+--Adjunction to Universal mapping
+
+In adjunction $(F,U,ε,η)$, put $f* = ε(b)F(f)$, 
+we are going to prove $f*$ is a solution of Universal mmapping problem. That is $U(f*)η = f$.
+
+\begin{tikzcd}
+UF(a)  \arrow{r}[swap]{UF(f)}  \arrow[bend left]{rr}{U(ε(b)F(f))=U(f*)}   
+& UFUb   \arrow{r}[swap]{U(ε(b))} & \mbox{?} \\
+a     \arrow{u}{η(a)} \arrow{r}[swap]{f} & Ub \arrow{u}{η(Ub)}  \\
+\end{tikzcd}
+
+\begin{tikzcd}
+UF(a) \arrow{rd}[swap]{U(f*)} \arrow{r}{UF(f)}    & UFUb \arrow[bend left]{d}{U(ε(b))} \\
+a     \arrow{u}{η(a)} \arrow{r}[swap]{f}          & Ub \arrow{u}{η(Ub)}  \\
+F(a)  \arrow{r}{F(f)} \arrow{rd}[swap]{f*}  & FU(b) \arrow{d}{ε(b)} \\
+\mbox{} & b \\
+\end{tikzcd}
+∵$   Uε○ηU = 1_U $
+
+\[   U(ε(b))η(U(b)) = 1_{U(b)} \] 
+
+means that 
+
+$ε(b) : FU(b)->b $ is solution of $1_{U(b)}$.
+
+naturality $ fη(U(b)) = U(F(f))η(a) $ 
+
+gives solution $ U(ε(b))UF(f) = U(F(f)ε(b)) $ for $f$.
+
+
+
+\[ U(f*)η(a)(a) = f(a) \]
+
+then 
+
+$U(ε(b)F(f))η(a)(a) = U(ε(b))UF(f)η(a)(a) $
+
+since $F$ is a functor. And we have
+
+$U(ε(b))UF(f)η(a)(a)  = U(ε(b))η(b)f(a)$
+
+because of naturality of $η$
+
+----begin-comment:
+       η(a)
+UF(a) <------- a    UF(f)η(a) = η(b)f 
+|             |
+|UF(f)       f|
+v             v
+UF(b) <------- b             
+       η(b)
+
+----end-comment:
+
+\begin{tikzcd}
+UF(a) \arrow[leftarrow]{r}{η(a)} \arrow{d}{UF(f)} & a \arrow{d}{f} &  UF(f)η(a) = η(b)f \\
+UF(b) \arrow[leftarrow]{r}{η(b)}        & b & 
+\end{tikzcd}
+
+too bad.... we need some thing more.
+
+
+---Adjoint of η
+
+$   Uε○ηU = 1_U $
+
+----begin-comment:
+       F(f)              ε(b)
+F(a) ---------> FU(b)  -------->  b
+
+      UF(f)             U(ε(b))
+UF(a) --------> UFU(b)  --------> U(b)
+
+      η(a)              UF(f)            U(ε(b))
+a  --------->   UF(a) --------> UFU(b)  --------> U(b)
+
+       f                η(Ub)            U(ε(b))
+a  --------->   Ub    --------> UFU(b)  --------> U(b)
+
+                        η(Ub)            U(ε(b))  = 1
+                              ∵   Uε○ηU = 1_U
+
+----end-comment:
+
+\begin{tikzcd}
+F(a) \arrow{r}{F(f)} & FU(b) \arrow{r}{ε(b)} & b & \\
+UF(a) \arrow{r}{UF(f)} &  UFU(b)  \arrow{r}{U(ε(b))} &  U(b) & \\
+a  \arrow{r}{η(a)} &  UF(a) \arrow{r}{UF(f)} & UFU(b)  \arrow{r}{U(ε(b))}  & U(b) \\
+a  \arrow{r}{f} &  Ub  \arrow{r}{η(Ub)}[swap]{η(Ub)}  &  UFU(b) \arrow{r}{U(ε(b))}[swap]{U(ε(b))=1} &  U(b) \\
+\end{tikzcd}
+
+
+∵   $Uε○ηU = 1_U$
+
+naturality of $f:a->Ub$
+
+----begin-comment:
+
+      η(Ub)
+Ub  --------->   UF(Ub) 
+^                ^
+|                |
+f|                |UF(f)
+|     η(a)       |
+a  --------->   UF(a) 
+
+----end-comment:
+
+\begin{tikzcd}
+Ub  \arrow{r}{η(Ub)} &   UF(Ub)  \\
+a \arrow{u}{f} \arrow{r}{η(a)} & UF(a) \arrow{u}[swap]{UF(f)}
+\end{tikzcd}
+
+----begin-comment:
+
+       UF(f)   
+UF(a) ------------->UF(U(b))    UF(U(b))
+^                  ^             |
+|                  |             |
+η(a)|           η(U(b))|             |U(ε(U(b)))
+|        f         |             v
+a  --------------->U(b)         U(b) 
+
+----end-comment:
+
+\begin{tikzcd}
+UF(a) \arrow{r}{UF(f)} & UF(U(b)) & UF(U(b)) \arrow{d}{U(ε(U(b)))} & \mbox{} \\
+a \arrow{r}{f} \arrow{u}[swap]{η(a)} & U(b) \arrow{u}[swap]{η(U(b))} & U(b) & \mbox{} \\
+\end{tikzcd}
+
+Solution of universal mapping yields naturality of $Uε○ηU = 1_U$.
+
+----begin-comment:
+
+                           F(η(a)) 
+UF(a)               F(a) ----------> FUF(a)
+^                                   |
+|                                   |
+η(a)|                                   |ε(F(a))
+|       η(a)                        v
+a  --------------->UF(a)            F(a)
+
+----end-comment:
+
+$εF○Fη = 1_F$.
+
+\begin{tikzcd}
+UF(a) \arrow{rd}[swap]{1_{UF(a)}} & F(a) \arrow{r}{F(η(a))} \arrow{rd}{1_{F(a)}}[swap]{(1_{UF(a)})*}  & FUF(a) \arrow{d}{ε(F(a))} & \mbox{} \\
+a \arrow{r}[swap]{η(a)} \arrow{u}{η(a)} & UF(a) & F(a) & \mbox{} \\
+\end{tikzcd}
+
+--Universal mapping to adjunction
+
+Functor $U$, mapping $F(a)$ and $(f)*, U(f*)η(a) = f $  are given.
+
+object $F(a):A -> B$
+
+$ η(a): a->UF(a)$ 
+
+put 
+\[    F(f) = (η(b)f)* \]
+\[ ε : FU -> 1_B        \]
+\[  ε(b) = (1_{U(b)})* \]
+
+----begin-comment:
+             f*
+  F(a) -----------------> b
+
+            U(f*)
+ UF(a) -----------------> Ub
+   ^                    ・
+   |                 ・
+   |              ・
+η(a)          ・  f
+   |       ・
+   |    ・    f = U(f*)η
+   |・
+   a
+----end-comment:
+
+\begin{tikzcd}
+F(a) \arrow{r}{f*} & b \\
+UF(a) \arrow{r}{U(f*)} & Ub  \\
+a \arrow{u}{η(a)} \arrow{ur}{f}
+\end{tikzcd}
+
+$f = U(f*)η$
+
+Show F is a Functor, that is $F(fg) = F(f)F(g)$.
+
+Show naturality of $η(a)$.
+
+\[    f:a->b,   F(f) = (η(b)f)*\]
+
+Show naturality of $ε(b) = (1_U)*$.
+
+---Definitions
+
+f's destination
+\[ f: a -> U(b) \] 
+universal mapping
+\[ U(f*)η(a) = f \] 
+defnition of F(f)
+\[    F(f) = (η(U(b))f)* \]
+definition of $ε$ 
+\[  ε(b) = (1_{U(b)})* \] 
+
+----begin-comment:
+
+               FU(f*) 
+      FUF(a)------------->FU(b)      
+       ^|                   |      
+       ||ε(F(a))            |       
+F(η(a))||                   |ε(b)=(1_U(b))*  
+       ||   (η(Ub)f)*=F(f)  |               
+       |v                   v              
+       F(a) --------------->b              
+                 f*
+               UF(f) 
+       UF(a)------------->UFU(b)           
+        ^                  ^|  
+        |       U(f*)      ||   
+    η(a)|           η(U(b))||U(ε(b))  
+        |                  ||  
+        |                  |v  
+        a  --------------->U(b) 
+                 f
+
+----end-comment:
+
+\begin{tikzcd}
+FUF(a) \arrow{r}{FU(f*)} \arrow{d}{ε(F(a))} & FU(b) \arrow{d}{ε(b)=(1_U(b))*} & \mbox{} \\
+F(a) \arrow{r}[swap]{f*} \arrow[bend left]{u}{F(η(a))} \arrow{ru}[swap]{F(f)} & b & \mbox{} \\
+UF(a) \arrow{r}{UF(f)} \arrow{rd}[swap]{U(f*)} & UFU(b) \arrow[bend left]{d}{U(ε(b))} & \mbox{} \\
+a \arrow{r}[swap]{f} \arrow{u}{η(a)} & U(b) \arrow{u}{η(U(b))} & \mbox{} \\
+\end{tikzcd}
+
+$εF○Fη = 1_F$,
+$ ε(b) = (1_{U(b)})* $,
+
+$ ε(F(a)) = (1_{UF(a)})* $
+
+
+----begin-comment:
+
+                            F(η(a))
+UF(a)              F(a) --------------> FUF(a)
+ ^                                      |^
+ |                                      ||
+η(a)|    U(1_{F(a)})     1_{F(a)}   ε(F(a))||F(η(a))
+ |                                      ||
+ |                                      v|
+ a ---------------> U(F(a))            F(a)
+        η(a)
+
+----end-comment:
+
+\begin{tikzcd}
+UF(a) \arrow{rd}{U(1_{F(a)}) } & F(a) \arrow{r}{F(η(a))} \arrow{rd}[swap]{1_{F(a)}} & FUF(a) \arrow{d}[swap]{ε(F(a))} & \mbox{} \\
+a \arrow{r}[swap]{η(a)} \arrow{u}{η(a)} & U(F(a)) & F(a) \arrow[bend right]{u}[swap]{F(η(a))} & \mbox{} \\
+\end{tikzcd}
+
+
+
+
+
+--- Functor F
+
+\[    F(f) = (η(b)f)* \]
+
+\[    U(F(f))η(a) = η(b)f \]
+
+
+show $F(fg) = F(f)F(g)$
+
+
+----begin-comment:
+  g        f
+a -----> Ub ----> UUc
+----end-comment:
+
+\begin{tikzcd}
+a \arrow{r}{g} &  Ub \arrow{r}{f} &  UUc
+\end{tikzcd}
+
+\begin{eqnarray*}
+U(F(g))η(a)  & = & η(Ub)g \\
+U(F(f))η(Ub) & = & η(UUc)f
+\end{eqnarray*}
+
+show
+\[
+U(F(f)F(g))η(a) = η(UUc)fg
+\]
+
+then $F(f)F(g) = F(fg)$
+
+\begin{eqnarray*}
+U(F(f)F(g))η(a) & = & UF(f)UF(g)η(a)  \\
+&                     = &  UF(f)η(Ub)g \\
+&                     = & η(UUc)fg
+\end{eqnarray*}
+\mbox{Q.E.D.}
+
+----begin-comment:
+                                FU(f)
+                       FU(b) -------------> FUU(c)
+                     ・   |                  |
+                  ・      |                  |
+          F(g) ・         |                  |
+            ・         ε(b)            ε(Uc) |
+         ・               |                  |
+     ・      g*           v       f*         v
+  F(a) -----------------> b ---------------> c
+
+                               U(F(f))
+ UF(a)                  UFUb 
+   ^ ・                   ^ ・  
+   |     ・               |    ・ 
+   |        ・            |      ・
+η(a)           ・ UFg     |         ・ UFf
+   |              ・      η(Ub)       ・ 
+   |                ・    |              ・ 
+   |       g           ・ |          f     ・
+   a  -----------------> Ub ---------------> UU(c)
+----end-comment:
+
+
+\begin{tikzcd}
+F(a) \arrow{r}{F(g)} \arrow{rd}{g*}& FU(b) \arrow{r}{FU(f)} \arrow{d}{ε(b)} \arrow{rd}{f*} & FUU(c) \arrow{d}{ε(Uc)} \\
+\mbox{}   & b  &  U(c) \\
+\\
+UF(a) \arrow{rd}{U(g*)} \arrow{r}{UFg} &  UFUb  \arrow{rd}{Uf*} \arrow{r}{UFf} & UFUUc \\
+a  \arrow{r}{g}\arrow{u}{η(a)} &  Ub \arrow{r}{f} \arrow{u}[swap]{η(Ub)} &  UU(c) \arrow{u}[swap]{η(UUc)}
+\end{tikzcd}
+
+--- naturality of η
+
+$  η: 1->UB $
+
+----begin-comment:
+
+ UF(a)-----------------> UFb 
+   ^      UF(f)           ^
+   |                      |
+   |                      |
+η(a)                      η(b)
+   |                      |
+   |         f            | 
+   a  ----------------->  b
+----end-comment:
+
+\begin{tikzcd}
+UF(a) \arrow{r}[swap]{UF(f)} &  UFb  \\
+a  \arrow{r}{f} \arrow{u}{η(a)} &   b \arrow{u}{η(b)}
+\end{tikzcd}
+
+prove $η(b)f  =  UF(f)η(a) $
+\begin{eqnarray*}
+&   η(b)f: & a-> UFb \\
+F(f) & = & (η(b)f)*   \mbox{\hspace{1cm}(definition)} \\
+η(b)f & = & U(F(f))η(a)   
+\end{eqnarray*}
+\mbox{Q.E.D.}
+
+--- naturality of ε
+
+\[
+ε : FU -> 1_B        
+\]
+\[
+U: B->A
+\]
+
+$  ε(b) = (1_{U(b)})*$
+
+$    U(ε(b))η(U(b)) = 1_{U(b)}$
+
+$    U(ε(b))η(U(b))U(b) = U(b)$
+
+
+----begin-comment:
+        FU(f)
+FU(b) -------------> FU(c)
+ |                  |
+ |                  |
+ε(b)                  | ε(c)
+ |                  |
+ v       f          v
+ b ---------------> c
+----end-comment:
+
+\begin{tikzcd}
+FU(b) \arrow{r}{FU(f)} \arrow{d}{ε(b)} & FU(c) \arrow{d}{ε(c)}\\
+b \arrow{r}{f} &  c
+\end{tikzcd}
+
+prove $fε(b) = ε(c)FU(f)$
+
+
+\[       f = Ub -> Uc \]
+
+----begin-comment:
+
+             FU(f)              (1_U(c))*
+  F(Ub) --------------> FU(c)  ---------------> c
+
+             (1_U(b))*              f
+  F(Ub) ----------------> b  -----------------> c
+
+            U(1_U(b)*)             U(f)
+ UF(Ub) ----------------> Ub -----------------> U(c)
+   ||                   ・                       ||
+   ||                ・                          ||
+   ||    UFU(f)   ・            U(1_U(c)*)       ||
+ UF(Ub) ----- ・ ------>  UFUc ---------------> U(c) 
+   ^       ・             ^                      ||
+   |     ・               |                      ||
+η(Ub) ・   1_Ub     η(Uc) |                      ||
+   |・                    |        1_Uc          ||
+   Ub ------------------> Uc -----------------> U(c)
+            U(f)
+
+----end-comment:
+
+\begin{tikzcd}
+F(Ub) \arrow{r}{(1_{U(b)})*} &  b \arrow{r}{f}  &  c  \\
+UF(Ub) \arrow{r}{U(1_{U(b)})*} \arrow{rd}[swap]{UFU(f)} & Ub \arrow{r}{U(f)} & U(c) \\
+\mbox{} & UFUc \arrow{ru}{U(1_U(c)*)} & \\
+Ub \arrow{r}{U(f)} \arrow{ruu}[swap]{1_{Ub}} \arrow{uu}{η(Ub)} &  Uc \arrow{ruu}[swap]{1_{Uc}} \arrow{u}{η(Uc)} \\
+F(Ub) \arrow{r}{FU(f)} &  FU(c)  \arrow{r}{(1_{U(c)})*} &  c \\
+\end{tikzcd}
+
+----begin-comment:
+
+\begin{tikzcd}
+\mbox{} & Ub \arrow{r}{U(f)} & U(c) \\
+UF(Ub) \arrow{ru}{U(1_U(b)*)} \arrow{r}[swap]{UFU(f)} & UFUc \arrow{ru}{U(1_U(c)*)} & \\
+Ub \arrow{r}{U(f)} \arrow{ruu}{1_Ub} \arrow{u}{η(Ub)} &  Uc \arrow{ruu}[swap]{1_Uc} \arrow{u}{η(Uc)} &  \mbox{}
+\end{tikzcd}
+
+
+\begin{tikzcd}
+UF(Ub) \arrow{d}{U(1_U(b)*)} \arrow{r}{UFU(f)} & UFUc \arrow{d}{U(1_U(c)*)}  \\
+Ub \arrow{r}{U(f)} & U(c) \\
+Ub \arrow{r}{U(f)} \arrow{u}{1_Ub} \arrow[bend left]{uu}{η(Ub)} &  Uc \arrow{u}[swap]{1_Uc} \arrow[bend right]{uu}[swap]{η(Uc)} 
+\end{tikzcd}
+
+----end-comment:
+
+
+show $ε(c)FU(f)$ and $fε(b)$ are both solution of $(1_{Uc})U(f) ( = U(f)(1_{Ub}))$
+
+\[
+(fε(b)))η(Ub)Ub = U(f))U(ε(b))η(Ub)Ub 
+\]
+\[
+= U(f)1_{U(b)}Ub = U(f)Ub = Ufb = U(f)(1_{Ub})Ub
+\]
+\[
+\mbox{∴}fε(b) = (U(f)(1_{Ub}))*
+\]
+
+$  UFU(f)η(Ub) = η(Uc)U(f)$    naturality  of η
+
+\[
+U(ε(c)FU(f))η(Ub)Ub = U(ε(c))UFU(f)η(Ub)Ub 
+\]
+\[
+= U(ε(c))η(Uc)U(f)Ub = 1_{U(c)}U(f)Ub = U(f)Ub = U(f)(1_{Ub})Ub
+\]
+\[
+\mbox{∵} U(ε(c))η(Uc) = 1_U(c)
+\]
+
+end of proof.
+
+----begin-comment:
+                       U(f*)
+c              U(c) <- ----------- U(b)             b   
+^              ^|                  |^             ^
+|       U(ε(c))||η(U(c))    η(U(b))||U(ε(b))      |
+|ε(c)          ||                  ||         ε(b)|
+|              |v      UFU(f)      v|             |
+FU(c)         UFU(c) <----------- UFU(b)           FU(b)
+----end-comment:
+
+\begin{tikzcd}
+c       \arrow[bend left,leftarrow]{rrr}{f}
+&       U(c) \arrow[leftarrow]{r}{U(f)} \arrow{d}{η(U(c))}  &  U(b)   \arrow{d}[swap]{η(U(b))}         &       b    \\
+FU(c) \arrow{u}{(1_{Uc})* = ε(c)} \arrow[bend right,leftarrow]{rrr}{FU(f)} &       
+UFU(c) \arrow[leftarrow]{r}{UFU(f)} \arrow[bend left]{u}{U(ε(c))} & UFU(b) \arrow[bend right]{u}[swap]{U(ε(b))} 
+&        FU(b) \arrow{u}[swap]{ε(b) = (1_{Ub})*} 
+\end{tikzcd}
+
+It also prove
+
+\[     Uε○ηU = 1_U\]
+
+---$Uε○ηU = 1_U$
+
+$    ε(b) = (1_U(b))* $
+
+that is
+
+$    U((1_U(b)*)η(U(b)) = 1_U(b) $
+$    U(ε(b))η(U(b)) = 1_U(b) $
+
+$    \mbox{∴} Uε○ηU = 1_U $
+
+--- $εF○Fη = 1_F$
+
+$   η(a) = U(1_F(a))η(a) $
+
+$=> (η(a))* = 1_F(a)$   ... (1)
+
+$   ε(F(a)) = (1_UF(a))*$
+
+$=> 1_UF(a) = U(ε(F(a)))η(UF(a))  $
+
+times $η(a)$ from left
+
+$   η(a) = U(ε(F(a)))η(UF(a))η(a)$
+
+$η(UF(a)) = UFη(a)$ naturality of $η$
+
+$   η(a) = U(ε(F(a)))(UFη(a))η(a) $ \\
+$        = U(ε(F(a)Fη(a)))η(a) $ \\
+$      => (η(a))* = ε(F(a))Fη(a)   .... (2)  $ \\
+
+from (1),(2), since $(η(a))*$ is unique
+
+\[       ε(F(a))Fη(a) = 1_F(a) \]
+
+----begin-comment:
+
+        F                U
+UF(a) --------> FUF(a) ----------> UFUF(a)         FUF(a)
+^               ^|                 |^              ^|
+|               ||                 ||              ||
+|η(a)    F(η(a))||ε(F(a))  U(εF(a))||η(UF(a))      ||ε(F(a))
+|               ||                 ||              ||
+|       F       |v       U         v|              |v
+a ------------> F(a) ------------> UF(a)           F(a)
+----end-comment:
+
+
+\begin{tikzcd}
+UF(a) \arrow{r}{F}&  FUF(a) \arrow{rr}{U} \arrow[bend left]{d}{ε(F(a))} & \mbox{} &  UFUF(a) \arrow[bend left]{d}{U(εF(a))} \\ 
+a \arrow{r}{F} \arrow{u}{η(a)} &  F(a) \arrow{rr}{U} \arrow[bend left]{u}{F(η(a))} & \mbox{} &  UF(a) \arrow[bend left]{u}{η(UF(a))} \\ 
+\mbox{} & F(a) \arrow{u}{(η(a))* = 1_{Fa}} \arrow{rr}{U} &  & UF(a) \arrow{u}[swap]{η(a) = U(εF(a))η(UF(a))}
+\end{tikzcd}
+
+\begin{tikzcd}
+UF(a) \arrow{r}{F} & FUF(a) \arrow{r}{U} \arrow[bend left]{d}{ε(F(a))} & UFUF(a) \arrow[bend right]{d}[swap]{U(εF(a))} & FUF(a) \arrow[bend left]{d}{ε(F(a))} & \mbox{} \\
+a \arrow{r}{F} \arrow{u}[swap]{η(a)} & F(a) \arrow{r}{U} \arrow[bend left]{u}{F(η(a))} & UF(a) \arrow[bend right]{u}[swap]{η(UF(a))} & F(a) \arrow{u}{} & \mbox{} \\
+\end{tikzcd}
+
+----begin-comment:
+               
+            UUF(a) 
+            ^ |   
+            | |  
+    η(UF(a))| |U(ε(Fa))    U(ε(F(a))η(UF(a)) = 1_UF(a)
+            | v              ε(F(a) = (1_UF(a))*
+            UF(a) 
+----end-comment:
+
+\begin{tikzcd}
+UUF(a)  \arrow[bend left]{d}{U(ε(Fa))} \\
+UF(a)  \arrow[bend left]{u}{η(UF(a))}
+\end{tikzcd}
+$U(ε(F(a)))η(UF(a)) = 1_UF(a) $ \\
+$ ε(F(a)) = (1_UF(a))* $
+
+
+----begin-comment:
+    FA -------->UFA
+     |          |
+     | Fη(A)    | UFηA
+     v          v
+    FUFA ------>UFUFA
+----end-comment:
+
+\begin{tikzcd}
+FA    \arrow{r} \arrow{d}{Fη(A)} &     UFA \arrow{d}{UFηA} \\
+FUFA  \arrow{r} &     UFUFA
+\end{tikzcd}
+
+$ε(FA)$の定義から $U(ε(FA)): UFUFA→UFA$
+
+唯一性から $ε(F(A)):FUFA→FA$  従って
+
+\[        ε(F(A))Fη(A)=1 \]
+
+ってなのを考えました。
+
+
+$    Uη(A') = U(1(FA'))η(A')$より \\
+$    η(A')*=1(FA')$、 \\
+$    Uη(A') = U(ε(FA')Fη(A'))η(A')$より \\
+$    η(A')*=ε(FA')Fη(A')$から \\
+$    1_F=εF.Fη$は言えました。 \\
+
+後者で$η$の自然性と$ε$の定義を使いました。
+
+
+--おまけ
+
+$ εF○Fη=1_F, Uε○ηU = 1_U $ 
+----begin-comment:
+
+                    U                             
+       UFU(a) <--------------- FU(a)
+        ^|                      |
+ η(U(a))||U(ε(a))               |ε(a)
+        |v                      v
+        U(a) <----------------  (a)
+                    U   
+
+                    F                             
+       FUF(a) <--------------- UF(a)
+        ^|                      ^
+   Fη(a)||εF(a)                 |η(a)
+        |v                      |
+        F(a) <----------------  (a)
+                    F   
+
+----end-comment:
+
+\begin{tikzcd}
+UFU(a) \arrow[leftarrow]{r}{U} \arrow[bend left]{d}{U(ε(a))} & FU(a) \arrow{d}{ε(a)} & \mbox{} \\
+U(a) \arrow[leftarrow]{r}[swap]{U} \arrow[bend left]{u}{η(U(a))} & (a) & \mbox{} \\
+FUF(a) \arrow[leftarrow]{r}{F} \arrow[bend left]{d}{εF(a)} & UF(a) & \mbox{} \\
+F(a) \arrow[leftarrow]{r}[swap]{F} \arrow[bend left]{u}{Fη(a)} & (a) \arrow{u}[swap]{η(a)} & \mbox{} \\
+\end{tikzcd}
+
+
+
+なら、 $ FU(ε(F(a))) = εF(a) $ ?
+
+----begin-comment:
+                        U                             
+           UFU(F(a)) <--------------- FU(F(a))
+            ^|                         |
+     η(U(a))||U(ε(F(a)))               |ε(F(a))
+            |v                         v
+            U(F(a)) <----------------  F(a)
+                        U   
+
+                        FU                             
+          FUFU(F(a)) <--------------- FU(F(a))
+            ^|                         |
+    Fη(U(a))||FU(ε(F(a)))              |ε(F(a))
+            |v                         v
+           FU(F(a)) <----------------  F(a)
+                        FU   
+
+                        F                             
+           FUF(a) <--------------- UF(a)
+            ^|                      ^
+       Fη(a)||εF(a)                 |η(a)
+            |v                      |
+            F(a) <----------------  (a)
+                        F   
+----end-comment:
+
+\begin{tikzcd}
+UFU(F(a)) \arrow[leftarrow]{r}{U} \arrow[bend left]{d}{U(ε(F(a)))} & FU(F(a)) \arrow{d}{ε(F(a))} & \mbox{} \\
+U(F(a)) \arrow[leftarrow]{r}[swap]{U} \arrow[bend left]{u}{η(U(a))} & F(a) & \mbox{} \\
+FUFU(F(a)) \arrow[leftarrow]{r}{FU} \arrow[bend left]{d}{FU(ε(F(a)))} & FU(F(a)) \arrow{d}{ε(F(a))} & \mbox{} \\
+FU(F(a)) \arrow[leftarrow]{r}[swap]{FU} \arrow[bend left]{u}{Fη(U(a))} & F(a) & \mbox{} \\
+FUF(a) \arrow[leftarrow]{r}{F} \arrow[bend left]{d}{εF(a)} & UF(a) & \mbox{} \\
+F(a) \arrow[leftarrow]{r}[swap]{F} \arrow[bend left]{u}{Fη(a)} & (a) \arrow{u}[swap]{η(a)} & \mbox{} \\
+\end{tikzcd}
+
+--Monad 
+
+$(T,η,μ)$
+
+$    T: A -> A $
+
+$    η: 1_A -> T $
+
+$    μ: T^2 -> T $
+
+$  μ○Tη = 1_T = μ○ηT $  Unity law
+
+$  μ○μT  = μ○Tμ $      association law
+
+----begin-comment:
+         Tη                      μT
+   T ---------> T^2        T^3---------> T^2
+   |・          |           |            |
+   |  ・1_T     |           |            |
+ ηT|     ・     |μ        Tμ|            |μ
+   |       ・   |           |            |
+   v         ・ v           v            v
+   T^2 -------> T          T^2 --------> T
+         μ                        μ
+----end-comment:
+
+\begin{tikzcd}
+T \arrow{r}{Tη} \arrow{d}[swap]{ηT} \arrow{rd}{1_T} & T^2 \arrow{d}{μ} & T^3 \arrow{r}{μT} \arrow{d}[swap]{Tμ}& T^2 \arrow{d}{μ} & \mbox{} \\
+T^2 \arrow{r}[swap]{μ} & T & T^2 \arrow{r}[swap]{μ}  & T & \mbox{} \\
+\end{tikzcd}
+
+
+--Adjoint to Monad
+
+Monad (UF, η, UεF) on adjoint (U,F, η, ε)
+
+\begin{eqnarray*}
+εF○Fμ & = & 1_F   \\
+Uε○μU & = & 1_U   \\
+\end{eqnarray*}
+
+\begin{eqnarray*}
+μ○Tη & = & (UεF)○(UFη)   =   U (εF○Fη)   =   U 1_F    =   1_{UF}  \\
+μ○ηT & = & (UεF)○(ηUF)   =   (Uε○ηU) F   =   1_U F    =   1_{UF}  \\
+\end{eqnarray*}
+
+\begin{eqnarray*}
+(UεF)○(ηUF) & = & (U(ε(F(b))))(UF(η(b)))  \\
+& = &  U(ε(F(b))F(η(b)))   =   U(1_F)    \\
+\end{eqnarray*}
+
+----begin-comment:
+
+            UεFUF                       εFUF                    ε(a)
+     UFUFUF-------> UFUF          FUFUF-------> FUF       FU(a)---------->a 
+      |             |               |            |         |              |
+      |             |               |            |         |              |
+ UFUεF|             |UεF        FUεF|            |εF  FU(f)|              |f
+      |             |               |            |         |              |
+      v             v               v            v         v              v
+     UFUF --------> UF             FUF --------> F        FU(b)---------> b
+            UεF                           εF                    ε(b)
+
+----end-comment:
+
+\begin{tikzcd}
+UFUFUF \arrow{r}{UεFUF} \arrow{d}[swap]{UFUεF} & UFUF \arrow{d}{UεF} & FUFUF \arrow{r}{εFUF} \arrow{d}[swap]{FUεF} & FUF \arrow{d}{εF} & FU(a) \arrow{r}{ε(a)} \arrow{d}[swap]{FU(f)} & a \arrow{d}[swap]{f} & \mbox{} \\
+UFUF \arrow{r}{UεF} & UF & FUF \arrow{r}[swap]{εF} & F & FU(b) \arrow{r}[swap]{ε(b)} & b & \mbox{} \\
+\end{tikzcd}
+
+association law
+
+\begin{eqnarray*}
+μ     ○   μ   T     & = & μ   ○   T   μ      \\
+Uε(a)F   ○   Uε(a)F   FU  & = & Uε(a)F   ○   FU   Uε(a)F \\
+\end{eqnarray*}
+
+$UεF○UεFFU=UεF○FUUεF$
+
+naturality  of $ε$
+
+$ ε(b)FU(f)(a) = fε(a) $
+
+$    a = FUF(a), b = F(a),   f = εF $
+
+\begin{eqnarray*}
+ε(F(a))(FU(εF))(a) & = & (εF)(εFUF(a)) \\
+U(ε(F(a))(FU(εF))(a)) & = & U((εF)(εFUF(a))) \\
+U(ε(F(a))(FU(εF))(a)) & = & U((εF)(εFUF(a))) \\
+UεF○FUUεF & = UεF○UεFFU \\
+\end{eqnarray*}
+
+----begin-comment:
+
+          FU(ε(F(a)))
+ FUF(a) <-------------FUFUF(a)
+     |                  |
+     |ε(F(a))           |ε(FUF(a))
+     |                  |
+     v                  v
+   F(a) <------------- FUF(a)
+            ε(F(a))
+
+----end-comment:
+
+\begin{tikzcd}
+FUF(a) \arrow[leftarrow]{r}{FU(ε(F(a)))} \arrow{d}{ε(F(a))} & FUFUF(a) \arrow{d}{ε(FUF(a))} & \mbox{} \\
+F(a) \arrow[leftarrow]{r}[swap]{ε(F(a))} & FUF(a) & \mbox{} \\
+\end{tikzcd}
+
+--Eilenberg-Moore category
+
+$(T,η,μ)$
+
+$A^T$ object $(A,φ)$
+
+$  φη(A) = 1_A, φμ(A) = φT(φ) $
+
+arrow $f$.
+
+$ φT(f) = fφ $
+
+
+----begin-comment:
+
+           η(a)                         μ(a)                     T(f)
+      a-----------> T(a)         T^2(a)--------> T(a)     T(a)---------->T(b) 
+                    |               |            |         |              |
+                    |               |            |         |              |
+                    |φ          T(φ)|            |φ       φ|              |φ'
+                    |               |            |         |              |
+                    v               v            v         v              v
+      _             a              T(a)-------->T(a)       a------------> b
+                                          φ                      f   
+
+----end-comment:
+
+\begin{tikzcd}
+a \arrow{r}{η(a)} \arrow{rd}{1_a} & T(a) \arrow{d}{φ} & T^2(a) \arrow{r}{μ(a)} \arrow{d}[swap]{T(φ)} & T(a) \arrow{d}{φ} & T(a) \arrow{r}{T(f)} \arrow{d}[swap]{φ} & T(b) \arrow{d}{φ'} & \mbox{} \\
+\mbox{} & a & T(a) \arrow{r}[swap]{φ} & T(a) & a \arrow{r}[swap]{f} & b & \mbox{} \\
+\end{tikzcd}
+
+--EM on monoid
+
+$f: a-> b$
+
+$T: a -> (m,a) $
+
+$η: a -> (1,a) $
+
+$μ: (m,(m',a)) -> (mm',a) $
+
+$φ: (m,a) -> φ(m,a) = ma $
+
+----begin-comment:
+
+           η(a)                         μ(a)                     T(f)
+      a----------->(1,a)     (m,(m',a))-----> (mm',a)   (m,a)----------->(m,f(a))
+                    |               |            |         |              |
+                    |               |            |         |              |
+                    |φ          T(φ)|            |φ       φ|              |φ'
+                    |               |            |         |              |
+                    v               v            v         v              v
+      _            1a           (m,m'a)-------->mm'a      ma------------> mf(a)=f(ma)
+                                          φ                      f   
+----end-comment:
+
+\begin{tikzcd}
+a \arrow{r}{η(a)} \arrow{rd}{1_a} & (1,a) \arrow{d}{φ} & (m,(m',a)) \arrow{r}{μ(a)} \arrow{d}[swap]{T(φ)} & (mm',a) \arrow{d}{φ} & (m,a) \arrow{r}{T(f)} \arrow{d}[swap]{φ} & (m,f(a)) \arrow{d}{φ'} & \mbox{} \\
+\mbox{} & 1a & (m,m'a) \arrow{r}[swap]{φ} & mm'a & ma \arrow{r}[swap]{f} & mf(a)=f(ma) & \mbox{} \\
+\end{tikzcd}
+
+object $(a,φ)$. arrow $f$.
+
+$ φT(f)(m,a) = fφ(m,a) $
+
+$ φ(m,f(a)) = f(a) $
+
+$ U^T : A^T->A $
+
+$     U^T(a,φ) = a, U^T(f) = f $
+
+$ F^T : A->A^T$
+
+$     F^T(a) = (T(a),μ(a)), F^T(f) = T(F) $
+
+--Comparison Functor $K^T$
+
+$   K^T(B) = (U(B),Uε(B))a, K^T(f) = U(g)   $
+
+$   U^T K^T (b) = U(b) $
+
+$   U^TK^T(f) = U^TU(f) = U(f) $
+
+$   K^TF(a)  = (UF(a),Uε(F(a))) = (T(a), μ(a)) = F^T(a) $
+
+$   K^TF(f) = UF(f) = T(f) = F^T(f) $
+
+$   ηU(a,φ) = η(a), Uε(a,φ) = ε^TK^T(b) = Uε(b) $
+
+----begin-comment:
+
+
+     _             Ba            _
+                   |^
+                   ||
+                   ||
+       K_T        F||U       K^T
+                   ||
+                   ||
+                   ||
+           U_T     v|   F^T
+     A_T---------> A  ---------> A^T
+        <---------    <--------
+            F_T         U^T
+
+----end-comment:
+
+
+\begin{tikzcd}
+\mbox{} & B \arrow{r}{K^T} \arrow{rd}{F} \arrow[leftarrow]{rd}[swap]{U} & A^T \arrow{d}{U^T} & \mbox{} \\
+\mbox{} & A_T \arrow{r}[swap]{U_T} \arrow[leftarrow]{r}{F_T} \arrow{u}[swap]{K_T} & A \arrow{u}{F^T} & \mbox{} \\
+\\
+\mbox{} & B \arrow{d}{F} \arrow{rd}{K^T} & \mbox{} \\
+A_T \arrow{r}{U_T} \arrow{ru}[leftarrow]{K_T} & A \arrow{r}{F^T} \arrow{u}{U} & A^T & \mbox{} \\
+\end{tikzcd}
+
+--Kleisli Category
+
+Object of $A$.
+
+Arrow $f: a -> T(a)$ in $A$. In $A_T$, $f: b -> c, g: c -> d$,
+
+$  g * f = μ(d)T(g)f $
+
+$η(b):b->T(b)$ is an identity.
+
+$ f * η(b) = μ(c)T(f)η(b) = μ(c)η(T(c))f = 1_T(c) f = f $
+
+and
+
+$ η(c) * f = μ(c)Tη(c)f = 1_T(c) f = f $
+
+association law $ g * (f * h) = (g * f) * h $,
+
+$h: a -> T(b), f: b -> T(c), g: c -> T(d) $,
+
+naturality of $μ$
+
+----begin-comment:
+
+                                                       μ(c)                  T(f)             h
+f*h     _             _                     T(c) <---------------- T^2(c) <------- T(b) <----------- a
+
+
+              μ(d)               T(g)                  μ(c)                  T(f)             h
+g*(f*h) T(d)<--------T^2(d) <-------------- T(c) <---------------- T^2(c) <------- T(b) <----------- a
+
+
+              μ(d)               μ(d)T                 T^2(g)                T(f)               h
+(g*f)*h T(d)<--------T^2(d) <---------------T^3(d) <-------------- T^2(c) <------- T(b) <----------- a
+
+
+              μ(d)               Tμ(d)                 T^2(g)                T(f)               h
+(g*f)*h T(d)<--------T^2(d) <---------------T^3(d) <-------------- T^2(c) <------- T(b) <----------- a
+
+
+                                   μ(d)                 T(g)                   f
+(g*f)    _             T(d) <---------------T^2(d) <-------------- T(c) <----------- b                _
+
+
+
+
+              Tμ(d)                T^2(g)
+      T^2(d)<-----------T^2(T(d))<--------  T^2(c)
+      |                 |                    |
+      |                 |                    |
+  μ(d)|                 |μ(T(d))             |μ(c)
+      |                 |                    |
+      v        μ(d)     v           T(g)     v
+      T(d) <----------- T(T(d)) <---------- T(c)
+
+
+
+----end-comment:
+
+\begin{tikzcd}
+f*h & \mbox{} & \mbox{} & T(c) \arrow[leftarrow]{r}{μ(c)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
+g*(f*h) & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{T(g)} & T(c) \arrow[leftarrow]{r}{μ(c)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
+(g*f)*h & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{μ(d)T} & T^3(d) \arrow[leftarrow]{r}{T^2(g)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
+(g*f)*h & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{Tμ(d)} & T^3(d) \arrow[leftarrow]{r}{T^2(g)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\
+g*f & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{T(g)} & T(c) \arrow[leftarrow]{r}{f} & b & \mbox{} \\
+\mbox{} &  T^2(d) \arrow[leftarrow]{r}{Tμ(d)} \arrow{d}[swap]{μ(d)} & T^2(T(d)) \arrow[leftarrow]{r}{T^2(g)} \arrow{d}{μ(T(d))} & T^2(c) \arrow{d}{μ(c)}& \mbox{} \\
+\mbox{} & T(d) \arrow[leftarrow]{r}{μ(d)} & T(T(d)) \arrow[leftarrow]{r}{T(g)} & T(c)  & \mbox{} \\
+\end{tikzcd}
+
+
+\begin{eqnarray*}
+g * (f * h)  & = & g * (μ(c)T(f)h) \\
+\mbox{}              & = & μ(d)(T(g))(μ(c)T(f)h) \\
+\mbox{}              & = & μ(d)  T(g)μ(c)  T(f)h \\
+\\
+(g * f) * h  & = & (μ(d)T(g)f) * h \\
+\mbox{}              & = & μ(d)T(μ(d)T(g)f)h \\
+\mbox{}              & = & μ(d)  T(μ(d))T^2(g)  T(f)h \\
+\end{eqnarray*}
+
+$ μ(d)μ(d)T = μ(d)Tμ(d) $
+
+$ μ(T(d))T^2(g) = T(g)μ(c) $ naturality of $μ$.
+
+$ μ(d)Tμ(d)T^2(g) = μ(d)μ(T(d))T^2(g) = μ(d)T(g)μ(c) $
+
+----begin-comment:
+
+              T^2(g)
+    T^3(d) <----------- T^2(c)
+       |                 |
+       |μ(T(d))          |μ(c)
+       |                 |
+       v                 v
+     T^2(d)<------------ T(c)
+                T(g)
+
+----end-comment:
+
+\begin{tikzcd}
+T^3(d) \arrow[leftarrow]{r}{T^2(g)} \arrow{d}{μ(T(d))} & T^2(c) & \mbox{} \\
+T^2(d) \arrow[leftarrow]{r}[swap]{T(g)} & T(c) \arrow{u}{μ(c)} & \mbox{} \\
+\end{tikzcd}
+
+$ μ(T(d)) = Tμ(d) ? $ 
+
+$    (m,(m'm'',a)) = (mm',(m'',a))$ No, but
+
+$ μμ(T(d)) = μTμ(d)  $.
+
+
+--Ok
+
+$ T(g)μ(c) = T(μ(d))T^2(g) $ であれば良いが。
+
+$  μ(d)T^2(g) = T(g)μ(c) $
+
+ちょっと違う。 $ μ(d)  T(μ(d))T^2(g) $ が、
+
+$ μ(d)  μ(d)T^2(g) $ 
+
+となると良いが。
+
+$    μ(d)T(μ(d))  = μ(d)μ(T(d)) $
+
+
+--monoid in Kleisli category
+
+$ T : a -> (m,a) $
+
+$ T : f -> ((m,a)->(m,f(a)))  $
+
+$ μ(a) : (m,(m',a)) -> (mm',a)  $
+
+$ f: a ->  (m,f(a)) $
+
+\begin{eqnarray*}
+g * f (b) & = & μ(d)T(g)f(b) = μ(d)T(g)(m,f(b)) \\ & = & μ(m,(m',gf(b))) = (mm',gf(b))   \\
+(g * f) * h(a) & = & μ(d)T(μ(d)T(g)f)h(a)  = μ(d)T(μ(d))(TT(g))T(f)(m,h(a))   \\
+\mbox{}    & = & μ(d)T(μ(d))(TT(g))(m,(m',fh(a))) \\ & = & μ(d)T(μ(d)(m,(m',(m'',gfh(a)))) =  (mm'm'',gfh(a))  \\
+g * (f * h)(a) & = & (μ(d)(T(g)))μ(c)T(f)h(a)  = (μ(d)(T(g)))μ(c)T(f)(m,h(a))  \\
+\mbox{}   & =  & (μ(d)(T(g)))μ(c)(m,(m',fh(a))) \\ &  = & μ(d)T(g)(mm',fh(a)) = (mm'm'',gfh(a))  \\
+\end{eqnarray*}
+
+
+--Resolution of Kleiseli category
+
+$f : a-> b, g: b->c $
+
+$   U_T : A_T -> A $
+
+$   U_T(a) = T(a) $
+
+$   U_T(f) = μ(b)T(f) $
+
+$  g * f = μ(d)T(g)f $
+
+\begin{eqnarray*}
+U_T(g*f) & = & U_T(μ(c)T(g)f) \\        & = & μ(c) T(μ(c)T(g)f)  \\ & = & μ(c) μ(c)T(T(g)f))  =  μ(c)μ(c) TT(g) T(f) \mbox{ association law} \\
+U_T(g)U_T(f) & =  & μ(c)T(g)μ(b)T(f)  = μ(c)   μ(c) TT(g) T(f)   \\
+T(g)μ(b) & = & μ(c)TT(g)  \\
+\end{eqnarray*}
+
+
+
+----begin-comment:
+
+           TT(g)
+    TT <--------------TT
+     |                |
+     |μ(c)            |μ(b)
+     |                |
+     v      T(g)      v
+     T<---------------T
+
+----end-comment:
+
+\begin{tikzcd}
+TT \arrow[leftarrow]{r}{TT(g)} \arrow{d}{μ(c)} & TT \arrow{d}{μ(b)} & \mbox{} \\
+T \arrow[leftarrow]{r}{T(g)} & T & \mbox{} \\
+\end{tikzcd}
+
+
+$   F_T : A -> A_T $
+
+$   F_T(a) = a $
+
+$   F_T(f) = η(b) f $
+
+$   F_T(1_a) = η(a) = 1_{F_T(a)} $ 
+
+\begin{eqnarray*}
+F_T(g)*F_T(f) & = & μ(c)T(F_T(g))F_T(f) \\& = & μ(c)T(η(c)g)η(b)f  \\ & = &  μ(c)T(η(c))T(g)η(b)f \\& =  & T(g)η(b) f \mbox{  unity law} \\
+\mbox{}                                                &  =  &  η(c)gf =  F_T(gf)  
+\end{eqnarray*}
+
+$ η(c)g = T(g)η(b) $
+
+----begin-comment:
+
+            g   
+     c<---------------b
+     |                |
+     |η(c)            |η(b)
+     |                |
+     v      T(g)      v
+    T(b)<-------------T(b)
+
+----end-comment:
+
+\begin{tikzcd}
+c \arrow[leftarrow]{r}{g} \arrow{d}{η(c)} & b \arrow{d}{η(b)} & \mbox{} \\
+T \arrow[leftarrow]{r}{T(g)} & T & \mbox{} \\
+\end{tikzcd}
+
+
+$       μ○Tη = 1_T = μ○ηT $  Unity law
+
+\begin{eqnarray*}
+\mbox{}   ε_T(a) & = & 1_{T(a)}  \\
+\mbox{}\\
+\mbox{}\\
+\mbox{}  U_T ε_T F_T & = & μ \\
+\mbox{}\\
+\mbox{}   U_T ε_T F_Ta(a) & = & U_T ε_T (a) =  U_T(1_{T(a)} = μ(a) \\
+\mbox{}\\
+\mbox{}   ε_T(F_T(a))*F_T(η(a)) & = &   ε_T(a) * F_T(η(a)) \\ & = &  1_{T(a)} * (F_T(η(a)))  \\ & = &  1_{T(a)}   * (η(T(a))η(a)))   \\
+\mbox{}          & = & μ(T(a)) T (1_{T(a)} ) (η(T(a))η(a)))  \\    & = &  μ(T(a))η(T(a))η(a)   \\
+\mbox{}          & = & η(a) = 1_{F_T} \\ 
+\end{eqnarray*}
+
+
+
+\begin{eqnarray*}
+U_T(ε_T(a))η(U_T(a)) & = &  U_T(1_{T(a)} η( T(a)) )  \\ & = &  μ(T(a))T(1_{T(a)}) η(T(a))  \\ & = &  μ(T(a)) η(T(a)) 1_{T(a)}   \\ 
+& = &  1_{T(a)}  = T(1_a)   =  1_{U_T}  \\
+\end{eqnarray*}
+
+
+
+---Comparison functor $K_T$
+
+Adjoint $(B,U,F,ε)$, $K_T : A_T -> B $,
+
+$ g : b -> c$.
+
+
+\begin{eqnarray*}
+K_T(a) & = & F(a)   \\
+K_T(g) & = & ε(F(c)) F(g)   \\
+K_T F_T(a) & = & K_T(a) = F(a)  \\
+K_T F_T(f) & = & K_T(η(b) f) \\& = & ε(F(b))F(μ(b)f)  \\ & = &  ε(F(b))F(μ(b))F(f)  = F(f)  \\
+\end{eqnarray*}
+
+
+\begin{eqnarray*}
+K_T (η(b))  & = &  ε(F(b))F(η(b)) = 1_{F(b)}  \\
+K_T (η(T(c))g)  & = &  ε(F(T(c)))F(η(T(c))g) = F(g)   \\
+K_T (g) K_T(f) & = &  ε(F(c))F(g) ε(F(b))F(f) = ε(F(c)) ε(F(c)) FUF(g) F(f)  \\
+K_T (g*f) & = &  ε(F(c)) F(μ(c)UF(g)f) =        ε(F(c)) F(μ(c)) FUF(g) F(f)  \\
+ε(F(c))FUF(g) & = &  F(g) ε(F(b))  \\
+\end{eqnarray*}
+
+----begin-comment: 
+
+            FU(F(g))   
+  FU(F(c))<-------------FU(F(b))
+     |                   |
+     |ε(F(c))            |ε(F(b))
+     |                   |
+     v        F(g)       v
+   F(c)<----------------F(b)
+
+----end-comment: 
+
+\begin{tikzcd}
+FU(F(c)) \arrow[leftarrow]{r}{FU(F(g))} \arrow{d}{ε(F(c))} & FU(F(b)) \arrow{d}{ε(F(b))} & \mbox{} \\
+F(c) \arrow[leftarrow]{r}{F(g)} & F(b) & \mbox{} \\
+\end{tikzcd}
+
+$   ε(F(c)) F(μ(c)) = ε(F(c)) ε(F(c))  $ ?
+
+$   ε(F(c)) F(μ(c)) = ε(F(c)) FUε(F(c)) $
+
+----begin-comment: 
+
+            FUε(F(c))   
+ FUFU(c)<---------------FUFU(F(c))
+     |                   |
+     |εF(c))             |ε(F(c))
+     |                   |
+     v       ε(F(c))     v
+  FU(c)<----------------FU(F(c))
+
+
+----end-comment: 
+
+\begin{tikzcd}
+FUFU(c) \arrow[leftarrow]{r}{FUε(F(c))} \arrow{d}{εF(c))} & FUFU(F(c)) \arrow{d}{ε(F(c))} & \mbox{} \\
+FU(c) \arrow[leftarrow]{r}{ε(F(c))} & FU(F(c)) & \mbox{} \\
+\end{tikzcd}
+
+
+
+$  UK_T(a) = UF(a) = T(a) = U_T(a)  $
+
+$  UK_T(g) = U(ε((F(c))F(g))) = U(ε(F(c)))UF(g) =  μ(c)T(g) = U_T(g) $
+
+
+
+
+
+
+--Monoid
+
+
+$T :  A -> M x A$
+
+$T(a) = (m,a)$
+
+$T(f) : T(A) -> T(f(A))$
+
+$T(f)(m,a) = (m,f(a))$
+
+$T(fg)(m,a) = (m,fg(a)) $
+
+-- association of Functor
+
+$T(f)T(g)(m,a) = T(f)(m,g(a)) = (m,fg(a)) = T(fg)(m,a)$
+
+
+$μ : T x T -> T$
+
+$μ_a(T(T(a)) = μ_A((m,(m',a))) = (m*m',a) $
+
+-- $TT$
+
+$TT(a) = (m,(m',a))$
+
+$TT(f)(m,(m',a)) = (m,(m',f(a))$
+
+
+
+-- naturality of $μ$
+
+----begin-comment:
+           μ(a)
+   TT(a) ---------> T(a)
+      |              |
+ TT(f)|              |T(f)
+      |              |
+      v    μ(b)       v
+   TT(b) ---------> T(b)
+----end-comment:
+
+\begin{tikzcd}
+TT(a) \arrow{r}{μ(a)} \arrow{d}{TT(f)} & T(a) \arrow{d}{T(f)} \\
+TT(b) \arrow{r}{μ(b)} & T(b)
+\end{tikzcd}
+
+
+$  μ(b)TT(f)TT(a) = T(f)μ(a)TT(a)$
+
+$  μ(b)TT(f)TT(a) = μ(b)((m,(m',f(a))) = (m*m',f(a))$
+
+$  T(f)μ(a)(TT(a)) = T(f)(m*m',a) = (m*m',f(a))$
+
+--μ○μ
+
+Horizontal composition of $μ$
+
+$f -> μ_TT(a)$
+
+$a -> TT(a)$
+
+$μ_T(a) TTT(a) = μ_T(a) (m,(m',(m'',a))) = (m*m',(m'',a)) $
+
+----begin-comment:
+               μ(TTT(a))
+      TTTT(a) ----------> TTT(a)
+           |               |
+ TT(μ(T(a))|               |T(μ(T(a)))
+           |               |
+           v   μ(TT(a))    v
+       TTT(a) -----------> TT(a)
+----end-comment:
+
+\begin{tikzcd}
+TTTT(a) \arrow{r}{μ(TTT(a))} \arrow{d}[swap]{TT(μ)} & TTT(a) \arrow{d}{T(μ)} & \mbox{} \\
+TTT(a) \arrow{r}{μ(TT(a))} & TT(a) & \mbox{} \\
+\end{tikzcd}
+
+
+\begin{eqnarray*}
+T(μ_a)μ_aTTTT(a)   & = &  T(μ_a)μ_a(m_0,(m_1,(m_2,(m_3,a))))) \\& = &   T(μ_a)(m_0*m_1,(m_2,(m_3,a))) = (m_0*m_1,(m_2*m_3,a)) \\
+μ_bTT(μ_a)TTTT(a) & = &  μ_bTT(μ_a)(m_0,(m_1,(m_2,(m_3,a))))) \\& = &  μ_b    (m_0,(m_1,(m_2*m_3,a))) = (m_0*m_1,(m_2*m_3,a)) \\
+\end{eqnarray*}
+
+-Horizontal composition of natural transformation
+
+
+--Natural transformation $ε$ and Functor $F: A->B, U:B->A$
+
+
+$    ε: FUFU->FU$
+
+$    ε: FU->1_B$
+
+Naturality of $ε$
+
+----begin-comment:
+                 ε(a)
+         FU(a)  ------> a
+     FU(f)|             |f
+          v      ε(b)   v
+         FU(b)  ------> b        ε(b)FU(f)a = fε(a)a
+
+                   ε(FU(a))
+       FUFU(a)  -----------> FU(a)
+   FUFU(f)|                   |FU(f)
+          v        ε(FU(b))   v
+       FUFU(b)  -----------> FU(b)
+
+                           ε((FU(b))FUFU(f)FU(a) = FU(f)ε(FU(a))FU(a)
+----end-comment:
+
+\begin{tikzcd}
+FU(a)  \arrow{r}{ε(a)} \arrow{d}{FU(f)} &  a \arrow{d}{f} \\
+FU(b) \arrow{r}{ε(b)}  & b &       ε(b)FU(f)a = fε(a)a \\
+FUFU(a) \arrow{r}{ε(FU(a))} \arrow{d}{FUFU(f)}&  FU(a) \arrow{d}{FU(f)} \\
+FUFU(b) \arrow{r}{ε(FU(b))} &  FU(b) \\
+& &                           ε((FU(b))FUFU(f)FU(a) = FU(f)ε(FU(a))FU(a) \\
+\end{tikzcd}
+
+
+--Vertcial Compositon  $ε・ε$
+
+$  ε・ε : FUFU -> 1B$
+
+----begin-comment:
+                 ε(FU(a))           ε(a)
+       FUFU(a)  ---------> FU(a)   ------> a
+   FUFU(f)|                |FU(f)          |f
+          v      ε(FU(b))  v        ε(b)   v
+       FUFU(b)  ---------> FU(b)   ------> b
+----end-comment:
+
+\begin{tikzcd}
+FUFU(a) \arrow{r}{ε(FU(a))} \arrow{d}{FUFU(f)} &   FU(a) \arrow{r}{ε(a)}\arrow{d}{FU(f)} &  a\arrow{d}{f} \\
+FUFU(b) \arrow{r}{ε(FU(b))} &  FU(b)  \arrow{r}{ε(b)}  & b
+\end{tikzcd}
+
+
+--Horizontal Composition  $ε○ε$
+
+----begin-comment:
+          FUFU  <-----  FU   <------  B
+                  FU              FU
+                   |               |
+                   |ε              |ε
+                   v               v
+                  1_B             1_B
+           B   <-----    B    <------  B
+----end-comment:
+
+\begin{tikzcd}
+FUFU  \arrow[leftarrow]{rr}  & &  FU \arrow[leftarrow]{rr}  & & B \\
+& FU \arrow{d}{ε} & & FU \arrow{d}{ε}& & \\
+& 1_B & & 1_B & & \\
+B   \arrow[leftarrow]{rr}  & &  B  \arrow[leftarrow]{rr} &  & B \\
+\end{tikzcd}
+
+cf. $FUFU, FU$ has objects of $B$.
+
+$   ε○ε : FUFU -> 1_B 1_B$
+
+----begin-comment:
+                 εFU(b)
+     FUFU(b)  ------------> 1_AFU(b)
+       |                     |
+       |FUε(b)               |1_aε(b)
+       |                     |
+       v         ε(b)        v
+     FU1_B(b) ------------> 1_B1_B(b)
+
+----end-comment:
+
+\begin{tikzcd}
+FUFU(b) \arrow{r}{εFU(b)} \arrow{d}{FUε(b)} & 1_A \arrow{d}{1_aε(b)} & \mbox{} \\
+FU1_B(b) \arrow{r}{ε(b)} & 1_B & \mbox{} \\
+\end{tikzcd}
+
+that is
+      
+----begin-comment:
+                 εFU(b)
+     FUFU(b)  ------------>  FU(b)
+       |                     |
+       |FUε(b)               |ε(b)
+       |                     |
+       v         ε(b)        v
+     FU(b)    ------------>  b
+----end-comment:
+
+\begin{tikzcd}
+FUFU(b) \arrow{r}{εFU(b)} \arrow{d}{FUε(b)} & FU(b) \arrow{d}{ε(b)} & \mbox{} \\
+FU(b) \arrow{r}{ε(b)} & b & \mbox{} \\
+\end{tikzcd}
+
+
+$ε(b) : b -> ε(b)$    arrow of $B$
+
+$     ε: FU -> 1_B$
+
+$         ε(b) : FU(b) -> b$
+
+----begin-comment:
+        U          F            ε(b)
+     b ----> U(b) ----> FU(b) -------> b
+----end-comment:
+
+\begin{tikzcd}
+b \arrow{r}{U} & U(b) \arrow{r}{F} & FU(b) \arrow{r}{ε(b)} & b & \mbox{} \\
+\end{tikzcd}
+
+replace $f$ by $ε(b)$, $a$ by $FU(b)$  in naturality $ε(b)FU(f)a = fε(a)a$
+
+$   ε(b)FU(ε(b))FU(b) = εε(FU(b))FU(b)$
+
+remove $FU(b)$ on right, 
+
+$   ε(b)FU(ε(b)) = ε(b)ε(FU(b))$
+
+this shows commutativity of previous diagram
+
+$   ε(b)ε(FU(b)) = ε(b)FU(ε(b))$
+
+that is
+
+$  εεFU = εFUε$
+
+
+
+--Yoneda Functor
+
+
+$ Y:  A -> Sets^{A^{op}} $
+
+$ Hom_A : A^{op} \times A -> Sets $
+
+$ g:a'->a, h:b->b' $
+
+$ Hom_A((g,h)) : Home_A(a,b)  -> \{hfg | f \in Home_A(a,b) \}   $
+
+$ Hom_A((g,h)○(g',h') : Home_A(a,b)  -> \{hh'fgg' | f \in Home_A(a,b) \}   $
+
+$ Hom_A((g,h)) Hom_A((g',h')) : Home_A(a,b)  -> \{h'fg' | f \in Home_A(a,b) \} -> \{hh'fgg' | f \in Home_A(a,b) \}   $
+
+----begin-comment:
+
+         g'        g
+     a -----> a' -----> a''
+              |         |
+              |         |f
+         h'   v    h    v
+     b<-------b' <----- b''
+
+----end-comment:
+
+\begin{tikzcd}
+a \arrow{r}{g'} & a' \arrow{r}{g} \arrow{d}{} & a'' \arrow{d}{f} & \mbox{} \\
+b \arrow[leftarrow]{r}{h'} & b' \arrow[leftarrow]{r}{h} & b'' & \mbox{} \\
+\end{tikzcd}
+
+$ Hom^*_A : A^{op} -> Sets^{A}  $
+
+$    f^{op}: a->c   ( f : c->a ) $
+
+$    g^{op}: c->d   ( g : d->c ) $
+
+$   Home^*_A(a) : a -> λ b . Hom_A(a,b)   $
+
+$   Home^*_A(f^{op})  : (a -> λ b . Hom_A(a,b)) -> (c -> λ b . Hom_A(f(c),b))  $
+
+$   Home^*_A(g^{op}f^{op}) : (a -> λ b . Hom_A(a,b)) -> (d -> λ b . Hom_A(fg(d),b))  $
+
+$   Home^*_A(g^{op}) Home^*_A(f^{op}) : (a -> λ b . Hom_A(a,b)) -> (c -> λ b . Hom_A(f(c),b)) -> (d -> λ b . Hom_A(fg(d),b)) $
+
+
+$ Hom^*_{A^{op}} : A -> Sets^{A^{op}}  $
+
+$     f : c->b  $
+$     g : d->c  $
+
+$   Home^*_{A^{op}}(b) : b -> λ a . Hom_{A^{op}}(a,b)   $
+
+$   Home^*_{A^{op}}(f)  : (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c)))  $
+
+$   Home^*_{A^{op}}(gf) : (b -> λ a . Hom_{A^{op}}(a,b)) -> (d -> λ a . Hom_{A^{op}}(a,gf(d)))  $
+
+$   Home^*_{A^{op}}(g) Home^*_{A^{op}}(f) : (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c))) -> (d -> λ a . Hom_{A^{op}}(a,gf(d))) $
+
+
+Arrows in $ Set^{A^{op}} $?
+
+$ f: b->c =  (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c)))  $
+
+$ Set^{A^{op}} : A^{op} -> Set $
+
+an object $ b =  λ a . Hom_{A^{op}}(a,b)   $ is a functor from $A^{op}$ to $ Set $.
+
+$ t:  (λ a . Hom_{A^{op}}(a,b)) -> (λ a . Hom_{A^{op}}(a,t(c)))  $ should be a natural transformatin.
+
+$ f^{op}: (b : A^{op}) -> (c : A^{op} )  = f : c->b $
+
+
+----begin-comment:
+
+                            t(c)     
+Hom_{A^{op}}(a,c) ------------------------->Hom_{A^{op}}(a,t(c))
+    |                                                 ^
+    |                                                 |
+    |Home^*{A^{op}}(a,f)                              |Home^*{A^{op}}(a,f)
+    |                                                 | 
+    v                       t(b)                      |
+Hom_{A^{op}}(a,b) ------------------------->Hom_{A^{op}}(a,t(b))
+
+
+
+----end-comment:
+
+\begin{tikzcd}
+Hom_{A^{op}}(a,c) \arrow{r}{t(c)} \arrow{d}{Home^*{A^{op}}(a,f)} & Hom_{A^{op}}(a,t(c)) & \mbox{} \\
+Hom_{A^{op}}(a,b) \arrow{r}{t(b)} & Hom_{A^{op}}(a,t(b)) \arrow{u}[swap]{Home^*{A^{op}}(a,f)} & \mbox{} \\
+\end{tikzcd}
+
+
+---Contravariant functor
+
+$   h_a = Hom_A(-,a)   $
+
+$   f:b->c,  Hom_A(f,1_a): Hom_A(c,a) -> Hom_A(b,a)  $
+
+
+
+
+
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc/fig/Kli-orig.svg	Sat Mar 04 11:05:40 2017 +0900
@@ -0,0 +1,79 @@
+<?xml version="1.0"?>
+
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xl="http://www.w3.org/1999/xlink" version="1.1" viewBox="37 120 373 171" width="373pt" height="171pt">
+<metadata xmlns:dc="http://purl.org/dc/elements/1.1/">
+<dc:date> 2013-07-02 07:12Z</dc:date>
+<!-- Produced by OmniGraffle Professional 5.4.3 -->
+</metadata>
+<defs>
+<font-face font-family="Helvetica" font-size="12" units-per-em="1000" underline-position="-75.683594" underline-thickness="49.316406" slope="0" x-height="522.94922" cap-height="717.28516" ascent="770.01953" descent="-229.98047" font-weight="500">
+<font-face-src>
+<font-face-name name="Helvetica"/>
+</font-face-src>
+</font-face>
+<marker orient="auto" overflow="visible" markerUnits="strokeWidth" id="FilledArrow_Marker" viewBox="-1 -4 10 8" markerWidth="10" markerHeight="8" color="black">
+<g>
+<path d="M 8 0 L 0 -3 L 0 3 Z" fill="currentColor" stroke="currentColor" stroke-width="1"/>
+</g>
+</marker>
+</defs>
+<g stroke="none" stroke-opacity="1" stroke-dasharray="none" fill="none" fill-opacity="1">
+<title> Canvas 1</title>
+<rect fill="white" width="559" height="783"/>
+<g>
+<title> Layer 1</title>
+<text transform="translate(46 143)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" x="1.8496094" y="11" textLength="37.634766"> T^2(d) </tspan>
+</text>
+<text transform="translate(52 268)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" x="2.0019531" y="11" textLength="25.330078"> T(d) </tspan>
+</text>
+<text transform="translate(182.5 143)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" x="1.6904297" y="11" textLength="56.953125"> T^2(T((d)) </tspan>
+</text>
+<text transform="translate(192 268)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" x="1.8496094" y="11" textLength="37.634766"> T^2(d) </tspan>
+</text>
+<text transform="translate(338.5 143)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" x="1.6865234" y="11" textLength="36.960938"> T^2(c) </tspan>
+</text>
+<text transform="translate(344.5 268)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" x="1.8388672" y="11" textLength="24.65625"> T(c) </tspan>
+</text>
+<line x1="65.000006" y1="157" x2="65.000006" y2="258.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="182.5" y1="150.00001" x2="93.9" y2="150.00001" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="192" y1="275.00001" x2="87.9" y2="275.00001" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="211" y1="157" x2="211" y2="258.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="338.5" y1="150.00208" x2="249.4" y2="150.01209" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="357" y1="157" x2="357" y2="258.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="344.5" y1="275.00002" x2="239.9" y2="275.00002" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<text transform="translate(274.83959 134.10321)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x="0" y="11" textLength="34.300781"> T^2(g)</tspan>
+</text>
+<text transform="translate(276 256.30548)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".001953125" y="11" textLength="21.996094"> T(g)</tspan>
+</text>
+<text transform="translate(125 255.28434)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".001953125" y="11" textLength="21.996094"> μ(d)</tspan>
+</text>
+<text transform="translate(115 134.5493)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".33691406" y="11" textLength="29.326172"> Tμ(d)</tspan>
+</text>
+<rect x="71.064266" y="202" width="32" height="24" fill="white"/>
+<text transform="translate(76.064266 207)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".001953125" y="11" textLength="21.996094"> μ(d)</tspan>
+</text>
+<rect x="213.00792" y="201" width="48" height="24" fill="white"/>
+<text transform="translate(218.00792 206)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".34082031" y="11" textLength="37.31836"> μ(T(d))</tspan>
+</text>
+<rect x="368.93134" y="201.89765" width="32" height="24" fill="white"/>
+<text transform="translate(373.93134 206.89765)" fill="black">
+<tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".33886719" y="11" textLength="21.322266"> μ(c)</tspan>
+</text>
+</g>
+</g>
+</svg>
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc/fig/Kli.graffle	Sat Mar 04 11:05:40 2017 +0900
@@ -0,0 +1,1204 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
+<plist version="1.0">
+<dict>
+	<key>ActiveLayerIndex</key>
+	<integer>0</integer>
+	<key>ApplicationVersion</key>
+	<array>
+		<string>com.omnigroup.OmniGrafflePro</string>
+		<string>139.17.0.185490</string>
+	</array>
+	<key>AutoAdjust</key>
+	<true/>
+	<key>BackgroundGraphic</key>
+	<dict>
+		<key>Bounds</key>
+		<string>{{0, 0}, {559, 783}}</string>
+		<key>Class</key>
+		<string>SolidGraphic</string>
+		<key>ID</key>
+		<integer>2</integer>
+		<key>Style</key>
+		<dict>
+			<key>shadow</key>
+			<dict>
+				<key>Draws</key>
+				<string>NO</string>
+			</dict>
+			<key>stroke</key>
+			<dict>
+				<key>Draws</key>
+				<string>NO</string>
+			</dict>
+		</dict>
+	</dict>
+	<key>BaseZoom</key>
+	<integer>0</integer>
+	<key>CanvasOrigin</key>
+	<string>{0, 0}</string>
+	<key>ColumnAlign</key>
+	<integer>1</integer>
+	<key>ColumnSpacing</key>
+	<real>36</real>
+	<key>CreationDate</key>
+	<string>2013-07-02 07:00:53 +0000</string>
+	<key>Creator</key>
+	<string>Shinji KONO</string>
+	<key>DisplayScale</key>
+	<string>1.000 cm = 1.000 cm</string>
+	<key>GraphDocumentVersion</key>
+	<integer>8</integer>
+	<key>GraphicsList</key>
+	<array>
+		<dict>
+			<key>Bounds</key>
+			<string>{{368.93133932676363, 201.89764779806137}, {32, 24}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Color</key>
+				<dict>
+					<key>w</key>
+					<string>0</string>
+				</dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>ID</key>
+			<integer>24</integer>
+			<key>Line</key>
+			<dict>
+				<key>ID</key>
+				<integer>15</integer>
+				<key>Offset</key>
+				<real>27.931337356567383</real>
+				<key>Position</key>
+				<real>0.51259142160415649</real>
+				<key>RotationType</key>
+				<integer>0</integer>
+			</dict>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 \uc0\u956 (c)}</string>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{213.0079244396849, 200.99999970197678}, {48, 24}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Color</key>
+				<dict>
+					<key>w</key>
+					<string>0</string>
+				</dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>ID</key>
+			<integer>23</integer>
+			<key>Line</key>
+			<dict>
+				<key>ID</key>
+				<integer>13</integer>
+				<key>Offset</key>
+				<real>26.007923126220703</real>
+				<key>Position</key>
+				<real>0.5045045018196106</real>
+				<key>RotationType</key>
+				<integer>0</integer>
+			</dict>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 \uc0\u956 (T(d))}</string>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{71.064266359983762, 201.99999910593033}, {32, 24}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Color</key>
+				<dict>
+					<key>w</key>
+					<string>0</string>
+				</dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>ID</key>
+			<integer>22</integer>
+			<key>Line</key>
+			<dict>
+				<key>ID</key>
+				<integer>10</integer>
+				<key>Offset</key>
+				<real>22.064260482788086</real>
+				<key>Position</key>
+				<real>0.51351350545883179</real>
+				<key>RotationType</key>
+				<integer>3</integer>
+			</dict>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 \uc0\u956 (d)}</string>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{109.99999979138374, 129.54930236107009}, {40, 24}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Color</key>
+				<dict>
+					<key>w</key>
+					<string>0</string>
+				</dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>ID</key>
+			<integer>21</integer>
+			<key>Line</key>
+			<dict>
+				<key>ID</key>
+				<integer>11</integer>
+				<key>Offset</key>
+				<real>8.4507045745849609</real>
+				<key>Position</key>
+				<real>0.53299492597579956</real>
+				<key>RotationType</key>
+				<integer>0</integer>
+			</dict>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T\uc0\u956 (d)}</string>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{119.99999958276749, 250.28434070264922}, {32, 24}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Color</key>
+				<dict>
+					<key>w</key>
+					<string>0</string>
+				</dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>ID</key>
+			<integer>20</integer>
+			<key>Line</key>
+			<dict>
+				<key>ID</key>
+				<integer>12</integer>
+				<key>Offset</key>
+				<real>12.715668678283691</real>
+				<key>Position</key>
+				<real>0.49122807383537292</real>
+				<key>RotationType</key>
+				<integer>0</integer>
+			</dict>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 \uc0\u956 (d)}</string>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{271.00000324845314, 251.30547738246162}, {32, 24}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Color</key>
+				<dict>
+					<key>w</key>
+					<string>0</string>
+				</dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>ID</key>
+			<integer>19</integer>
+			<key>Line</key>
+			<dict>
+				<key>ID</key>
+				<integer>17</integer>
+				<key>Offset</key>
+				<real>11.694541931152344</real>
+				<key>Position</key>
+				<real>0.50218337774276733</real>
+				<key>RotationType</key>
+				<integer>0</integer>
+			</dict>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T(g)}</string>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{269.83959170417245, 129.10321376221054}, {45, 24}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Color</key>
+				<dict>
+					<key>w</key>
+					<string>0</string>
+				</dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>ID</key>
+			<integer>18</integer>
+			<key>Line</key>
+			<dict>
+				<key>ID</key>
+				<integer>14</integer>
+				<key>Offset</key>
+				<real>8.9040489196777344</real>
+				<key>Position</key>
+				<real>0.46625664830207825</real>
+				<key>RotationType</key>
+				<integer>0</integer>
+			</dict>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Align</key>
+				<integer>3</integer>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qj
+
+\f0\fs24 \cf0 T^2(g)}</string>
+			</dict>
+			<key>TextPlacement</key>
+			<integer>0</integer>
+			<key>TextRelativeArea</key>
+			<string>{{0, 0}, {1, 1}}</string>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Class</key>
+			<string>LineGraphic</string>
+			<key>Head</key>
+			<dict>
+				<key>ID</key>
+				<integer>7</integer>
+			</dict>
+			<key>ID</key>
+			<integer>17</integer>
+			<key>Points</key>
+			<array>
+				<string>{344.5, 275.00001931361396}</string>
+				<string>{230, 275.00001931361396}</string>
+			</array>
+			<key>Style</key>
+			<dict>
+				<key>stroke</key>
+				<dict>
+					<key>HeadArrow</key>
+					<string>FilledArrow</string>
+					<key>Legacy</key>
+					<true/>
+					<key>TailArrow</key>
+					<string>0</string>
+				</dict>
+			</dict>
+			<key>Tail</key>
+			<dict>
+				<key>ID</key>
+				<integer>9</integer>
+			</dict>
+		</dict>
+		<dict>
+			<key>Class</key>
+			<string>LineGraphic</string>
+			<key>Head</key>
+			<dict>
+				<key>ID</key>
+				<integer>9</integer>
+			</dict>
+			<key>ID</key>
+			<integer>15</integer>
+			<key>Points</key>
+			<array>
+				<string>{357.00000197019625, 157}</string>
+				<string>{357.00000197019625, 268}</string>
+			</array>
+			<key>Style</key>
+			<dict>
+				<key>stroke</key>
+				<dict>
+					<key>HeadArrow</key>
+					<string>FilledArrow</string>
+					<key>Legacy</key>
+					<true/>
+					<key>TailArrow</key>
+					<string>0</string>
+				</dict>
+			</dict>
+			<key>Tail</key>
+			<dict>
+				<key>ID</key>
+				<integer>8</integer>
+			</dict>
+		</dict>
+		<dict>
+			<key>Class</key>
+			<string>LineGraphic</string>
+			<key>FontInfo</key>
+			<dict>
+				<key>Font</key>
+				<string>Helvetica</string>
+				<key>Size</key>
+				<real>12</real>
+			</dict>
+			<key>Head</key>
+			<dict>
+				<key>ID</key>
+				<integer>6</integer>
+			</dict>
+			<key>ID</key>
+			<integer>14</integer>
+			<key>Notes</key>
+			<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural
+
+\f0\fs24 \cf0 hoge\
+}</string>
+			<key>Points</key>
+			<array>
+				<string>{338.5, 150.00207794317365}</string>
+				<string>{239.5, 150.01319774718397}</string>
+			</array>
+			<key>Style</key>
+			<dict>
+				<key>stroke</key>
+				<dict>
+					<key>HeadArrow</key>
+					<string>FilledArrow</string>
+					<key>Legacy</key>
+					<true/>
+					<key>TailArrow</key>
+					<string>0</string>
+				</dict>
+			</dict>
+			<key>Tail</key>
+			<dict>
+				<key>ID</key>
+				<integer>8</integer>
+			</dict>
+		</dict>
+		<dict>
+			<key>Class</key>
+			<string>LineGraphic</string>
+			<key>Head</key>
+			<dict>
+				<key>ID</key>
+				<integer>7</integer>
+			</dict>
+			<key>ID</key>
+			<integer>13</integer>
+			<key>Points</key>
+			<array>
+				<string>{211.0000013134642, 157}</string>
+				<string>{211.0000013134642, 268}</string>
+			</array>
+			<key>Style</key>
+			<dict>
+				<key>stroke</key>
+				<dict>
+					<key>HeadArrow</key>
+					<string>FilledArrow</string>
+					<key>Legacy</key>
+					<true/>
+					<key>TailArrow</key>
+					<string>0</string>
+				</dict>
+			</dict>
+			<key>Tail</key>
+			<dict>
+				<key>ID</key>
+				<integer>6</integer>
+			</dict>
+		</dict>
+		<dict>
+			<key>Class</key>
+			<string>LineGraphic</string>
+			<key>Head</key>
+			<dict>
+				<key>ID</key>
+				<integer>5</integer>
+			</dict>
+			<key>ID</key>
+			<integer>12</integer>
+			<key>Points</key>
+			<array>
+				<string>{192, 275.00000938093291}</string>
+				<string>{78, 275.00000938093291}</string>
+			</array>
+			<key>Style</key>
+			<dict>
+				<key>stroke</key>
+				<dict>
+					<key>HeadArrow</key>
+					<string>FilledArrow</string>
+					<key>Legacy</key>
+					<true/>
+					<key>TailArrow</key>
+					<string>0</string>
+				</dict>
+			</dict>
+			<key>Tail</key>
+			<dict>
+				<key>ID</key>
+				<integer>7</integer>
+			</dict>
+		</dict>
+		<dict>
+			<key>Class</key>
+			<string>LineGraphic</string>
+			<key>Head</key>
+			<dict>
+				<key>ID</key>
+				<integer>3</integer>
+			</dict>
+			<key>ID</key>
+			<integer>11</integer>
+			<key>Points</key>
+			<array>
+				<string>{182.5, 150.00000693565505}</string>
+				<string>{84, 150.00000693565505}</string>
+			</array>
+			<key>Style</key>
+			<dict>
+				<key>stroke</key>
+				<dict>
+					<key>HeadArrow</key>
+					<string>FilledArrow</string>
+					<key>Legacy</key>
+					<true/>
+					<key>TailArrow</key>
+					<string>0</string>
+				</dict>
+			</dict>
+			<key>Tail</key>
+			<dict>
+				<key>ID</key>
+				<integer>6</integer>
+			</dict>
+		</dict>
+		<dict>
+			<key>Class</key>
+			<string>LineGraphic</string>
+			<key>Head</key>
+			<dict>
+				<key>ID</key>
+				<integer>5</integer>
+			</dict>
+			<key>ID</key>
+			<integer>10</integer>
+			<key>Points</key>
+			<array>
+				<string>{65.000005877195676, 157}</string>
+				<string>{65.000005877195676, 268}</string>
+			</array>
+			<key>Style</key>
+			<dict>
+				<key>stroke</key>
+				<dict>
+					<key>HeadArrow</key>
+					<string>FilledArrow</string>
+					<key>Legacy</key>
+					<true/>
+					<key>TailArrow</key>
+					<string>0</string>
+				</dict>
+			</dict>
+			<key>Tail</key>
+			<dict>
+				<key>ID</key>
+				<integer>3</integer>
+			</dict>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{344.5, 268}, {25, 14}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>ID</key>
+			<integer>9</integer>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Pad</key>
+				<integer>0</integer>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T(c) }</string>
+				<key>VerticalPad</key>
+				<integer>0</integer>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{338.5, 143}, {37, 14}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>ID</key>
+			<integer>8</integer>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Pad</key>
+				<integer>0</integer>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T^2(c) }</string>
+				<key>VerticalPad</key>
+				<integer>0</integer>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{192, 268}, {38, 14}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>ID</key>
+			<integer>7</integer>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Pad</key>
+				<integer>0</integer>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T^2(d) }</string>
+				<key>VerticalPad</key>
+				<integer>0</integer>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{182.5, 143}, {57, 14}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>ID</key>
+			<integer>6</integer>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Pad</key>
+				<integer>0</integer>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T^2(T((d)) }</string>
+				<key>VerticalPad</key>
+				<integer>0</integer>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{52, 268}, {26, 14}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>ID</key>
+			<integer>5</integer>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Pad</key>
+				<integer>0</integer>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T(d) }</string>
+				<key>VerticalPad</key>
+				<integer>0</integer>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+		<dict>
+			<key>Bounds</key>
+			<string>{{46, 143}, {38, 14}}</string>
+			<key>Class</key>
+			<string>ShapedGraphic</string>
+			<key>FitText</key>
+			<string>YES</string>
+			<key>Flow</key>
+			<string>Resize</string>
+			<key>ID</key>
+			<integer>3</integer>
+			<key>Shape</key>
+			<string>Rectangle</string>
+			<key>Style</key>
+			<dict>
+				<key>fill</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>shadow</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+				<key>stroke</key>
+				<dict>
+					<key>Draws</key>
+					<string>NO</string>
+				</dict>
+			</dict>
+			<key>Text</key>
+			<dict>
+				<key>Pad</key>
+				<integer>0</integer>
+				<key>Text</key>
+				<string>{\rtf1\ansi\ansicpg1252\cocoartf1187\cocoasubrtf390
+\cocoascreenfonts1{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
+{\colortbl;\red255\green255\blue255;}
+\pard\tx560\tx1120\tx1680\tx2240\tx2800\tx3360\tx3920\tx4480\tx5040\tx5600\tx6160\tx6720\pardirnatural\qc
+
+\f0\fs24 \cf0 T^2(d) }</string>
+				<key>VerticalPad</key>
+				<integer>0</integer>
+			</dict>
+			<key>Wrap</key>
+			<string>NO</string>
+		</dict>
+	</array>
+	<key>GridInfo</key>
+	<dict/>
+	<key>GuidesLocked</key>
+	<string>NO</string>
+	<key>GuidesVisible</key>
+	<string>YES</string>
+	<key>HPages</key>
+	<integer>1</integer>
+	<key>ImageCounter</key>
+	<integer>1</integer>
+	<key>KeepToScale</key>
+	<false/>
+	<key>Layers</key>
+	<array>
+		<dict>
+			<key>Lock</key>
+			<string>NO</string>
+			<key>Name</key>
+			<string>Layer 1</string>
+			<key>Print</key>
+			<string>YES</string>
+			<key>View</key>
+			<string>YES</string>
+		</dict>
+	</array>
+	<key>LayoutInfo</key>
+	<dict>
+		<key>Animate</key>
+		<string>NO</string>
+		<key>circoMinDist</key>
+		<real>18</real>
+		<key>circoSeparation</key>
+		<real>0.0</real>
+		<key>layoutEngine</key>
+		<string>dot</string>
+		<key>neatoSeparation</key>
+		<real>0.0</real>
+		<key>twopiSeparation</key>
+		<real>0.0</real>
+	</dict>
+	<key>LinksVisible</key>
+	<string>NO</string>
+	<key>MagnetsVisible</key>
+	<string>NO</string>
+	<key>MasterSheets</key>
+	<array/>
+	<key>ModificationDate</key>
+	<string>2013-07-02 07:12:11 +0000</string>
+	<key>Modifier</key>
+	<string>Shinji KONO</string>
+	<key>NotesVisible</key>
+	<string>NO</string>
+	<key>Orientation</key>
+	<integer>2</integer>
+	<key>OriginVisible</key>
+	<string>NO</string>
+	<key>PageBreaks</key>
+	<string>YES</string>
+	<key>PrintInfo</key>
+	<dict>
+		<key>NSBottomMargin</key>
+		<array>
+			<string>float</string>
+			<string>41</string>
+		</array>
+		<key>NSHorizonalPagination</key>
+		<array>
+			<string>coded</string>
+			<string>BAtzdHJlYW10eXBlZIHoA4QBQISEhAhOU051bWJlcgCEhAdOU1ZhbHVlAISECE5TT2JqZWN0AIWEASqEhAFxlwCG</string>
+		</array>
+		<key>NSLeftMargin</key>
+		<array>
+			<string>float</string>
+			<string>18</string>
+		</array>
+		<key>NSPaperSize</key>
+		<array>
+			<string>size</string>
+			<string>{595, 842}</string>
+		</array>
+		<key>NSPrintReverseOrientation</key>
+		<array>
+			<string>int</string>
+			<string>0</string>
+		</array>
+		<key>NSRightMargin</key>
+		<array>
+			<string>float</string>
+			<string>18</string>
+		</array>
+		<key>NSTopMargin</key>
+		<array>
+			<string>float</string>
+			<string>18</string>
+		</array>
+	</dict>
+	<key>PrintOnePage</key>
+	<false/>
+	<key>ReadOnly</key>
+	<string>NO</string>
+	<key>RowAlign</key>
+	<integer>1</integer>
+	<key>RowSpacing</key>
+	<real>36</real>
+	<key>SheetTitle</key>
+	<string>Canvas 1</string>
+	<key>SmartAlignmentGuidesActive</key>
+	<string>YES</string>
+	<key>SmartDistanceGuidesActive</key>
+	<string>YES</string>
+	<key>UniqueID</key>
+	<integer>1</integer>
+	<key>UseEntirePage</key>
+	<false/>
+	<key>VPages</key>
+	<integer>1</integer>
+	<key>WindowInfo</key>
+	<dict>
+		<key>CurrentSheet</key>
+		<integer>0</integer>
+		<key>ExpandedCanvases</key>
+		<array>
+			<dict>
+				<key>name</key>
+				<string>Canvas 1</string>
+			</dict>
+		</array>
+		<key>Frame</key>
+		<string>{{450, 180}, {693, 922}}</string>
+		<key>ListView</key>
+		<true/>
+		<key>OutlineWidth</key>
+		<integer>142</integer>
+		<key>RightSidebar</key>
+		<false/>
+		<key>ShowRuler</key>
+		<true/>
+		<key>Sidebar</key>
+		<true/>
+		<key>SidebarWidth</key>
+		<integer>120</integer>
+		<key>VisibleRegion</key>
+		<string>{{0, 0}, {558, 783}}</string>
+		<key>Zoom</key>
+		<real>1</real>
+		<key>ZoomValues</key>
+		<array>
+			<array>
+				<string>Canvas 1</string>
+				<real>1</real>
+				<real>1</real>
+			</array>
+		</array>
+	</dict>
+</dict>
+</plist>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc/fig/Kli.svg	Sat Mar 04 11:05:40 2017 +0900
@@ -0,0 +1,64 @@
+<?xml version="1.0"?>
+
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xl="http://www.w3.org/1999/xlink" version="1.1" viewBox="37 120 373 171" width="373pt" height="171pt">
+<defs>
+<marker orient="auto" overflow="visible" markerUnits="strokeWidth" id="FilledArrow_Marker" viewBox="-1 -4 10 8" markerWidth="10" markerHeight="8" color="black">
+<g> <path d="M 8 0 L 0 -3 L 0 3 Z" fill="currentColor" stroke="currentColor" stroke-width="1"/> </g>
+</marker>
+</defs>
+<g stroke="none" stroke-opacity="1" stroke-dasharray="none" fill="none" fill-opacity="1">
+<title> Canvas 1</title>
+<g>
+<title> Layer 1</title>
+<text transform="translate(46 143)" fill="black">
+T^2(d) 
+</text>
+<text transform="translate(52 268)" fill="black">
+ T(d) 
+</text>
+<text transform="translate(182.5 143)" fill="black">
+ T^2(T((d)) 
+</text>
+<text transform="translate(192 268)" fill="black">
+ T^2(d) 
+</text>
+<text transform="translate(338.5 143)" fill="black">
+ T^2(c) 
+</text>
+<text transform="translate(344.5 268)" fill="black">
+ T(c) 
+</text>
+<line x1="65.000006" y1="157" x2="65.000006" y2="258.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="182.5" y1="150.00001" x2="93.9" y2="150.00001" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="192" y1="275.00001" x2="87.9" y2="275.00001" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="211" y1="157" x2="211" y2="258.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="338.5" y1="150.00208" x2="249.4" y2="150.01209" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="357" y1="157" x2="357" y2="258.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<line x1="344.5" y1="275.00002" x2="239.9" y2="275.00002" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/>
+<text transform="translate(274.83959 134.10321)" fill="black">
+ T^2(g)
+</text>
+<text transform="translate(276 256.30548)" fill="black">
+ T(g)
+</text>
+<text transform="translate(125 255.28434)" fill="black">
+ μ(d)
+</text>
+<text transform="translate(115 134.5493)" fill="black">
+ Tμ(d)
+</text>
+<text transform="translate(76.064266 207)" fill="black">
+ μ(d)
+</text>
+<text transform="translate(218.00792 206)" fill="black">
+ μ(T(d))
+</text>
+<text transform="translate(373.93134 206.89765)" fill="black">
+ μ(c)
+</text>
+</g>
+</g>
+</svg>
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc/fig/Monad.svg	Sat Mar 04 11:05:40 2017 +0900
@@ -0,0 +1,3 @@
+<?xml version="1.0"?>
+<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xl="http://www.w3.org/1999/xlink" version="1.1" viewBox="57 45 358 146" width="358pt" height="146pt"><metadata xmlns:dc="http://purl.org/dc/elements/1.1/"><dc:date>2013-07-08 10:27Z</dc:date><!-- Produced by OmniGraffle Professional 5.4.3 --></metadata><defs><font-face font-family="Helvetica" font-size="12" units-per-em="1000" underline-position="-75.683594" underline-thickness="49.316406" slope="0" x-height="522.94922" cap-height="717.28516" ascent="770.01953" descent="-229.98047" font-weight="500"><font-face-src><font-face-name name="Helvetica"/></font-face-src></font-face><marker orient="auto" overflow="visible" markerUnits="strokeWidth" id="FilledArrow_Marker" viewBox="-1 -4 10 8" markerWidth="10" markerHeight="8" color="black"><g><path d="M 8 0 L 0 -3 L 0 3 Z" fill="currentColor" stroke="currentColor" stroke-width="1"/></g></marker><font-face font-family="Hiragino Kaku Gothic ProN" font-size="12" panose-1="2 11 3 0 0 0 0 0 0 0" units-per-em="1000" underline-position="-60" underline-thickness="63.000004" slope="0" x-height="545" cap-height="766" ascent="880.00183" descent="-120.000244" font-weight="400"><font-face-src><font-face-name name="HiraKakuProN-W3"/></font-face-src></font-face></defs><g stroke="none" stroke-opacity="1" stroke-dasharray="none" fill="none" fill-opacity="1"><title>Canvas 1</title><rect fill="white" width="559" height="783"/><g><title>Layer 1</title><text transform="translate(94 73)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x=".33496094" y="11" textLength="7.330078">T</tspan></text><text transform="translate(172 73)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x=".16992188" y="11" textLength="14.660156">TT</tspan></text><text transform="translate(90.5 150)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x=".16992188" y="11" textLength="14.660156">TT</tspan></text><text transform="translate(172 150)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x="3.834961" y="11" textLength="7.330078">T</tspan></text><text transform="translate(279.5 73)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x=".0048828125" y="11" textLength="21.990234">TTT</tspan></text><text transform="translate(375.5 73)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x=".16992188" y="11" textLength="14.660156">TT</tspan></text><text transform="translate(283 150)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x=".16992188" y="11" textLength="14.660156">TT</tspan></text><text transform="translate(379 150)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" x=".33496094" y="11" textLength="7.330078">T</tspan></text><line x1="102" y1="80" x2="162.1" y2="80" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><line x1="98.00016" y1="87" x2="98.0014" y2="140.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><line x1="105.5" y1="157.00001" x2="162.1" y2="157.00001" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><line x1="179.50315" y1="87" x2="179.52704" y2="140.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><line x1="301.5" y1="80" x2="365.6" y2="80" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><line x1="290.49685" y1="87" x2="290.47295" y2="140.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><line x1="298" y1="157" x2="369.1" y2="157" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><line x1="383.00031" y1="87" x2="383.0027" y2="140.1" marker-end="url(#FilledArrow_Marker)" stroke="black" stroke-linecap="round" stroke-linejoin="round" stroke-width="1"/><rect x="121.40783" y="56.49032" width="25" height="24" fill="white"/><text transform="translate(126.40783 61.49032)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".16992188" y="11" textLength="14.660156">Tη</tspan></text><rect x="66.92864" y="101.34047" width="26" height="28" fill="white"/><text transform="translate(71.92864 106.34047)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".44096094" y="11" textLength="7.330078">η</tspan><tspan font-family="Hiragino Kaku Gothic ProN" font-size="12" font-weight="400" fill="black" x="7.771039" y="11" textLength="7.788">T</tspan></text><rect x="120" y="157.54842" width="18" height="24" fill="white"/><text transform="translate(125 162.54842)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".33496094" y="11" textLength="7.330078">μ</tspan></text><rect x="185.9823" y="102.99371" width="18" height="24" fill="white"/><text transform="translate(190.9823 107.99371)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".33496094" y="11" textLength="7.330078">μ</tspan></text><rect x="322.5" y="54.685742" width="25" height="24" fill="white"/><text transform="translate(327.5 59.68574)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".16992188" y="11" textLength="14.660156">μT</tspan></text><rect x="260.88343" y="105.99342" width="25" height="24" fill="white"/><text transform="translate(265.88343 110.99342)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".16992188" y="11" textLength="14.660156">Tμ</tspan></text><rect x="321" y="157.95335" width="18" height="24" fill="white"/><text transform="translate(326 162.95335)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".33496094" y="11" textLength="7.330078">μ</tspan></text><rect x="387.04312" y="106.9183" width="18" height="24" fill="white"/><text transform="translate(392.04312 111.9183)" fill="black"><tspan font-family="Helvetica" font-size="12" font-weight="500" fill="black" x=".33496094" y="11" textLength="7.330078">μ</tspan></text></g></g></svg>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc/test.tex	Sat Mar 04 11:05:40 2017 +0900
@@ -0,0 +1,189 @@
+\documentclass{jarticle}
+\usepackage[dvipdfm]{graphicx}
+\usepackage{tikz}
+\usepackage{tikz-cd}
+\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
+\usetikzlibrary{positioning}
+\usepackage{amsmath}
+
+\begin{document}
+
+\date{}
+\title{{\bf Commutative Diagram Exmamples}}
+\author{}
+
+The tikz package
+This is a general purpose graphics package. To load it for this document, I used:
+
+
+
+\begin{tikzcd}
+A \arrow{r}{a} \arrow{d}{b}
+               &B \arrow{d}{c}\\
+C \arrow{r}{d} &D
+\end{tikzcd}
+
+
+\begin{tikzpicture}[scale=1.5]
+\node (A) at (0,1) {$A$};
+\node (B) at (1,1) {$B$};
+\node (C) at (0,0) {$C$};
+\node (D) at (1,0) {$D$};
+\path[->,font=\scriptsize,>=angle 90]
+(A) edge node[above]{$a$} (B)
+(A) edge node[right]{$b$} (C)
+(B) edge node[right]{$c$} (D)
+(C) edge node[above]{$d$} (D);
+\end{tikzpicture}
+
+
+This is part of: Guide to Commutative Diagrams, www.jmilne.org/not/CDGuide.html Last revised October 30, 2012
+
+\begin{tikzcd}
+ABC A \arrow[hook]{r}\arrow[two heads]{rd}
+                          &B \arrow[dotted]{d}\arrow[hookleftarrow]{r}
+&C \arrow[two heads]{ld}\\ D &D
+\end{tikzcd}
+
+
+\begin{tikzcd}
+A \arrow[hook]{r}{u}[swap]{b}
+Aub Bub C \arrow[two heads]{rd}{u}[swap]{b}
+&B \arrow[dotted]{d}{r}[swap]{l}
+   \arrow[hookleftarrow]{r}{u}[swap]{b}
+D &C \arrow[two heads]{ld}{b}[swap]{u}\\ &D
+\end{tikzcd}
+
+\begin{tikzcd}
+                        A\arrow{r}\arrow{d}
+                        &B\arrow{r}{\text{very long label}}\arrow{d}
+                        &C\arrow{d}\\
+DEF D\arrow{r}&E\arrow{r}&F 
+\end{tikzcd}
+
+% \begin{tikzcd}[column sep=large]
+% A\arrow{r}\arrow{d}
+
+
+\begin{tikzcd}
+A B A\arrow[bend left]{r}\arrow[bend right]{r}&B
+\end{tikzcd}
+
+
+\begin{tikzcd}
+T\arrow[bend left]{drr}{x}
+\arrow[bend right]{ddr}[swap]{y}
+\arrow[dotted]{dr}[description]{(x,y)} & & \\
+& X \times_Z Y \arrow{r}{p} \arrow{d}{q} & X \arrow{d}{f} \\
+& Y \arrow{r}{g} & Z
+\end{tikzcd}
+
+
+
+
+
+
+\begin{tikzpicture}
+\node (A) at (-1,0) {$A$};
+\node (B) at (1,0) {$B$};
+\node at (0,0) {\rotatebox{270}{$\Rightarrow$}};
+\path[->,font=\scriptsize,>=angle 90]
+ (A) edge [bend left] node[above] {$\alpha$} (B)
+     edge [bend right] node[below] {$\beta$} (B);
+\end{tikzpicture} 
+
+\begin{tikzpicture}
+\node (P0) at (90:2.8cm) {$X\otimes (Y\otimes (Z\otimes T))$};
+\node (P1) at (90+72:2.5cm) {$X\otimes ((Y\otimes Z)\otimes T))$} ;
+\node (P2) at (90+2*72:2.5cm) {${(X\otimes (Y\otimes Z))}\otimes T$};
+\node (P3) at (90+3*72:2.5cm) {$((X\otimes Y){\otimes Z)\otimes T}$};
+\node (P4) at (90+4*72:2.5cm) {$(X\otimes Y)\otimes (Z\otimes T)$};
+\draw
+(P0) edge[->,>=angle 90] node[left] {$1\otimes\phi$} (P1)
+(P1) edge[->,>=angle 90] node[left] {$\phi$} (P2)
+(P2) edge[->,>=angle 90] node[above] {$\phi\otimes 1$} (P3)
+(P4) edge[->,>=angle 90] node[right] {$\phi$} (P3)
+(P0) edge[->,>=angle 90] node[right] {$\phi$} (P4);
+\end{tikzpicture}
+
+
+\begin{tikzpicture}
+\node (a) at (0,0) {$Y\times_X Y$};
+\node (b) at (2,0) {$Y$};
+\node (c) at (3.5,0) {$X$};
+\path[->,font=\scriptsize,>=angle 90]
+([yshift= 2pt]a.east) edge node[above] {$p_1$} ([yshift= 2pt]b.west)
+([yshift= -2pt]a.east) edge node[below] {$p_2$} ([yshift= -2pt]b.west)
+(b) edge (c);
+\end{tikzpicture}
+
+\begin{tikzpicture}[descr/.style={fill=white},text height=1.5ex, text depth=0.25ex]
+\node (a) at (0,0) {$\mathsf{S}(Z)$};
+\node (b) at (2.5,0) {$\mathsf{S}(X)$};
+\node (c) at (5,0) {$\mathsf{S}(U).$};
+\path[->,font=\scriptsize,>=angle 90]
+([yshift= 9pt]b.west) edge node[above] {$i^{\ast}$} ([yshift= 9pt]a.east)
+(a.east) edge node[descr] {$i_{\ast}$} (b.west)
+([yshift= -9pt]b.west) edge node[below] {$i^!$} ([yshift= -9pt]a.east)
+([yshift= 9pt]c.west) edge node[above] {$j_!$} ([yshift= 9pt]b.east)
+(b.east) edge node[descr] {$j^{\ast}$} (c.west)
+([yshift= -9pt]c.west) edge node[below] {$j_*$} ([yshift= -9pt]b.east);
+\end{tikzpicture}
+
+
+\begin{tikzpicture}[>=angle 90,scale=2.2,text height=1.5ex, text depth=0.25ex]
+%%First place the nodes
+\node (k-1) at (0,3) {$0$};
+\node (k0) [right=of k-1] {$Ker f$};
+\node (k1) [right=of k0] {$Ker a$};
+\node (k2) [right=of k1] {$Ker b$};
+\node (k3) [right=of k2] {$Ker c$};
+\node (a1) [below=of k1] {$A$};
+\node (a2) [below=of k2] {$B$};
+\node (a3) [below=of k3] {$C$};
+\node (a4) [right=of a3] {$0$};
+\node (b1) [below=of a1] {$A’$};
+\node (b0) [left=of b1] {$0$};
+\node (b2) [below=of a2] {$B’$};
+\node (b3) [below=of a3] {$C’$};
+\node (c1) [below=of b1] {$Coker a$};
+\node (c2) [below=of b2] {$Coker b$};
+\node (c3) [below=of b3] {$Coker c$};
+\node (c4) [right=of c3] {$Coker g’$};
+\node (c5) [right=of c4] {$0$};
+%%Draw the red arrows
+\draw[->,red,font=\scriptsize]
+(k-1) edge (k0)
+(k0)  edge (k1)
+(k1)  edge (k2)
+(k2)  edge (k3)
+(c1)  edge (c2)
+(c2)  edge (c3)
+(c3)  edge (c4)
+(c4)  edge (c5);
+%%Draw the curvy red arrow
+%\draw[->,red]
+%(k3) edge[out=0,in=180,red] node[pos=0.55,yshift=5pt] {$d$} (c1);
+%%Draw the black arrows
+%\draw[->]
+(k1) edge (a1)
+(k2) edge (a2)
+(k3) edge (a3)
+(b1) edge (c1)
+(b2) edge (c2)
+(b3) edge (c3);
+%%Draw the thick blue arrows
+\draw[->,font=\scriptsize,blue,thick]
+(a1) edge node[auto] {$f$} (a2)
+(a2) edge node[auto] {$g$} (a3)
+(a3) edge (a4)
+(a1) edge node[auto] {$a$} (b1)
+(a2) edge node[auto] {$b$} (b2)
+(a3) edge node[auto] {$c$} (b3)
+(b0) edge (b1)
+(b1) edge node[below] {$f’$} (b2)
+(b2) edge node[below] {$g’$} (b3);
+\end{tikzpicture}
+
+
+\end{document}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc/test2.tex	Sat Mar 04 11:05:40 2017 +0900
@@ -0,0 +1,271 @@
+\documentclass{jarticle}
+\usepackage[dvipdfm]{graphicx}
+\usepackage{tikz}
+\usepackage{tikz-cd}
+\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
+\usetikzlibrary{positioning}
+\usepackage{amsmath}
+
+\begin{document}
+
+\date{}
+\title{{\bf Commutative Diagram Exmamples}}
+\author{}
+
+The tikz package
+This is a general purpose graphics package. To load it for this document, I used:
+
+
+There are now three ways to enter commutative diagrams using tikz: with the package tikz-cd, with matrix, and directly with tikz (listed roughly in order of decreasing ease but increasing flexibility).
+
+\begin{tikzcd}
+A \arrow{r}{a} \arrow{d}{b}
+               &B \arrow{d}{c}\\
+C \arrow{r}{d} &D
+\end{tikzcd}
+
+\begin{tikzpicture}
+\matrix(m)[matrix of math nodes, row sep=2.6em, column sep=2.8em, text height=1.5ex, text depth=0.25ex]
+{A & B \\
+ C & D \\ };
+\path[->,font=\scriptsize,>=angle 90]
+(m-1-1) edge node[auto] {$a$} (m-1-2)
+        edge node[auto] {$b$} (m-2-1)
+(m-1-2) edge node[auto] {$c$} (m-2-2)
+(m-2-1) edge node[auto] {$d$} (m-2-2);
+\end{tikzpicture}
+
+\begin{tikzpicture}[scale=1.5]
+\node (A) at (0,1) {$A$};
+\node (B) at (1,1) {$B$};
+\node (C) at (0,0) {$C$};
+\node (D) at (1,0) {$D$};
+\path[->,font=\scriptsize,>=angle 90]
+(A) edge node[above]{$a$} (B)
+(A) edge node[right]{$b$} (C)
+(B) edge node[right]{$c$} (D)
+(C) edge node[above]{$d$} (D);
+\end{tikzpicture}
+
+
+This is part of: Guide to Commutative Diagrams, www.jmilne.org/not/CDGuide.html Last revised October 30, 2012
+
+\begin{tikzcd}
+ABC A \arrow[hook]{r}\arrow[two heads]{rd}
+                          &B \arrow[dotted]{d}\arrow[hookleftarrow]{r}
+&C \arrow[two heads]{ld}\\ D &D
+\end{tikzcd}
+
+
+\begin{tikzcd}
+A \arrow[hook]{r}{u}[swap]{b}
+Aub Bub C \arrow[two heads]{rd}{u}[swap]{b}
+&B \arrow[dotted]{d}{r}[swap]{l}
+   \arrow[hookleftarrow]{r}{u}[swap]{b}
+D &C \arrow[two heads]{ld}{b}[swap]{u}\\ &D
+\end{tikzcd}
+
+\begin{tikzcd}
+                        A\arrow{r}\arrow{d}
+                        &B\arrow{r}{\text{very long label}}\arrow{d}
+                        &C\arrow{d}\\
+DEF D\arrow{r}&E\arrow{r}&F 
+\end{tikzcd}
+
+% \begin{tikzcd}[column sep=large]
+% A\arrow{r}\arrow{d}
+
+
+\begin{tikzcd}
+A B A\arrow[bend left]{r}\arrow[bend right]{r}&B
+\end{tikzcd}
+
+\begin{tikzcd}
+&A\arrow{ldd}[swap]{f}\arrow{rd}[description]{c}
+  \arrow{rrd}[description]{d}
+  \arrow{rrrd}[description]{e}\\
+&B\arrow{ld}\arrow{r}&C\arrow{r}&D\arrow{r}&E\\
+F
+\end{tikzcd}
+
+\begin{tikzcd}
+T\arrow[bend left]{drr}{x}
+\arrow[bend right]{ddr}[swap]{y}
+\arrow[dotted]{dr}[description]{(x,y)} & & \\
+& X \times_Z Y \arrow{r}{p} \arrow{d}{q} & X \arrow{d}{f} \\
+& Y \arrow{r}{g} & Z
+\end{tikzcd}
+
+\begin{tikzpicture}[>=angle 90]
+\matrix(a)[matrix of math nodes,
+row sep=3em, column sep=2.5em,
+text height=1.5ex, text depth=0.25ex]
+{A&B&C\\
+&D\\};
+\path[right hook->](a-1-1) edge (a-1-2);
+\path[->>](a-1-1) edge (a-2-2);
+\path[dotted,->](a-1-2) edge (a-2-2);
+\path[left hook->](a-1-3) edge (a-1-2);
+\path[->>](a-1-3) edge (a-2-2);
+\end{tikzpicture}
+
+
+
+\begin{tikzpicture}
+\matrix(m)[matrix of math nodes,
+row sep=3em, column sep=2.8em,
+text height=1.5ex, text depth=0.25ex]
+{A&B\\};
+\path[->]
+(m-1-1) edge [bend left] (m-1-2)
+        edge [bend left=40] (m-1-2)
+        edge [bend left=60] (m-1-2)
+        edge [bend left=80] (m-1-2)
+        edge [bend right] (m-1-2);
+\end{tikzpicture}
+
+\[
+\begin{tikzpicture}[descr/.style={fill=white}]
+\matrix(m)[matrix of math nodes, row sep=3em, column sep=2.8em, text height=1.5ex, text depth=0.25ex]
+{&A\\&B&C&D&E\\F\\};
+\path[->,font=\scriptsize]
+(m-1-2) edge node[above left] {$f$} (m-3-1)
+        edge node[descr] {$c$} (m-2-3)
+        edge node[descr] {$d$} (m-2-4)
+        edge node[descr] {$e$} (m-2-5);
+\path[->]
+(m-2-2) edge (m-3-1)
+        edge (m-2-3);
+\path[->]
+(m-2-3) edge (m-2-4);
+\path[->]
+(m-2-4) edge (m-2-5);
+\end{tikzpicture}
+\]
+
+\[
+\begin{tikzpicture}[descr/.style={fill=white}]
+\matrix(m)[matrix of math nodes, row sep=3em, column sep=2.8em,
+text height=1.5ex, text depth=0.25ex]
+{T\\&X\times_Z Y&X\\&Y&Z\\};
+7
+
+\path[->,font=\scriptsize]
+(m-1-1) edge [bend left=10] node[above] {$x$} (m-2-3)
+(m-1-1) edge [bend right=10] node[below] {$y$} (m-3-2);
+\path[->,dotted,font=\scriptsize]
+(m-1-1) edge node[descr] {$(x,y)$} (m-2-2);
+\path[->,font=\scriptsize]
+(m-2-2) edge node[below] {$p$} (m-2-3)
+(m-2-2) edge node[right] {$q$} (m-3-2);
+\path[->,font=\scriptsize]
+(m-2-3) edge node[right] {$f$} (m-3-3);
+\path[->,font=\scriptsize]
+(m-3-2) edge node[above] {$g$} (m-3-3);
+\end{tikzpicture}
+\]
+
+\begin{tikzpicture}
+\node (A) at (-1,0) {$A$};
+\node (B) at (1,0) {$B$};
+\node at (0,0) {\rotatebox{270}{$\Rightarrow$}};
+\path[->,font=\scriptsize,>=angle 90]
+ (A) edge [bend left] node[above] {$\alpha$} (B)
+     edge [bend right] node[below] {$\beta$} (B);
+\end{tikzpicture} 
+
+\begin{tikzpicture}
+\node (P0) at (90:2.8cm) {$X\otimes (Y\otimes (Z\otimes T))$};
+\node (P1) at (90+72:2.5cm) {$X\otimes ((Y\otimes Z)\otimes T))$} ;
+\node (P2) at (90+2*72:2.5cm) {${(X\otimes (Y\otimes Z))}\otimes T$};
+\node (P3) at (90+3*72:2.5cm) {$((X\otimes Y){\otimes Z)\otimes T}$};
+\node (P4) at (90+4*72:2.5cm) {$(X\otimes Y)\otimes (Z\otimes T)$};
+\draw
+(P0) edge[->,>=angle 90] node[left] {$1\otimes\phi$} (P1)
+(P1) edge[->,>=angle 90] node[left] {$\phi$} (P2)
+(P2) edge[->,>=angle 90] node[above] {$\phi\otimes 1$} (P3)
+(P4) edge[->,>=angle 90] node[right] {$\phi$} (P3)
+(P0) edge[->,>=angle 90] node[right] {$\phi$} (P4);
+\end{tikzpicture}
+
+
+\begin{tikzpicture}
+\node (a) at (0,0) {$Y\times_X Y$};
+\node (b) at (2,0) {$Y$};
+\node (c) at (3.5,0) {$X$};
+\path[->,font=\scriptsize,>=angle 90]
+([yshift= 2pt]a.east) edge node[above] {$p_1$} ([yshift= 2pt]b.west)
+([yshift= -2pt]a.east) edge node[below] {$p_2$} ([yshift= -2pt]b.west)
+(b) edge (c);
+\end{tikzpicture}
+
+\begin{tikzpicture}[descr/.style={fill=white},text height=1.5ex, text depth=0.25ex]
+\node (a) at (0,0) {$\mathsf{S}(Z)$};
+\node (b) at (2.5,0) {$\mathsf{S}(X)$};
+\node (c) at (5,0) {$\mathsf{S}(U).$};
+\path[->,font=\scriptsize,>=angle 90]
+([yshift= 9pt]b.west) edge node[above] {$i^{\ast}$} ([yshift= 9pt]a.east)
+(a.east) edge node[descr] {$i_{\ast}$} (b.west)
+([yshift= -9pt]b.west) edge node[below] {$i^!$} ([yshift= -9pt]a.east)
+([yshift= 9pt]c.west) edge node[above] {$j_!$} ([yshift= 9pt]b.east)
+(b.east) edge node[descr] {$j^{\ast}$} (c.west)
+([yshift= -9pt]c.west) edge node[below] {$j_*$} ([yshift= -9pt]b.east);
+\end{tikzpicture}
+
+
+\begin{tikzpicture}[>=angle 90,scale=2.2,text height=1.5ex, text depth=0.25ex]
+%%First place the nodes
+\node (k-1) at (0,3) {$0$};
+\node (k0) [right=of k-1] {$Ker f$};
+\node (k1) [right=of k0] {$Ker a$};
+\node (k2) [right=of k1] {$Ker b$};
+\node (k3) [right=of k2] {$Ker c$};
+\node (a1) [below=of k1] {$A$};
+\node (a2) [below=of k2] {$B$};
+\node (a3) [below=of k3] {$C$};
+\node (a4) [right=of a3] {$0$};
+\node (b1) [below=of a1] {$A’$};
+\node (b0) [left=of b1] {$0$};
+\node (b2) [below=of a2] {$B’$};
+\node (b3) [below=of a3] {$C’$};
+\node (c1) [below=of b1] {$Coker a$};
+\node (c2) [below=of b2] {$Coker b$};
+\node (c3) [below=of b3] {$Coker c$};
+\node (c4) [right=of c3] {$Coker g’$};
+\node (c5) [right=of c4] {$0$};
+%%Draw the red arrows
+\draw[->,red,font=\scriptsize]
+(k-1) edge (k0)
+(k0)  edge (k1)
+(k1)  edge (k2)
+(k2)  edge (k3)
+(c1)  edge (c2)
+(c2)  edge (c3)
+(c3)  edge (c4)
+(c4)  edge (c5);
+%%Draw the curvy red arrow
+\draw[->,red]
+(k3) edge[out=0,in=180,red] node[pos=0.55,yshift=5pt] {$d$} (c1);
+%%Draw the black arrows
+\draw[->]
+(k1) edge (a1)
+(k2) edge (a2)
+(k3) edge (a3)
+(b1) edge (c1)
+(b2) edge (c2)
+(b3) edge (c3);
+%%Draw the thick blue arrows
+\draw[->,font=\scriptsize,blue,thick]
+(a1) edge node[auto] {$f$} (a2)
+(a2) edge node[auto] {$g$} (a3)
+(a3) edge (a4)
+(a1) edge node[auto] {$a$} (b1)
+(a2) edge node[auto] {$b$} (b2)
+(a3) edge node[auto] {$c$} (b3)
+(b0) edge (b1)
+(b1) edge node[below] {$f’$} (b2)
+(b2) edge node[below] {$g’$} (b3);
+\end{tikzpicture}
+
+
+\end{document}